1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Performance event support - powerpc architecture code 4 * 5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation. 6 */ 7 #include <linux/kernel.h> 8 #include <linux/sched.h> 9 #include <linux/sched/clock.h> 10 #include <linux/perf_event.h> 11 #include <linux/percpu.h> 12 #include <linux/hardirq.h> 13 #include <linux/uaccess.h> 14 #include <asm/reg.h> 15 #include <asm/pmc.h> 16 #include <asm/machdep.h> 17 #include <asm/firmware.h> 18 #include <asm/ptrace.h> 19 #include <asm/code-patching.h> 20 21 #ifdef CONFIG_PPC64 22 #include "internal.h" 23 #endif 24 25 #define BHRB_MAX_ENTRIES 32 26 #define BHRB_TARGET 0x0000000000000002 27 #define BHRB_PREDICTION 0x0000000000000001 28 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL 29 30 struct cpu_hw_events { 31 int n_events; 32 int n_percpu; 33 int disabled; 34 int n_added; 35 int n_limited; 36 u8 pmcs_enabled; 37 struct perf_event *event[MAX_HWEVENTS]; 38 u64 events[MAX_HWEVENTS]; 39 unsigned int flags[MAX_HWEVENTS]; 40 /* 41 * The order of the MMCR array is: 42 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2 43 * - 32-bit, MMCR0, MMCR1, MMCR2 44 */ 45 unsigned long mmcr[4]; 46 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS]; 47 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS]; 48 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 49 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 50 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES]; 51 52 unsigned int txn_flags; 53 int n_txn_start; 54 55 /* BHRB bits */ 56 u64 bhrb_filter; /* BHRB HW branch filter */ 57 unsigned int bhrb_users; 58 void *bhrb_context; 59 struct perf_branch_stack bhrb_stack; 60 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES]; 61 u64 ic_init; 62 }; 63 64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); 65 66 static struct power_pmu *ppmu; 67 68 /* 69 * Normally, to ignore kernel events we set the FCS (freeze counters 70 * in supervisor mode) bit in MMCR0, but if the kernel runs with the 71 * hypervisor bit set in the MSR, or if we are running on a processor 72 * where the hypervisor bit is forced to 1 (as on Apple G5 processors), 73 * then we need to use the FCHV bit to ignore kernel events. 74 */ 75 static unsigned int freeze_events_kernel = MMCR0_FCS; 76 77 /* 78 * 32-bit doesn't have MMCRA but does have an MMCR2, 79 * and a few other names are different. 80 */ 81 #ifdef CONFIG_PPC32 82 83 #define MMCR0_FCHV 0 84 #define MMCR0_PMCjCE MMCR0_PMCnCE 85 #define MMCR0_FC56 0 86 #define MMCR0_PMAO 0 87 #define MMCR0_EBE 0 88 #define MMCR0_BHRBA 0 89 #define MMCR0_PMCC 0 90 #define MMCR0_PMCC_U6 0 91 92 #define SPRN_MMCRA SPRN_MMCR2 93 #define MMCRA_SAMPLE_ENABLE 0 94 95 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 96 { 97 return 0; 98 } 99 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { } 100 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 101 { 102 return 0; 103 } 104 static inline void perf_read_regs(struct pt_regs *regs) 105 { 106 regs->result = 0; 107 } 108 static inline int perf_intr_is_nmi(struct pt_regs *regs) 109 { 110 return 0; 111 } 112 113 static inline int siar_valid(struct pt_regs *regs) 114 { 115 return 1; 116 } 117 118 static bool is_ebb_event(struct perf_event *event) { return false; } 119 static int ebb_event_check(struct perf_event *event) { return 0; } 120 static void ebb_event_add(struct perf_event *event) { } 121 static void ebb_switch_out(unsigned long mmcr0) { } 122 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 123 { 124 return cpuhw->mmcr[0]; 125 } 126 127 static inline void power_pmu_bhrb_enable(struct perf_event *event) {} 128 static inline void power_pmu_bhrb_disable(struct perf_event *event) {} 129 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {} 130 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {} 131 static void pmao_restore_workaround(bool ebb) { } 132 #endif /* CONFIG_PPC32 */ 133 134 bool is_sier_available(void) 135 { 136 if (ppmu->flags & PPMU_HAS_SIER) 137 return true; 138 139 return false; 140 } 141 142 static bool regs_use_siar(struct pt_regs *regs) 143 { 144 /* 145 * When we take a performance monitor exception the regs are setup 146 * using perf_read_regs() which overloads some fields, in particular 147 * regs->result to tell us whether to use SIAR. 148 * 149 * However if the regs are from another exception, eg. a syscall, then 150 * they have not been setup using perf_read_regs() and so regs->result 151 * is something random. 152 */ 153 return ((TRAP(regs) == 0xf00) && regs->result); 154 } 155 156 /* 157 * Things that are specific to 64-bit implementations. 158 */ 159 #ifdef CONFIG_PPC64 160 161 static inline unsigned long perf_ip_adjust(struct pt_regs *regs) 162 { 163 unsigned long mmcra = regs->dsisr; 164 165 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) { 166 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT; 167 if (slot > 1) 168 return 4 * (slot - 1); 169 } 170 171 return 0; 172 } 173 174 /* 175 * The user wants a data address recorded. 176 * If we're not doing instruction sampling, give them the SDAR 177 * (sampled data address). If we are doing instruction sampling, then 178 * only give them the SDAR if it corresponds to the instruction 179 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the 180 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER. 181 */ 182 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) 183 { 184 unsigned long mmcra = regs->dsisr; 185 bool sdar_valid; 186 187 if (ppmu->flags & PPMU_HAS_SIER) 188 sdar_valid = regs->dar & SIER_SDAR_VALID; 189 else { 190 unsigned long sdsync; 191 192 if (ppmu->flags & PPMU_SIAR_VALID) 193 sdsync = POWER7P_MMCRA_SDAR_VALID; 194 else if (ppmu->flags & PPMU_ALT_SIPR) 195 sdsync = POWER6_MMCRA_SDSYNC; 196 else if (ppmu->flags & PPMU_NO_SIAR) 197 sdsync = MMCRA_SAMPLE_ENABLE; 198 else 199 sdsync = MMCRA_SDSYNC; 200 201 sdar_valid = mmcra & sdsync; 202 } 203 204 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid) 205 *addrp = mfspr(SPRN_SDAR); 206 207 if (is_kernel_addr(mfspr(SPRN_SDAR)) && perf_allow_kernel(&event->attr) != 0) 208 *addrp = 0; 209 } 210 211 static bool regs_sihv(struct pt_regs *regs) 212 { 213 unsigned long sihv = MMCRA_SIHV; 214 215 if (ppmu->flags & PPMU_HAS_SIER) 216 return !!(regs->dar & SIER_SIHV); 217 218 if (ppmu->flags & PPMU_ALT_SIPR) 219 sihv = POWER6_MMCRA_SIHV; 220 221 return !!(regs->dsisr & sihv); 222 } 223 224 static bool regs_sipr(struct pt_regs *regs) 225 { 226 unsigned long sipr = MMCRA_SIPR; 227 228 if (ppmu->flags & PPMU_HAS_SIER) 229 return !!(regs->dar & SIER_SIPR); 230 231 if (ppmu->flags & PPMU_ALT_SIPR) 232 sipr = POWER6_MMCRA_SIPR; 233 234 return !!(regs->dsisr & sipr); 235 } 236 237 static inline u32 perf_flags_from_msr(struct pt_regs *regs) 238 { 239 if (regs->msr & MSR_PR) 240 return PERF_RECORD_MISC_USER; 241 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV) 242 return PERF_RECORD_MISC_HYPERVISOR; 243 return PERF_RECORD_MISC_KERNEL; 244 } 245 246 static inline u32 perf_get_misc_flags(struct pt_regs *regs) 247 { 248 bool use_siar = regs_use_siar(regs); 249 250 if (!use_siar) 251 return perf_flags_from_msr(regs); 252 253 /* 254 * If we don't have flags in MMCRA, rather than using 255 * the MSR, we intuit the flags from the address in 256 * SIAR which should give slightly more reliable 257 * results 258 */ 259 if (ppmu->flags & PPMU_NO_SIPR) { 260 unsigned long siar = mfspr(SPRN_SIAR); 261 if (is_kernel_addr(siar)) 262 return PERF_RECORD_MISC_KERNEL; 263 return PERF_RECORD_MISC_USER; 264 } 265 266 /* PR has priority over HV, so order below is important */ 267 if (regs_sipr(regs)) 268 return PERF_RECORD_MISC_USER; 269 270 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV)) 271 return PERF_RECORD_MISC_HYPERVISOR; 272 273 return PERF_RECORD_MISC_KERNEL; 274 } 275 276 /* 277 * Overload regs->dsisr to store MMCRA so we only need to read it once 278 * on each interrupt. 279 * Overload regs->dar to store SIER if we have it. 280 * Overload regs->result to specify whether we should use the MSR (result 281 * is zero) or the SIAR (result is non zero). 