xref: /linux/arch/powerpc/perf/callchain.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Performance counter callchain support - powerpc architecture code
3  *
4  * Copyright © 2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/mm.h>
17 #include <asm/ptrace.h>
18 #include <asm/pgtable.h>
19 #include <asm/sigcontext.h>
20 #include <asm/ucontext.h>
21 #include <asm/vdso.h>
22 #ifdef CONFIG_PPC64
23 #include "../kernel/ppc32.h"
24 #endif
25 
26 
27 /*
28  * Is sp valid as the address of the next kernel stack frame after prev_sp?
29  * The next frame may be in a different stack area but should not go
30  * back down in the same stack area.
31  */
32 static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
33 {
34 	if (sp & 0xf)
35 		return 0;		/* must be 16-byte aligned */
36 	if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
37 		return 0;
38 	if (sp >= prev_sp + STACK_FRAME_MIN_SIZE)
39 		return 1;
40 	/*
41 	 * sp could decrease when we jump off an interrupt stack
42 	 * back to the regular process stack.
43 	 */
44 	if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
45 		return 1;
46 	return 0;
47 }
48 
49 void
50 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
51 {
52 	unsigned long sp, next_sp;
53 	unsigned long next_ip;
54 	unsigned long lr;
55 	long level = 0;
56 	unsigned long *fp;
57 
58 	lr = regs->link;
59 	sp = regs->gpr[1];
60 	perf_callchain_store(entry, perf_instruction_pointer(regs));
61 
62 	if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
63 		return;
64 
65 	for (;;) {
66 		fp = (unsigned long *) sp;
67 		next_sp = fp[0];
68 
69 		if (next_sp == sp + STACK_INT_FRAME_SIZE &&
70 		    fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
71 			/*
72 			 * This looks like an interrupt frame for an
73 			 * interrupt that occurred in the kernel
74 			 */
75 			regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
76 			next_ip = regs->nip;
77 			lr = regs->link;
78 			level = 0;
79 			perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
80 
81 		} else {
82 			if (level == 0)
83 				next_ip = lr;
84 			else
85 				next_ip = fp[STACK_FRAME_LR_SAVE];
86 
87 			/*
88 			 * We can't tell which of the first two addresses
89 			 * we get are valid, but we can filter out the
90 			 * obviously bogus ones here.  We replace them
91 			 * with 0 rather than removing them entirely so
92 			 * that userspace can tell which is which.
93 			 */
94 			if ((level == 1 && next_ip == lr) ||
95 			    (level <= 1 && !kernel_text_address(next_ip)))
96 				next_ip = 0;
97 
98 			++level;
99 		}
100 
101 		perf_callchain_store(entry, next_ip);
102 		if (!valid_next_sp(next_sp, sp))
103 			return;
104 		sp = next_sp;
105 	}
106 }
107 
108 #ifdef CONFIG_PPC64
109 /*
110  * On 64-bit we don't want to invoke hash_page on user addresses from
111  * interrupt context, so if the access faults, we read the page tables
112  * to find which page (if any) is mapped and access it directly.
113  */
114 static int read_user_stack_slow(void __user *ptr, void *buf, int nb)
115 {
116 	int ret = -EFAULT;
117 	pgd_t *pgdir;
118 	pte_t *ptep, pte;
119 	unsigned shift;
120 	unsigned long addr = (unsigned long) ptr;
121 	unsigned long offset;
122 	unsigned long pfn, flags;
123 	void *kaddr;
124 
125 	pgdir = current->mm->pgd;
126 	if (!pgdir)
127 		return -EFAULT;
128 
129 	local_irq_save(flags);
130 	ptep = find_linux_pte_or_hugepte(pgdir, addr, NULL, &shift);
131 	if (!ptep)
132 		goto err_out;
133 	if (!shift)
134 		shift = PAGE_SHIFT;
135 
136 	/* align address to page boundary */
137 	offset = addr & ((1UL << shift) - 1);
138 
139 	pte = READ_ONCE(*ptep);
140 	if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER))
141 		goto err_out;
142 	pfn = pte_pfn(pte);
143 	if (!page_is_ram(pfn))
144 		goto err_out;
145 
146 	/* no highmem to worry about here */
147 	kaddr = pfn_to_kaddr(pfn);
148 	memcpy(buf, kaddr + offset, nb);
149 	ret = 0;
150 err_out:
151 	local_irq_restore(flags);
152 	return ret;
153 }
154 
155 static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
156 {
157 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
158 	    ((unsigned long)ptr & 7))
159 		return -EFAULT;
160 
161 	pagefault_disable();
162 	if (!__get_user_inatomic(*ret, ptr)) {
163 		pagefault_enable();
164 		return 0;
165 	}
166 	pagefault_enable();
167 
168 	return read_user_stack_slow(ptr, ret, 8);
169 }
170 
171 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
172 {
173 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
174 	    ((unsigned long)ptr & 3))
175 		return -EFAULT;
176 
177 	pagefault_disable();
178 	if (!__get_user_inatomic(*ret, ptr)) {
179 		pagefault_enable();
180 		return 0;
181 	}
182 	pagefault_enable();
183 
184 	return read_user_stack_slow(ptr, ret, 4);
185 }
186 
187 static inline int valid_user_sp(unsigned long sp, int is_64)
188 {
189 	if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
190 		return 0;
191 	return 1;
192 }
193 
194 /*
195  * 64-bit user processes use the same stack frame for RT and non-RT signals.
196  */
197 struct signal_frame_64 {
198 	char		dummy[__SIGNAL_FRAMESIZE];
199 	struct ucontext	uc;
200 	unsigned long	unused[2];
201 	unsigned int	tramp[6];
202 	struct siginfo	*pinfo;
203 	void		*puc;
204 	struct siginfo	info;
205 	char		abigap[288];
206 };
207 
208 static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
209 {
210 	if (nip == fp + offsetof(struct signal_frame_64, tramp))
211 		return 1;
212 	if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
213 	    nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
214 		return 1;
215 	return 0