282 */ 283 static inline void perf_read_regs(struct pt_regs *regs) 284 { 285 unsigned long mmcra = mfspr(SPRN_MMCRA); 286 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 287 int use_siar; 288 289 regs->dsisr = mmcra; 290 291 if (ppmu->flags & PPMU_HAS_SIER) 292 regs->dar = mfspr(SPRN_SIER); 293 294 /* 295 * If this isn't a PMU exception (eg a software event) the SIAR is 296 * not valid. Use pt_regs. 297 * 298 * If it is a marked event use the SIAR. 299 * 300 * If the PMU doesn't update the SIAR for non marked events use 301 * pt_regs. 302 * 303 * If the PMU has HV/PR flags then check to see if they 304 * place the exception in userspace. If so, use pt_regs. In 305 * continuous sampling mode the SIAR and the PMU exception are 306 * not synchronised, so they may be many instructions apart. 307 * This can result in confusing backtraces. We still want 308 * hypervisor samples as well as samples in the kernel with 309 * interrupts off hence the userspace check. 310 */ 311 if (TRAP(regs) != 0xf00) 312 use_siar = 0; 313 else if ((ppmu->flags & PPMU_NO_SIAR)) 314 use_siar = 0; 315 else if (marked) 316 use_siar = 1; 317 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING)) 318 use_siar = 0; 319 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs)) 320 use_siar = 0; 321 else 322 use_siar = 1; 323 324 regs->result = use_siar; 325 } 326 327 /* 328 * If interrupts were soft-disabled when a PMU interrupt occurs, treat 329 * it as an NMI. 330 */ 331 static inline int perf_intr_is_nmi(struct pt_regs *regs) 332 { 333 return (regs->softe & IRQS_DISABLED); 334 } 335 336 /* 337 * On processors like P7+ that have the SIAR-Valid bit, marked instructions 338 * must be sampled only if the SIAR-valid bit is set. 339 * 340 * For unmarked instructions and for processors that don't have the SIAR-Valid 341 * bit, assume that SIAR is valid. 342 */ 343 static inline int siar_valid(struct pt_regs *regs) 344 { 345 unsigned long mmcra = regs->dsisr; 346 int marked = mmcra & MMCRA_SAMPLE_ENABLE; 347 348 if (marked) { 349 if (ppmu->flags & PPMU_HAS_SIER) 350 return regs->dar & SIER_SIAR_VALID; 351 352 if (ppmu->flags & PPMU_SIAR_VALID) 353 return mmcra & POWER7P_MMCRA_SIAR_VALID; 354 } 355 356 return 1; 357 } 358 359 360 /* Reset all possible BHRB entries */ 361 static void power_pmu_bhrb_reset(void) 362 { 363 asm volatile(PPC_CLRBHRB); 364 } 365 366 static void power_pmu_bhrb_enable(struct perf_event *event) 367 { 368 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 369 370 if (!ppmu->bhrb_nr) 371 return; 372 373 /* Clear BHRB if we changed task context to avoid data leaks */ 374 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) { 375 power_pmu_bhrb_reset(); 376 cpuhw->bhrb_context = event->ctx; 377 } 378 cpuhw->bhrb_users++; 379 perf_sched_cb_inc(event->ctx->pmu); 380 } 381 382 static void power_pmu_bhrb_disable(struct perf_event *event) 383 { 384 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 385 386 if (!ppmu->bhrb_nr) 387 return; 388 389 WARN_ON_ONCE(!cpuhw->bhrb_users); 390 cpuhw->bhrb_users--; 391 perf_sched_cb_dec(event->ctx->pmu); 392 393 if (!cpuhw->disabled && !cpuhw->bhrb_users) { 394 /* BHRB cannot be turned off when other 395 * events are active on the PMU. 396 */ 397 398 /* avoid stale pointer */ 399 cpuhw->bhrb_context = NULL; 400 } 401 } 402 403 /* Called from ctxsw to prevent one process's branch entries to 404 * mingle with the other process's entries during context switch. 405 */ 406 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) 407 { 408 if (!ppmu->bhrb_nr) 409 return; 410 411 if (sched_in) 412 power_pmu_bhrb_reset(); 413 } 414 /* Calculate the to address for a branch */ 415 static __u64 power_pmu_bhrb_to(u64 addr) 416 { 417 unsigned int instr; 418 __u64 target; 419 420 if (is_kernel_addr(addr)) { 421 if (probe_kernel_read(&instr, (void *)addr, sizeof(instr))) 422 return 0; 423 424 return branch_target(&instr); 425 } 426 427 /* Userspace: need copy instruction here then translate it */ 428 if (probe_user_read(&instr, (unsigned int __user *)addr, sizeof(instr))) 429 return 0; 430 431 target = branch_target(&instr); 432 if ((!target) || (instr & BRANCH_ABSOLUTE)) 433 return target; 434 435 /* Translate relative branch target from kernel to user address */ 436 return target - (unsigned long)&instr + addr; 437 } 438 439 /* Processing BHRB entries */ 440 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) 441 { 442 u64 val; 443 u64 addr; 444 int r_index, u_index, pred; 445 446 r_index = 0; 447 u_index = 0; 448 while (r_index < ppmu->bhrb_nr) { 449 /* Assembly read function */ 450 val = read_bhrb(r_index++); 451 if (!val) 452 /* Terminal marker: End of valid BHRB entries */ 453 break; 454 else { 455 addr = val & BHRB_EA; 456 pred = val & BHRB_PREDICTION; 457 458 if (!addr) 459 /* invalid entry */ 460 continue; 461 462 /* 463 * BHRB rolling buffer could very much contain the kernel 464 * addresses at this point. Check the privileges before 465 * exporting it to userspace (avoid exposure of regions 466 * where we could have speculative execution) 467 */ 468 if (is_kernel_addr(addr) && perf_allow_kernel(&event->attr) != 0) 469 continue; 470 471 /* Branches are read most recent first (ie. mfbhrb 0 is 472 * the most recent branch). 473 * There are two types of valid entries: 474 * 1) a target entry which is the to address of a 475 * computed goto like a blr,bctr,btar. The next 476 * entry read from the bhrb will be branch 477 * corresponding to this target (ie. the actual 478 * blr/bctr/btar instruction). 479 * 2) a from address which is an actual branch. If a 480 * target entry proceeds this, then this is the 481 * matching branch for that target. If this is not 482 * following a target entry, then this is a branch 483 * where the target is given as an immediate field 484 * in the instruction (ie. an i or b form branch). 485 * In this case we need to read the instruction from 486 * memory to determine the target/to address. 487 */ 488 489 if (val & BHRB_TARGET) { 490 /* Target branches use two entries 491 * (ie. computed gotos/XL form) 492 */ 493 cpuhw->bhrb_entries[u_index].to = addr; 494 cpuhw->bhrb_entries[u_index].mispred = pred; 495 cpuhw->bhrb_entries[u_index].predicted = ~pred; 496 497 /* Get from address in next entry */ 498 val = read_bhrb(r_index++); 499 addr = val & BHRB_EA; 500 if (val & BHRB_TARGET) { 501 /* Shouldn't have two targets in a 502 row.. Reset index and try again */ 503 r_index--; 504 addr = 0; 505 } 506 cpuhw->bhrb_entries[u_index].from = addr; 507 } else { 508 /* Branches to immediate field 509 (ie I or B form) */ 510 cpuhw->bhrb_entries[u_index].from = addr; 511 cpuhw->bhrb_entries[u_index].to = 512 power_pmu_bhrb_to(addr); 513 cpuhw->bhrb_entries[u_index].mispred = pred; 514 cpuhw->bhrb_entries[u_index].predicted = ~pred; 515 } 516 u_index++; 517 518 } 519 } 520 cpuhw->bhrb_stack.nr = u_index; 521 return; 522 } 523 524 static bool is_ebb_event(struct perf_event *event) 525 { 526 /* 527 * This could be a per-PMU callback, but we'd rather avoid the cost. We 528 * check that the PMU supports EBB, meaning those that don't can still 529 * use bit 63 of the event code for something else if they wish. 530 */ 531 return (ppmu->flags & PPMU_ARCH_207S) && 532 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1); 533 } 534 535 static int ebb_event_check(struct perf_event *event) 536 { 537 struct perf_event *leader = event->group_leader; 538 539 /* Event and group leader must agree on EBB */ 540 if (is_ebb_event(leader) != is_ebb_event(event)) 541 return -EINVAL; 542 543 if (is_ebb_event(event)) { 544 if (!(event->attach_state & PERF_ATTACH_TASK)) 545 return -EINVAL; 546 547 if (!leader->attr.pinned || !leader->attr.exclusive) 548 return -EINVAL; 549 550 if (event->attr.freq || 551 event->attr.inherit || 552 event->attr.sample_type || 553 event->attr.sample_period || 554 event->attr.enable_on_exec) 555 return -EINVAL; 556 } 557 558 return 0; 559 } 560 561 static void ebb_event_add(struct perf_event *event) 562 { 563 if (!is_ebb_event(event) || current->thread.used_ebb) 564 return; 565 566 /* 567 * IFF this is the first time we've added an EBB event, set 568 * PMXE in the user MMCR0 so we can detect when it's cleared by 569 * userspace. We need this so that we can context switch while 570 * userspace is in the EBB handler (where PMXE is 0). 571 */ 572 current->thread.used_ebb = 1; 573 current->thread.mmcr0 |= MMCR0_PMXE; 574 } 575 576 static void ebb_switch_out(unsigned long mmcr0) 577 { 578 if (!(mmcr0 & MMCR0_EBE)) 579 return; 580 581 current->thread.siar = mfspr(SPRN_SIAR); 582 current->thread.sier = mfspr(SPRN_SIER); 583 current->thread.sdar = mfspr(SPRN_SDAR); 584 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK; 585 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK; 586 } 587 588 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw) 589 { 590 unsigned long mmcr0 = cpuhw->mmcr[0]; 591 592 if (!ebb) 593 goto out; 594 595 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */ 596 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6; 597 598 /* 599 * Add any bits from the user MMCR0, FC or PMAO. This is compatible 600 * with pmao_restore_workaround() because we may add PMAO but we never 601 * clear it here. 602 */ 603 mmcr0 |= current->thread.mmcr0; 604 605 /* 606 * Be careful not to set PMXE if userspace had it cleared. This is also 607 * compatible with pmao_restore_workaround() because it has already 608 * cleared PMXE and we leave PMAO alone. 609 */ 610 if (!(current->thread.mmcr0 & MMCR0_PMXE)) 611 mmcr0 &= ~MMCR0_PMXE; 612 613 mtspr(SPRN_SIAR, current->thread.siar); 614 mtspr(SPRN_SIER, current->thread.sier); 615 mtspr(SPRN_SDAR, current->thread.sdar); 616 617 /* 618 * Merge the kernel & user values of MMCR2. The semantics we implement 619 * are that the user MMCR2 can set bits, ie. cause counters to freeze, 620 * but not clear bits. If a task wants to be able to clear bits, ie. 621 * unfreeze counters, it should not set exclude_xxx in its events and 622 * instead manage the MMCR2 entirely by itself. 623 */ 624 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2); 625 out: 626 return mmcr0; 627 } 628 629 static void pmao_restore_workaround(bool ebb) 630 { 631 unsigned pmcs[6]; 632 633 if (!cpu_has_feature(CPU_FTR_PMAO_BUG)) 634 return; 635 636 /* 637 * On POWER8E there is a hardware defect which affects the PMU context 638 * switch logic, ie. power_pmu_disable/enable(). 639 * 640 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0 641 * by the hardware. Sometime later the actual PMU exception is 642 * delivered. 643 * 644 * If we context switch, or simply disable/enable, the PMU prior to the 645 * exception arriving, the exception will be lost when we clear PMAO. 646 * 647 * When we reenable the PMU, we will write the saved MMCR0 with PMAO 648 * set, and this _should_ generate an exception. However because of the 649 * defect no exception is generated when we write PMAO, and we get 650 * stuck with no counters counting but no exception delivered. 651 * 652 * The workaround is to detect this case and tweak the hardware to 653 * create another pending PMU exception. 654 * 655 * We do that by setting up PMC6 (cycles) for an imminent overflow and 656 * enabling the PMU. That causes a new exception to be generated in the 657 * chip, but we don't take it yet because we have interrupts hard 658 * disabled. We then write back the PMU state as we want it to be seen 659 * by the exception handler. When we reenable interrupts the exception 660 * handler will be called and see the correct state. 661 * 662 * The logic is the same for EBB, except that the exception is gated by 663 * us having interrupts hard disabled as well as the fact that we are 664 * not in userspace. The exception is finally delivered when we return 665 * to userspace. 666 */ 667 668 /* Only if PMAO is set and PMAO_SYNC is clear */ 669 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO) 670 return; 671 672 /* If we're doing EBB, only if BESCR[GE] is set */ 673 if (ebb && !(current->thread.bescr & BESCR_GE)) 674 return; 675 676 /* 677 * We are already soft-disabled in power_pmu_enable(). We need to hard 678 * disable to actually prevent the PMU exception from firing. 679 */ 680 hard_irq_disable(); 681 682 /* 683 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs. 684 * Using read/write_pmc() in a for loop adds 12 function calls and 685 * almost doubles our code size. 686 */ 687 pmcs[0] = mfspr(SPRN_PMC1); 688 pmcs[1] = mfspr(SPRN_PMC2); 689 pmcs[2] = mfspr(SPRN_PMC3); 690 pmcs[3] = mfspr(SPRN_PMC4); 691 pmcs[4] = mfspr(SPRN_PMC5); 692 pmcs[5] = mfspr(SPRN_PMC6); 693 694 /* Ensure all freeze bits are unset */ 695 mtspr(SPRN_MMCR2, 0); 696 697 /* Set up PMC6 to overflow in one cycle */ 698 mtspr(SPRN_PMC6, 0x7FFFFFFE); 699 700 /* Enable exceptions and unfreeze PMC6 */ 701 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO); 702 703 /* Now we need to refreeze and restore the PMCs */ 704 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO); 705 706 mtspr(SPRN_PMC1, pmcs[0]); 707 mtspr(SPRN_PMC2, pmcs[1]); 708 mtspr(SPRN_PMC3, pmcs[2]); 709 mtspr(SPRN_PMC4, pmcs[3]); 710 mtspr(SPRN_PMC5, pmcs[4]); 711 mtspr(SPRN_PMC6, pmcs[5]); 712 } 713 714 #endif /* CONFIG_PPC64 */ 715 716 static void perf_event_interrupt(struct pt_regs *regs); 717 718 /* 719 * Read one performance monitor counter (PMC). 720 */ 721 static unsigned long read_pmc(int idx) 722 { 723 unsigned long val; 724 725 switch (idx) { 726 case 1: 727 val = mfspr(SPRN_PMC1); 728 break; 729 case 2: 730 val = mfspr(SPRN_PMC2); 731 break; 732 case 3: 733 val = mfspr(SPRN_PMC3); 734 break; 735 case 4: 736 val = mfspr(SPRN_PMC4); 737 break; 738 case 5: 739 val = mfspr(SPRN_PMC5); 740 break; 741 case 6: 742 val = mfspr(SPRN_PMC6); 743 break; 744 #ifdef CONFIG_PPC64 745 case 7: 746 val = mfspr(SPRN_PMC7); 747 break; 748 case 8: 749 val = mfspr(SPRN_PMC8); 750 break; 751 #endif /* CONFIG_PPC64 */ 752 default: 753 printk(KERN_ERR "oops trying to read PMC%d\n", idx); 754 val = 0; 755 } 756 return val; 757 } 758 759 /* 760 * Write one PMC. 761 */ 762 static void write_pmc(int idx, unsigned long val) 763 { 764 switch (idx) { 765 case 1: 766 mtspr(SPRN_PMC1, val); 767 break; 768 case 2: 769 mtspr(SPRN_PMC2, val); 770 break; 771 case 3: 772 mtspr(SPRN_PMC3, val); 773 break; 774 case 4: 775 mtspr(SPRN_PMC4, val); 776 break; 777 case 5: 778 mtspr(SPRN_PMC5, val); 779 break; 780 case 6: 781 mtspr(SPRN_PMC6, val); 782 break; 783 #ifdef CONFIG_PPC64 784 case 7: 785 mtspr(SPRN_PMC7, val); 786 break; 787 case 8: 788 mtspr(SPRN_PMC8, val); 789 break; 790 #endif /* CONFIG_PPC64 */ 791 default: 792 printk(KERN_ERR "oops trying to write PMC%d\n", idx); 793 } 794 } 795 796 /* Called from sysrq_handle_showregs() */ 797 void perf_event_print_debug(void) 798 { 799 unsigned long sdar, sier, flags; 800 u32 pmcs[MAX_HWEVENTS]; 801 int i; 802 803 if (!ppmu) { 804 pr_info("Performance monitor hardware not registered.\n"); 805 return; 806 } 807 808 if (!ppmu->n_counter) 809 return; 810 811 local_irq_save(flags); 812 813 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d", 814 smp_processor_id(), ppmu->name, ppmu->n_counter); 815 816 for (i = 0; i < ppmu->n_counter; i++) 817 pmcs[i] = read_pmc(i + 1); 818 819 for (; i < MAX_HWEVENTS; i++) 820 pmcs[i] = 0xdeadbeef; 821 822 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n", 823 pmcs[0], pmcs[1], pmcs[2], pmcs[3]); 824 825 if (ppmu->n_counter > 4) 826 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n", 827 pmcs[4], pmcs[5], pmcs[6], pmcs[7]); 828 829 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n", 830 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA)); 831 832 sdar = sier = 0; 833 #ifdef CONFIG_PPC64 834 sdar = mfspr(SPRN_SDAR); 835 836 if (ppmu->flags & PPMU_HAS_SIER) 837 sier = mfspr(SPRN_SIER); 838 839 if (ppmu->flags & PPMU_ARCH_207S) { 840 pr_info("MMCR2: %016lx EBBHR: %016lx\n", 841 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR)); 842 pr_info("EBBRR: %016lx BESCR: %016lx\n", 843 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR)); 844 } 845 #endif 846 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n", 847 mfspr(SPRN_SIAR), sdar, sier); 848 849 local_irq_restore(flags); 850 } 851 852 /* 853 * Check if a set of events can all go on the PMU at once. 854 * If they can't, this will look at alternative codes for the events 855 * and see if any combination of alternative codes is feasible. 856 * The feasible set is returned in event_id[]. 857 */ 858 static int power_check_constraints(struct cpu_hw_events *cpuhw, 859 u64 event_id[], unsigned int cflags[], 860 int n_ev) 861 { 862 unsigned long mask, value, nv; 863 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS]; 864 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS]; 865 int i, j; 866 unsigned long addf = ppmu->add_fields; 867 unsigned long tadd = ppmu->test_adder; 868 unsigned long grp_mask = ppmu->group_constraint_mask; 869 unsigned long grp_val = ppmu->group_constraint_val; 870 871 if (n_ev > ppmu->n_counter) 872 return -1; 873 874 /* First see if the events will go on as-is */ 875 for (i = 0; i < n_ev; ++i) { 876 if ((cflags[i] & PPMU_LIMITED_PMC_REQD) 877 && !ppmu->limited_pmc_event(event_id[i])) { 878 ppmu->get_alternatives(event_id[i], cflags[i], 879 cpuhw->alternatives[i]); 880 event_id[i] = cpuhw->alternatives[i][0]; 881 } 882 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0], 883 &cpuhw->avalues[i][0])) 884 return -1; 885 } 886 value = mask = 0; 887 for (i = 0; i < n_ev; ++i) { 888 nv = (value | cpuhw->avalues[i][0]) + 889 (value & cpuhw->avalues[i][0] & addf); 890 891 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0) 892 break; 893 894 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0]) 895 & (~grp_mask)) != 0) 896 break; 897 898 value = nv; 899 mask |= cpuhw->amasks[i][0]; 900 } 901 if (i == n_ev) { 902 if ((value & mask & grp_mask) != (mask & grp_val)) 903 return -1; 904 else 905 return 0; /* all OK */ 906 } 907 908 /* doesn't work, gather alternatives... */ 909 if (!ppmu->get_alternatives) 910 return -1; 911 for (i = 0; i < n_ev; ++i) { 912 choice[i] = 0; 913 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i], 914 cpuhw->alternatives[i]); 915 for (j = 1; j < n_alt[i]; ++j) 916 ppmu->get_constraint(cpuhw->alternatives[i][j], 917 &cpuhw->amasks[i][j], 918 &cpuhw->avalues[i][j]); 919 } 920 921 /* enumerate all possibilities and see if any will work */ 922 i = 0; 923 j = -1; 924 value = mask = nv = 0; 925 while (i < n_ev) { 926 if (j >= 0) { 927 /* we're backtracking, restore context */ 928 value = svalues[i]; 929 mask = smasks[i]; 930 j = choice[i]; 931 } 932 /* 933 * See if any alternative k for event_id i, 934 * where k > j, will satisfy the constraints. 935 */ 936 while (++j < n_alt[i]) { 937 nv = (value | cpuhw->avalues[i][j]) + 938 (value & cpuhw->avalues[i][j] & addf); 939 if ((((nv + tadd) ^ value) & mask) == 0 && 940 (((nv + tadd) ^ cpuhw->avalues[i][j]) 941 & cpuhw->amasks[i][j]) == 0) 942 break; 943 } 944 if (j >= n_alt[i]) { 945 /* 946 * No feasible alternative, backtrack 947 * to event_id i-1 and continue enumerating its 948 * alternatives from where we got up to. 949 */ 950 if (--i < 0) 951 return -1; 952 } else { 953 /* 954 * Found a feasible alternative for event_id i, 955 * remember where we got up to with this event_id, 956 * go on to the next event_id, and start with 957 * the first alternative for it. 958 */ 959 choice[i] = j; 960 svalues[i] = value; 961 smasks[i] = mask; 962 value = nv; 963 mask |= cpuhw->amasks[i][j]; 964 ++i; 965 j = -1; 966 } 967 } 968 969 /* OK, we have a feasible combination, tell the caller the solution */ 970 for (i = 0; i < n_ev; ++i) 971 event_id[i] = cpuhw->alternatives[i][choice[i]]; 972 return 0; 973 } 974 975 /* 976 * Check if newly-added events have consistent settings for 977 * exclude_{user,kernel,hv} with each other and any previously 978 * added events. 979 */ 980 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[], 981 int n_prev, int n_new) 982 { 983 int eu = 0, ek = 0, eh = 0; 984 int i, n, first; 985 struct perf_event *event; 986 987 /* 988 * If the PMU we're on supports per event exclude settings then we 989 * don't need to do any of this logic. NB. This assumes no PMU has both 990 * per event exclude and limited PMCs. 991 */ 992 if (ppmu->flags & PPMU_ARCH_207S) 993 return 0; 994 995 n = n_prev + n_new; 996 if (n <= 1) 997 return 0; 998 999 first = 1; 1000 for (i = 0; i < n; ++i) { 1001 if (cflags[i] & PPMU_LIMITED_PMC_OK) { 1002 cflags[i] &= ~PPMU_LIMITED_PMC_REQD; 1003 continue; 1004 } 1005 event = ctrs[i]; 1006 if (first) { 1007 eu = event->attr.exclude_user; 1008 ek = event->attr.exclude_kernel; 1009 eh = event->attr.exclude_hv; 1010 first = 0; 1011 } else if (event->attr.exclude_user != eu || 1012 event->attr.exclude_kernel != ek || 1013 event->attr.exclude_hv != eh) { 1014 return -EAGAIN; 1015 } 1016 } 1017 1018 if (eu || ek || eh) 1019 for (i = 0; i < n; ++i) 1020 if (cflags[i] & PPMU_LIMITED_PMC_OK) 1021 cflags[i] |= PPMU_LIMITED_PMC_REQD; 1022 1023 return 0; 1024 } 1025 1026 static u64 check_and_compute_delta(u64 prev, u64 val) 1027 { 1028 u64 delta = (val - prev) & 0xfffffffful; 1029 1030 /* 1031 * POWER7 can roll back counter values, if the new value is smaller 1032 * than the previous value it will cause the delta and the counter to 1033 * have bogus values unless we rolled a counter over. If a coutner is 1034 * rolled back, it will be smaller, but within 256, which is the maximum 1035 * number of events to rollback at once. If we detect a rollback 1036 * return 0. This can lead to a small lack of precision in the 1037 * counters. 1038 */ 1039 if (prev > val && (prev - val) < 256) 1040 delta = 0; 1041 1042 return delta; 1043 } 1044 1045 static void power_pmu_read(struct perf_event *event) 1046 { 1047 s64 val, delta, prev; 1048 1049 if (event->hw.state & PERF_HES_STOPPED) 1050 return; 1051 1052 if (!event->hw.idx) 1053 return; 1054 1055 if (is_ebb_event(event)) { 1056 val = read_pmc(event->hw.idx); 1057 local64_set(&event->hw.prev_count, val); 1058 return; 1059 } 1060 1061 /* 1062 * Performance monitor interrupts come even when interrupts 1063 * are soft-disabled, as long as interrupts are hard-enabled. 1064 * Therefore we treat them like NMIs. 1065 */ 1066 do { 1067 prev = local64_read(&event->hw.prev_count); 1068 barrier(); 1069 val = read_pmc(event->hw.idx); 1070 delta = check_and_compute_delta(prev, val); 1071 if (!delta) 1072 return; 1073 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev); 1074 1075 local64_add(delta, &event->count); 1076 1077 /* 1078 * A number of places program the PMC with (0x80000000 - period_left). 1079 * We never want period_left to be less than 1 because we will program 1080 * the PMC with a value >= 0x800000000 and an edge detected PMC will 1081 * roll around to 0 before taking an exception. We have seen this 1082 * on POWER8. 1083 * 1084 * To fix this, clamp the minimum value of period_left to 1. 1085 */ 1086 do { 1087 prev = local64_read(&event->hw.period_left); 1088 val = prev - delta; 1089 if (val < 1) 1090 val = 1; 1091 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev); 1092 } 1093 1094 /* 1095 * On some machines, PMC5 and PMC6 can't be written, don't respect 1096 * the freeze conditions, and don't generate interrupts. This tells 1097 * us if `event' is using such a PMC. 1098 */ 1099 static int is_limited_pmc(int pmcnum) 1100 { 1101 return (ppmu->flags & PPMU_LIMITED_PMC5_6) 1102 && (pmcnum == 5 || pmcnum == 6); 1103 } 1104 1105 static void freeze_limited_counters(struct cpu_hw_events *cpuhw, 1106 unsigned long pmc5, unsigned long pmc6) 1107 { 1108 struct perf_event *event; 1109 u64 val, prev, delta; 1110 int i; 1111 1112 for (i = 0; i < cpuhw->n_limited; ++i) { 1113 event = cpuhw->limited_counter[i]; 1114 if (!event->hw.idx) 1115 continue; 1116 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1117 prev = local64_read(&event->hw.prev_count); 1118 event->hw.idx = 0; 1119 delta = check_and_compute_delta(prev, val); 1120 if (delta) 1121 local64_add(delta, &event->count); 1122 } 1123 } 1124 1125 static void thaw_limited_counters(struct cpu_hw_events *cpuhw, 1126 unsigned long pmc5, unsigned long pmc6) 1127 { 1128 struct perf_event *event; 1129 u64 val, prev; 1130 int i; 1131 1132 for (i = 0; i < cpuhw->n_limited; ++i) { 1133 event = cpuhw->limited_counter[i]; 1134 event->hw.idx = cpuhw->limited_hwidx[i]; 1135 val = (event->hw.idx == 5) ? pmc5 : pmc6; 1136 prev = local64_read(&event->hw.prev_count); 1137 if (check_and_compute_delta(prev, val)) 1138 local64_set(&event->hw.prev_count, val); 1139 perf_event_update_userpage(event); 1140 } 1141 } 1142 1143 /* 1144 * Since limited events don't respect the freeze conditions, we 1145 * have to read them immediately after freezing or unfreezing the 1146 * other events. We try to keep the values from the limited 1147 * events as consistent as possible by keeping the delay (in 1148 * cycles and instructions) between freezing/unfreezing and reading 1149 * the limited events as small and consistent as possible. 1150 * Therefore, if any limited events are in use, we read them 1151 * both, and always in the same order, to minimize variability, 1152 * and do it inside the same asm that writes MMCR0. 1153 */ 1154 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0) 1155 { 1156 unsigned long pmc5, pmc6; 1157 1158 if (!cpuhw->n_limited) { 1159 mtspr(SPRN_MMCR0, mmcr0); 1160 return; 1161 } 1162 1163 /* 1164 * Write MMCR0, then read PMC5 and PMC6 immediately. 1165 * To ensure we don't get a performance monitor interrupt 1166 * between writing MMCR0 and freezing/thawing the limited 1167 * events, we first write MMCR0 with the event overflow 1168 * interrupt enable bits turned off. 1169 */ 1170 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5" 1171 : "=&r" (pmc5), "=&r" (pmc6) 1172 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)), 1173 "i" (SPRN_MMCR0), 1174 "i" (SPRN_PMC5), "i" (SPRN_PMC6)); 1175 1176 if (mmcr0 & MMCR0_FC) 1177 freeze_limited_counters(cpuhw, pmc5, pmc6); 1178 else 1179 thaw_limited_counters(cpuhw, pmc5, pmc6); 1180 1181 /* 1182 * Write the full MMCR0 including the event overflow interrupt 1183 * enable bits, if necessary. 1184 */ 1185 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE)) 1186 mtspr(SPRN_MMCR0, mmcr0); 1187 } 1188 1189 /* 1190 * Disable all events to prevent PMU interrupts and to allow 1191 * events to be added or removed. 1192 */ 1193 static void power_pmu_disable(struct pmu *pmu) 1194 { 1195 struct cpu_hw_events *cpuhw; 1196 unsigned long flags, mmcr0, val; 1197 1198 if (!ppmu) 1199 return; 1200 local_irq_save(flags); 1201 cpuhw = this_cpu_ptr(&cpu_hw_events); 1202 1203 if (!cpuhw->disabled) { 1204 /* 1205 * Check if we ever enabled the PMU on this cpu. 1206 */ 1207 if (!cpuhw->pmcs_enabled) { 1208 ppc_enable_pmcs(); 1209 cpuhw->pmcs_enabled = 1; 1210 } 1211 1212 /* 1213 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56 1214 */ 1215 val = mmcr0 = mfspr(SPRN_MMCR0); 1216 val |= MMCR0_FC; 1217 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO | 1218 MMCR0_FC56); 1219 1220 /* 1221 * The barrier is to make sure the mtspr has been 1222 * executed and the PMU has frozen the events etc. 1223 * before we return. 1224 */ 1225 write_mmcr0(cpuhw, val); 1226 mb(); 1227 isync(); 1228 1229 /* 1230 * Disable instruction sampling if it was enabled 1231 */ 1232 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1233 mtspr(SPRN_MMCRA, 1234 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1235 mb(); 1236 isync(); 1237 } 1238 1239 cpuhw->disabled = 1; 1240 cpuhw->n_added = 0; 1241 1242 ebb_switch_out(mmcr0); 1243 1244 #ifdef CONFIG_PPC64 1245 /* 1246 * These are readable by userspace, may contain kernel 1247 * addresses and are not switched by context switch, so clear 1248 * them now to avoid leaking anything to userspace in general 1249 * including to another process. 1250 */ 1251 if (ppmu->flags & PPMU_ARCH_207S) { 1252 mtspr(SPRN_SDAR, 0); 1253 mtspr(SPRN_SIAR, 0); 1254 } 1255 #endif 1256 } 1257 1258 local_irq_restore(flags); 1259 } 1260 1261 /* 1262 * Re-enable all events if disable == 0. 1263 * If we were previously disabled and events were added, then 1264 * put the new config on the PMU. 1265 */ 1266 static void power_pmu_enable(struct pmu *pmu) 1267 { 1268 struct perf_event *event; 1269 struct cpu_hw_events *cpuhw; 1270 unsigned long flags; 1271 long i; 1272 unsigned long val, mmcr0; 1273 s64 left; 1274 unsigned int hwc_index[MAX_HWEVENTS]; 1275 int n_lim; 1276 int idx; 1277 bool ebb; 1278 1279 if (!ppmu) 1280 return; 1281 local_irq_save(flags); 1282 1283 cpuhw = this_cpu_ptr(&cpu_hw_events); 1284 if (!cpuhw->disabled) 1285 goto out; 1286 1287 if (cpuhw->n_events == 0) { 1288 ppc_set_pmu_inuse(0); 1289 goto out; 1290 } 1291 1292 cpuhw->disabled = 0; 1293 1294 /* 1295 * EBB requires an exclusive group and all events must have the EBB 1296 * flag set, or not set, so we can just check a single event. Also we 1297 * know we have at least one event. 1298 */ 1299 ebb = is_ebb_event(cpuhw->event[0]); 1300 1301 /* 1302 * If we didn't change anything, or only removed events, 1303 * no need to recalculate MMCR* settings and reset the PMCs. 1304 * Just reenable the PMU with the current MMCR* settings 1305 * (possibly updated for removal of events). 1306 */ 1307 if (!cpuhw->n_added) { 1308 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1309 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1310 goto out_enable; 1311 } 1312 1313 /* 1314 * Clear all MMCR settings and recompute them for the new set of events. 1315 */ 1316 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr)); 1317 1318 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index, 1319 cpuhw->mmcr, cpuhw->event)) { 1320 /* shouldn't ever get here */ 1321 printk(KERN_ERR "oops compute_mmcr failed\n"); 1322 goto out; 1323 } 1324 1325 if (!(ppmu->flags & PPMU_ARCH_207S)) { 1326 /* 1327 * Add in MMCR0 freeze bits corresponding to the attr.exclude_* 1328 * bits for the first event. We have already checked that all 1329 * events have the same value for these bits as the first event. 1330 */ 1331 event = cpuhw->event[0]; 1332 if (event->attr.exclude_user) 1333 cpuhw->mmcr[0] |= MMCR0_FCP; 1334 if (event->attr.exclude_kernel) 1335 cpuhw->mmcr[0] |= freeze_events_kernel; 1336 if (event->attr.exclude_hv) 1337 cpuhw->mmcr[0] |= MMCR0_FCHV; 1338 } 1339 1340 /* 1341 * Write the new configuration to MMCR* with the freeze 1342 * bit set and set the hardware events to their initial values. 1343 * Then unfreeze the events. 1344 */ 1345 ppc_set_pmu_inuse(1); 1346 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE); 1347 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]); 1348 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)) 1349 | MMCR0_FC); 1350 if (ppmu->flags & PPMU_ARCH_207S) 1351 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]); 1352 1353 /* 1354 * Read off any pre-existing events that need to move 1355 * to another PMC. 1356 */ 1357 for (i = 0; i < cpuhw->n_events; ++i) { 1358 event = cpuhw->event[i]; 1359 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) { 1360 power_pmu_read(event); 1361 write_pmc(event->hw.idx, 0); 1362 event->hw.idx = 0; 1363 } 1364 } 1365 1366 /* 1367 * Initialize the PMCs for all the new and moved events. 1368 */ 1369 cpuhw->n_limited = n_lim = 0; 1370 for (i = 0; i < cpuhw->n_events; ++i) { 1371 event = cpuhw->event[i]; 1372 if (event->hw.idx) 1373 continue; 1374 idx = hwc_index[i] + 1; 1375 if (is_limited_pmc(idx)) { 1376 cpuhw->limited_counter[n_lim] = event; 1377 cpuhw->limited_hwidx[n_lim] = idx; 1378 ++n_lim; 1379 continue; 1380 } 1381 1382 if (ebb) 1383 val = local64_read(&event->hw.prev_count); 1384 else { 1385 val = 0; 1386 if (event->hw.sample_period) { 1387 left = local64_read(&event->hw.period_left); 1388 if (left < 0x80000000L) 1389 val = 0x80000000L - left; 1390 } 1391 local64_set(&event->hw.prev_count, val); 1392 } 1393 1394 event->hw.idx = idx; 1395 if (event->hw.state & PERF_HES_STOPPED) 1396 val = 0; 1397 write_pmc(idx, val); 1398 1399 perf_event_update_userpage(event); 1400 } 1401 cpuhw->n_limited = n_lim; 1402 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE; 1403 1404 out_enable: 1405 pmao_restore_workaround(ebb); 1406 1407 mmcr0 = ebb_switch_in(ebb, cpuhw); 1408 1409 mb(); 1410 if (cpuhw->bhrb_users) 1411 ppmu->config_bhrb(cpuhw->bhrb_filter); 1412 1413 write_mmcr0(cpuhw, mmcr0); 1414 1415 /* 1416 * Enable instruction sampling if necessary 1417 */ 1418 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) { 1419 mb(); 1420 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]); 1421 } 1422 1423 out: 1424 1425 local_irq_restore(flags); 1426 } 1427 1428 static int collect_events(struct perf_event *group, int max_count, 1429 struct perf_event *ctrs[], u64 *events, 1430 unsigned int *flags) 1431 { 1432 int n = 0; 1433 struct perf_event *event; 1434 1435 if (group->pmu->task_ctx_nr == perf_hw_context) { 1436 if (n >= max_count) 1437 return -1; 1438 ctrs[n] = group; 1439 flags[n] = group->hw.event_base; 1440 events[n++] = group->hw.config; 1441 } 1442 for_each_sibling_event(event, group) { 1443 if (event->pmu->task_ctx_nr == perf_hw_context && 1444 event->state != PERF_EVENT_STATE_OFF) { 1445 if (n >= max_count) 1446 return -1; 1447 ctrs[n] = event; 1448 flags[n] = event->hw.event_base; 1449 events[n++] = event->hw.config; 1450 } 1451 } 1452 return n; 1453 } 1454 1455 /* 1456 * Add an event to the PMU. 1457 * If all events are not already frozen, then we disable and 1458 * re-enable the PMU in order to get hw_perf_enable to do the 1459 * actual work of reconfiguring the PMU. 1460 */ 1461 static int power_pmu_add(struct perf_event *event, int ef_flags) 1462 { 1463 struct cpu_hw_events *cpuhw; 1464 unsigned long flags; 1465 int n0; 1466 int ret = -EAGAIN; 1467 1468 local_irq_save(flags); 1469 perf_pmu_disable(event->pmu); 1470 1471 /* 1472 * Add the event to the list (if there is room) 1473 * and check whether the total set is still feasible. 1474 */ 1475 cpuhw = this_cpu_ptr(&cpu_hw_events); 1476 n0 = cpuhw->n_events; 1477 if (n0 >= ppmu->n_counter) 1478 goto out; 1479 cpuhw->event[n0] = event; 1480 cpuhw->events[n0] = event->hw.config; 1481 cpuhw->flags[n0] = event->hw.event_base; 1482 1483 /* 1484 * This event may have been disabled/stopped in record_and_restart() 1485 * because we exceeded the ->event_limit. If re-starting the event, 1486 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user 1487 * notification is re-enabled. 1488 */ 1489 if (!(ef_flags & PERF_EF_START)) 1490 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 1491 else 1492 event->hw.state = 0; 1493 1494 /* 1495 * If group events scheduling transaction was started, 1496 * skip the schedulability test here, it will be performed 1497 * at commit time(->commit_txn) as a whole 1498 */ 1499 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD) 1500 goto nocheck; 1501 1502 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1)) 1503 goto out; 1504 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1)) 1505 goto out; 1506 event->hw.config = cpuhw->events[n0]; 1507 1508 nocheck: 1509 ebb_event_add(event); 1510 1511 ++cpuhw->n_events; 1512 ++cpuhw->n_added; 1513 1514 ret = 0; 1515 out: 1516 if (has_branch_stack(event)) { 1517 power_pmu_bhrb_enable(event); 1518 cpuhw->bhrb_filter = ppmu->bhrb_filter_map( 1519 event->attr.branch_sample_type); 1520 } 1521 1522 perf_pmu_enable(event->pmu); 1523 local_irq_restore(flags); 1524 return ret; 1525 } 1526 1527 /* 1528 * Remove an event from the PMU. 1529 */ 1530 static void power_pmu_del(struct perf_event *event, int ef_flags) 1531 { 1532 struct cpu_hw_events *cpuhw; 1533 long i; 1534 unsigned long flags; 1535 1536 local_irq_save(flags); 1537 perf_pmu_disable(event->pmu); 1538 1539 power_pmu_read(event); 1540 1541 cpuhw = this_cpu_ptr(&cpu_hw_events); 1542 for (i = 0; i < cpuhw->n_events; ++i) { 1543 if (event == cpuhw->event[i]) { 1544 while (++i < cpuhw->n_events) { 1545 cpuhw->event[i-1] = cpuhw->event[i]; 1546 cpuhw->events[i-1] = cpuhw->events[i]; 1547 cpuhw->flags[i-1] = cpuhw->flags[i]; 1548 } 1549 --cpuhw->n_events; 1550 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr); 1551 if (event->hw.idx) { 1552 write_pmc(event->hw.idx, 0); 1553 event->hw.idx = 0; 1554 } 1555 perf_event_update_userpage(event); 1556 break; 1557 } 1558 } 1559 for (i = 0; i < cpuhw->n_limited; ++i) 1560 if (event == cpuhw->limited_counter[i]) 1561 break; 1562 if (i < cpuhw->n_limited) { 1563 while (++i < cpuhw->n_limited) { 1564 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i]; 1565 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i]; 1566 } 1567 --cpuhw->n_limited; 1568 } 1569 if (cpuhw->n_events == 0) { 1570 /* disable exceptions if no events are running */ 1571 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE); 1572 } 1573 1574 if (has_branch_stack(event)) 1575 power_pmu_bhrb_disable(event); 1576 1577 perf_pmu_enable(event->pmu); 1578 local_irq_restore(flags); 1579 } 1580 1581 /* 1582 * POWER-PMU does not support disabling individual counters, hence 1583 * program their cycle counter to their max value and ignore the interrupts. 1584 */ 1585 1586 static void power_pmu_start(struct perf_event *event, int ef_flags) 1587 { 1588 unsigned long flags; 1589 s64 left; 1590 unsigned long val; 1591 1592 if (!event->hw.idx || !event->hw.sample_period) 1593 return; 1594 1595 if (!(event->hw.state & PERF_HES_STOPPED)) 1596 return; 1597 1598 if (ef_flags & PERF_EF_RELOAD) 1599 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); 1600 1601 local_irq_save(flags); 1602 perf_pmu_disable(event->pmu); 1603 1604 event->hw.state = 0; 1605 left = local64_read(&event->hw.period_left); 1606 1607 val = 0; 1608 if (left < 0x80000000L) 1609 val = 0x80000000L - left; 1610 1611 write_pmc(event->hw.idx, val); 1612 1613 perf_event_update_userpage(event); 1614 perf_pmu_enable(event->pmu); 1615 local_irq_restore(flags); 1616 } 1617 1618 static void power_pmu_stop(struct perf_event *event, int ef_flags) 1619 { 1620 unsigned long flags; 1621 1622 if (!event->hw.idx || !event->hw.sample_period) 1623 return; 1624 1625 if (event->hw.state & PERF_HES_STOPPED) 1626 return; 1627 1628 local_irq_save(flags); 1629 perf_pmu_disable(event->pmu); 1630 1631 power_pmu_read(event); 1632 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 1633 write_pmc(event->hw.idx, 0); 1634 1635 perf_event_update_userpage(event); 1636 perf_pmu_enable(event->pmu); 1637 local_irq_restore(flags); 1638 } 1639 1640 /* 1641 * Start group events scheduling transaction 1642 * Set the flag to make pmu::enable() not perform the 1643 * schedulability test, it will be performed at commit time 1644 * 1645 * We only support PERF_PMU_TXN_ADD transactions. Save the 1646 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD 1647 * transactions. 1648 */ 1649 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) 1650 { 1651 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1652 1653 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */ 1654 1655 cpuhw->txn_flags = txn_flags; 1656 if (txn_flags & ~PERF_PMU_TXN_ADD) 1657 return; 1658 1659 perf_pmu_disable(pmu); 1660 cpuhw->n_txn_start = cpuhw->n_events; 1661 } 1662 1663 /* 1664 * Stop group events scheduling transaction 1665 * Clear the flag and pmu::enable() will perform the 1666 * schedulability test. 1667 */ 1668 static void power_pmu_cancel_txn(struct pmu *pmu) 1669 { 1670 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 1671 unsigned int txn_flags; 1672 1673 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1674 1675 txn_flags = cpuhw->txn_flags; 1676 cpuhw->txn_flags = 0; 1677 if (txn_flags & ~PERF_PMU_TXN_ADD) 1678 return; 1679 1680 perf_pmu_enable(pmu); 1681 } 1682 1683 /* 1684 * Commit group events scheduling transaction 1685 * Perform the group schedulability test as a whole 1686 * Return 0 if success 1687 */ 1688 static int power_pmu_commit_txn(struct pmu *pmu) 1689 { 1690 struct cpu_hw_events *cpuhw; 1691 long i, n; 1692 1693 if (!ppmu) 1694 return -EAGAIN; 1695 1696 cpuhw = this_cpu_ptr(&cpu_hw_events); 1697 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */ 1698 1699 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) { 1700 cpuhw->txn_flags = 0; 1701 return 0; 1702 } 1703 1704 n = cpuhw->n_events; 1705 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n)) 1706 return -EAGAIN; 1707 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n); 1708 if (i < 0) 1709 return -EAGAIN; 1710 1711 for (i = cpuhw->n_txn_start; i < n; ++i) 1712 cpuhw->event[i]->hw.config = cpuhw->events[i]; 1713 1714 cpuhw->txn_flags = 0; 1715 perf_pmu_enable(pmu); 1716 return 0; 1717 } 1718 1719 /* 1720 * Return 1 if we might be able to put event on a limited PMC, 1721 * or 0 if not. 1722 * An event can only go on a limited PMC if it counts something 1723 * that a limited PMC can count, doesn't require interrupts, and 1724 * doesn't exclude any processor mode. 1725 */ 1726 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev, 1727 unsigned int flags) 1728 { 1729 int n; 1730 u64 alt[MAX_EVENT_ALTERNATIVES]; 1731 1732 if (event->attr.exclude_user 1733 || event->attr.exclude_kernel 1734 || event->attr.exclude_hv 1735 || event->attr.sample_period) 1736 return 0; 1737 1738 if (ppmu->limited_pmc_event(ev)) 1739 return 1; 1740 1741 /* 1742 * The requested event_id isn't on a limited PMC already; 1743 * see if any alternative code goes on a limited PMC. 1744 */ 1745 if (!ppmu->get_alternatives) 1746 return 0; 1747 1748 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD; 1749 n = ppmu->get_alternatives(ev, flags, alt); 1750 1751 return n > 0; 1752 } 1753 1754 /* 1755 * Find an alternative event_id that goes on a normal PMC, if possible, 1756 * and return the event_id code, or 0 if there is no such alternative. 1757 * (Note: event_id code 0 is "don't count" on all machines.) 1758 */ 1759 static u64 normal_pmc_alternative(u64 ev, unsigned long flags) 1760 { 1761 u64 alt[MAX_EVENT_ALTERNATIVES]; 1762 int n; 1763 1764 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD); 1765 n = ppmu->get_alternatives(ev, flags, alt); 1766 if (!n) 1767 return 0; 1768 return alt[0]; 1769 } 1770 1771 /* Number of perf_events counting hardware events */ 1772 static atomic_t num_events; 1773 /* Used to avoid races in calling reserve/release_pmc_hardware */ 1774 static DEFINE_MUTEX(pmc_reserve_mutex); 1775 1776 /* 1777 * Release the PMU if this is the last perf_event. 1778 */ 1779 static void hw_perf_event_destroy(struct perf_event *event) 1780 { 1781 if (!atomic_add_unless(&num_events, -1, 1)) { 1782 mutex_lock(&pmc_reserve_mutex); 1783 if (atomic_dec_return(&num_events) == 0) 1784 release_pmc_hardware(); 1785 mutex_unlock(&pmc_reserve_mutex); 1786 } 1787 } 1788 1789 /* 1790 * Translate a generic cache event_id config to a raw event_id code. 1791 */ 1792 static int hw_perf_cache_event(u64 config, u64 *eventp) 1793 { 1794 unsigned long type, op, result; 1795 int ev; 1796 1797 if (!ppmu->cache_events) 1798 return -EINVAL; 1799 1800 /* unpack config */ 1801 type = config & 0xff; 1802 op = (config >> 8) & 0xff; 1803 result = (config >> 16) & 0xff; 1804 1805 if (type >= PERF_COUNT_HW_CACHE_MAX || 1806 op >= PERF_COUNT_HW_CACHE_OP_MAX || 1807 result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 1808 return -EINVAL; 1809 1810 ev = (*ppmu->cache_events)[type][op][result]; 1811 if (ev == 0) 1812 return -EOPNOTSUPP; 1813 if (ev == -1) 1814 return -EINVAL; 1815 *eventp = ev; 1816 return 0; 1817 } 1818 1819 static bool is_event_blacklisted(u64 ev) 1820 { 1821 int i; 1822 1823 for (i=0; i < ppmu->n_blacklist_ev; i++) { 1824 if (ppmu->blacklist_ev[i] == ev) 1825 return true; 1826 } 1827 1828 return false; 1829 } 1830 1831 static int power_pmu_event_init(struct perf_event *event) 1832 { 1833 u64 ev; 1834 unsigned long flags; 1835 struct perf_event *ctrs[MAX_HWEVENTS]; 1836 u64 events[MAX_HWEVENTS]; 1837 unsigned int cflags[MAX_HWEVENTS]; 1838 int n; 1839 int err; 1840 struct cpu_hw_events *cpuhw; 1841 u64 bhrb_filter; 1842 1843 if (!ppmu) 1844 return -ENOENT; 1845 1846 if (has_branch_stack(event)) { 1847 /* PMU has BHRB enabled */ 1848 if (!(ppmu->flags & PPMU_ARCH_207S)) 1849 return -EOPNOTSUPP; 1850 } 1851 1852 switch (event->attr.type) { 1853 case PERF_TYPE_HARDWARE: 1854 ev = event->attr.config; 1855 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0) 1856 return -EOPNOTSUPP; 1857 1858 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1859 return -EINVAL; 1860 ev = ppmu->generic_events[ev]; 1861 break; 1862 case PERF_TYPE_HW_CACHE: 1863 err = hw_perf_cache_event(event->attr.config, &ev); 1864 if (err) 1865 return err; 1866 1867 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1868 return -EINVAL; 1869 break; 1870 case PERF_TYPE_RAW: 1871 ev = event->attr.config; 1872 1873 if (ppmu->blacklist_ev && is_event_blacklisted(ev)) 1874 return -EINVAL; 1875 break; 1876 default: 1877 return -ENOENT; 1878 } 1879 1880 event->hw.config_base = ev; 1881 event->hw.idx = 0; 1882 1883 /* 1884 * If we are not running on a hypervisor, force the 1885 * exclude_hv bit to 0 so that we don't care what 1886 * the user set it to. 1887 */ 1888 if (!firmware_has_feature(FW_FEATURE_LPAR)) 1889 event->attr.exclude_hv = 0; 1890 1891 /* 1892 * If this is a per-task event, then we can use 1893 * PM_RUN_* events interchangeably with their non RUN_* 1894 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC. 1895 * XXX we should check if the task is an idle task. 1896 */ 1897 flags = 0; 1898 if (event->attach_state & PERF_ATTACH_TASK) 1899 flags |= PPMU_ONLY_COUNT_RUN; 1900 1901 /* 1902 * If this machine has limited events, check whether this 1903 * event_id could go on a limited event. 1904 */ 1905 if (ppmu->flags & PPMU_LIMITED_PMC5_6) { 1906 if (can_go_on_limited_pmc(event, ev, flags)) { 1907 flags |= PPMU_LIMITED_PMC_OK; 1908 } else if (ppmu->limited_pmc_event(ev)) { 1909 /* 1910 * The requested event_id is on a limited PMC, 1911 * but we can't use a limited PMC; see if any 1912 * alternative goes on a normal PMC. 1913 */ 1914 ev = normal_pmc_alternative(ev, flags); 1915 if (!ev) 1916 return -EINVAL; 1917 } 1918 } 1919 1920 /* Extra checks for EBB */ 1921 err = ebb_event_check(event); 1922 if (err) 1923 return err; 1924 1925 /* 1926 * If this is in a group, check if it can go on with all the 1927 * other hardware events in the group. We assume the event 1928 * hasn't been linked into its leader's sibling list at this point. 1929 */ 1930 n = 0; 1931 if (event->group_leader != event) { 1932 n = collect_events(event->group_leader, ppmu->n_counter - 1, 1933 ctrs, events, cflags); 1934 if (n < 0) 1935 return -EINVAL; 1936 } 1937 events[n] = ev; 1938 ctrs[n] = event; 1939 cflags[n] = flags; 1940 if (check_excludes(ctrs, cflags, n, 1)) 1941 return -EINVAL; 1942 1943 cpuhw = &get_cpu_var(cpu_hw_events); 1944 err = power_check_constraints(cpuhw, events, cflags, n + 1); 1945 1946 if (has_branch_stack(event)) { 1947 bhrb_filter = ppmu->bhrb_filter_map( 1948 event->attr.branch_sample_type); 1949 1950 if (bhrb_filter == -1) { 1951 put_cpu_var(cpu_hw_events); 1952 return -EOPNOTSUPP; 1953 } 1954 cpuhw->bhrb_filter = bhrb_filter; 1955 } 1956 1957 put_cpu_var(cpu_hw_events); 1958 if (err) 1959 return -EINVAL; 1960 1961 event->hw.config = events[n]; 1962 event->hw.event_base = cflags[n]; 1963 event->hw.last_period = event->hw.sample_period; 1964 local64_set(&event->hw.period_left, event->hw.last_period); 1965 1966 /* 1967 * For EBB events we just context switch the PMC value, we don't do any 1968 * of the sample_period logic. We use hw.prev_count for this. 1969 */ 1970 if (is_ebb_event(event)) 1971 local64_set(&event->hw.prev_count, 0); 1972 1973 /* 1974 * See if we need to reserve the PMU. 1975 * If no events are currently in use, then we have to take a 1976 * mutex to ensure that we don't race with another task doing 1977 * reserve_pmc_hardware or release_pmc_hardware. 1978 */ 1979 err = 0; 1980 if (!atomic_inc_not_zero(&num_events)) { 1981 mutex_lock(&pmc_reserve_mutex); 1982 if (atomic_read(&num_events) == 0 && 1983 reserve_pmc_hardware(perf_event_interrupt)) 1984 err = -EBUSY; 1985 else 1986 atomic_inc(&num_events); 1987 mutex_unlock(&pmc_reserve_mutex); 1988 } 1989 event->destroy = hw_perf_event_destroy; 1990 1991 return err; 1992 } 1993 1994 static int power_pmu_event_idx(struct perf_event *event) 1995 { 1996 return event->hw.idx; 1997 } 1998 1999 ssize_t power_events_sysfs_show(struct device *dev, 2000 struct device_attribute *attr, char *page) 2001 { 2002 struct perf_pmu_events_attr *pmu_attr; 2003 2004 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 2005 2006 return sprintf(page, "event=0x%02llx\n", pmu_attr->id); 2007 } 2008 2009 static struct pmu power_pmu = { 2010 .pmu_enable = power_pmu_enable, 2011 .pmu_disable = power_pmu_disable, 2012 .event_init = power_pmu_event_init, 2013 .add = power_pmu_add, 2014 .del = power_pmu_del, 2015 .start = power_pmu_start, 2016 .stop = power_pmu_stop, 2017 .read = power_pmu_read, 2018 .start_txn = power_pmu_start_txn, 2019 .cancel_txn = power_pmu_cancel_txn, 2020 .commit_txn = power_pmu_commit_txn, 2021 .event_idx = power_pmu_event_idx, 2022 .sched_task = power_pmu_sched_task, 2023 }; 2024 2025 /* 2026 * A counter has overflowed; update its count and record 2027 * things if requested. Note that interrupts are hard-disabled 2028 * here so there is no possibility of being interrupted. 2029 */ 2030 static void record_and_restart(struct perf_event *event, unsigned long val, 2031 struct pt_regs *regs) 2032 { 2033 u64 period = event->hw.sample_period; 2034 s64 prev, delta, left; 2035 int record = 0; 2036 2037 if (event->hw.state & PERF_HES_STOPPED) { 2038 write_pmc(event->hw.idx, 0); 2039 return; 2040 } 2041 2042 /* we don't have to worry about interrupts here */ 2043 prev = local64_read(&event->hw.prev_count); 2044 delta = check_and_compute_delta(prev, val); 2045 local64_add(delta, &event->count); 2046 2047 /* 2048 * See if the total period for this event has expired, 2049 * and update for the next period. 2050 */ 2051 val = 0; 2052 left = local64_read(&event->hw.period_left) - delta; 2053 if (delta == 0) 2054 left++; 2055 if (period) { 2056 if (left <= 0) { 2057 left += period; 2058 if (left <= 0) 2059 left = period; 2060 record = siar_valid(regs); 2061 event->hw.last_period = event->hw.sample_period; 2062 } 2063 if (left < 0x80000000LL) 2064 val = 0x80000000LL - left; 2065 } 2066 2067 write_pmc(event->hw.idx, val); 2068 local64_set(&event->hw.prev_count, val); 2069 local64_set(&event->hw.period_left, left); 2070 perf_event_update_userpage(event); 2071 2072 /* 2073 * Finally record data if requested. 2074 */ 2075 if (record) { 2076 struct perf_sample_data data; 2077 2078 perf_sample_data_init(&data, ~0ULL, event->hw.last_period); 2079 2080 if (event->attr.sample_type & 2081 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) 2082 perf_get_data_addr(event, regs, &data.addr); 2083 2084 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) { 2085 struct cpu_hw_events *cpuhw; 2086 cpuhw = this_cpu_ptr(&cpu_hw_events); 2087 power_pmu_bhrb_read(event, cpuhw); 2088 data.br_stack = &cpuhw->bhrb_stack; 2089 } 2090 2091 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC && 2092 ppmu->get_mem_data_src) 2093 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs); 2094 2095 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT && 2096 ppmu->get_mem_weight) 2097 ppmu->get_mem_weight(&data.weight); 2098 2099 if (perf_event_overflow(event, &data, regs)) 2100 power_pmu_stop(event, 0); 2101 } 2102 } 2103 2104 /* 2105 * Called from generic code to get the misc flags (i.e. processor mode) 2106 * for an event_id. 2107 */ 2108 unsigned long perf_misc_flags(struct pt_regs *regs) 2109 { 2110 u32 flags = perf_get_misc_flags(regs); 2111 2112 if (flags) 2113 return flags; 2114 return user_mode(regs) ? PERF_RECORD_MISC_USER : 2115 PERF_RECORD_MISC_KERNEL; 2116 } 2117 2118 /* 2119 * Called from generic code to get the instruction pointer 2120 * for an event_id. 2121 */ 2122 unsigned long perf_instruction_pointer(struct pt_regs *regs) 2123 { 2124 bool use_siar = regs_use_siar(regs); 2125 2126 if (use_siar && siar_valid(regs)) 2127 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs); 2128 else if (use_siar) 2129 return 0; // no valid instruction pointer 2130 else 2131 return regs->nip; 2132 } 2133 2134 static bool pmc_overflow_power7(unsigned long val) 2135 { 2136 /* 2137 * Events on POWER7 can roll back if a speculative event doesn't 2138 * eventually complete. Unfortunately in some rare cases they will 2139 * raise a performance monitor exception. We need to catch this to 2140 * ensure we reset the PMC. In all cases the PMC will be 256 or less 2141 * cycles from overflow. 2142 * 2143 * We only do this if the first pass fails to find any overflowing 2144 * PMCs because a user might set a period of less than 256 and we 2145 * don't want to mistakenly reset them. 2146 */ 2147 if ((0x80000000 - val) <= 256) 2148 return true; 2149 2150 return false; 2151 } 2152 2153 static bool pmc_overflow(unsigned long val) 2154 { 2155 if ((int)val < 0) 2156 return true; 2157 2158 return false; 2159 } 2160 2161 /* 2162 * Performance monitor interrupt stuff 2163 */ 2164 static void __perf_event_interrupt(struct pt_regs *regs) 2165 { 2166 int i, j; 2167 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events); 2168 struct perf_event *event; 2169 unsigned long val[8]; 2170 int found, active; 2171 int nmi; 2172 2173 if (cpuhw->n_limited) 2174 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5), 2175 mfspr(SPRN_PMC6)); 2176 2177 perf_read_regs(regs); 2178 2179 nmi = perf_intr_is_nmi(regs); 2180 if (nmi) 2181 nmi_enter(); 2182 else 2183 irq_enter(); 2184 2185 /* Read all the PMCs since we'll need them a bunch of times */ 2186 for (i = 0; i < ppmu->n_counter; ++i) 2187 val[i] = read_pmc(i + 1); 2188 2189 /* Try to find what caused the IRQ */ 2190 found = 0; 2191 for (i = 0; i < ppmu->n_counter; ++i) { 2192 if (!pmc_overflow(val[i])) 2193 continue; 2194 if (is_limited_pmc(i + 1)) 2195 continue; /* these won't generate IRQs */ 2196 /* 2197 * We've found one that's overflowed. For active 2198 * counters we need to log this. For inactive 2199 * counters, we need to reset it anyway 2200 */ 2201 found = 1; 2202 active = 0; 2203 for (j = 0; j < cpuhw->n_events; ++j) { 2204 event = cpuhw->event[j]; 2205 if (event->hw.idx == (i + 1)) { 2206 active = 1; 2207 record_and_restart(event, val[i], regs); 2208 break; 2209 } 2210 } 2211 if (!active) 2212 /* reset non active counters that have overflowed */ 2213 write_pmc(i + 1, 0); 2214 } 2215 if (!found && pvr_version_is(PVR_POWER7)) { 2216 /* check active counters for special buggy p7 overflow */ 2217 for (i = 0; i < cpuhw->n_events; ++i) { 2218 event = cpuhw->event[i]; 2219 if (!event->hw.idx || is_limited_pmc(event->hw.idx)) 2220 continue; 2221 if (pmc_overflow_power7(val[event->hw.idx - 1])) { 2222 /* event has overflowed in a buggy way*/ 2223 found = 1; 2224 record_and_restart(event, 2225 val[event->hw.idx - 1], 2226 regs); 2227 } 2228 } 2229 } 2230 if (!found && !nmi && printk_ratelimit()) 2231 printk(KERN_WARNING "Can't find PMC that caused IRQ\n"); 2232 2233 /* 2234 * Reset MMCR0 to its normal value. This will set PMXE and 2235 * clear FC (freeze counters) and PMAO (perf mon alert occurred) 2236 * and thus allow interrupts to occur again. 2237 * XXX might want to use MSR.PM to keep the events frozen until 2238 * we get back out of this interrupt. 2239 */ 2240 write_mmcr0(cpuhw, cpuhw->mmcr[0]); 2241 2242 if (nmi) 2243 nmi_exit(); 2244 else 2245 irq_exit(); 2246 } 2247 2248 static void perf_event_interrupt(struct pt_regs *regs) 2249 { 2250 u64 start_clock = sched_clock(); 2251 2252 __perf_event_interrupt(regs); 2253 perf_sample_event_took(sched_clock() - start_clock); 2254 } 2255 2256 static int power_pmu_prepare_cpu(unsigned int cpu) 2257 { 2258 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); 2259 2260 if (ppmu) { 2261 memset(cpuhw, 0, sizeof(*cpuhw)); 2262 cpuhw->mmcr[0] = MMCR0_FC; 2263 } 2264 return 0; 2265 } 2266 2267 int register_power_pmu(struct power_pmu *pmu) 2268 { 2269 if (ppmu) 2270 return -EBUSY; /* something's already registered */ 2271 2272 ppmu = pmu; 2273 pr_info("%s performance monitor hardware support registered\n", 2274 pmu->name); 2275 2276 power_pmu.attr_groups = ppmu->attr_groups; 2277 2278 #ifdef MSR_HV 2279 /* 2280 * Use FCHV to ignore kernel events if MSR.HV is set. 2281 */ 2282 if (mfmsr() & MSR_HV) 2283 freeze_events_kernel = MMCR0_FCHV; 2284 #endif /* CONFIG_PPC64 */ 2285 2286 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW); 2287 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare", 2288 power_pmu_prepare_cpu, NULL); 2289 return 0; 2290 } 2291 2292 #ifdef CONFIG_PPC64 2293 static int __init init_ppc64_pmu(void) 2294 { 2295 /* run through all the pmu drivers one at a time */ 2296 if (!init_power5_pmu()) 2297 return 0; 2298 else if (!init_power5p_pmu()) 2299 return 0; 2300 else if (!init_power6_pmu()) 2301 return 0; 2302 else if (!init_power7_pmu()) 2303 return 0; 2304 else if (!init_power8_pmu()) 2305 return 0; 2306 else if (!init_power9_pmu()) 2307 return 0; 2308 else if (!init_ppc970_pmu()) 2309 return 0; 2310 else 2311 return init_generic_compat_pmu(); 2312 } 2313 early_initcall(init_ppc64_pmu); 2314 #endif 2315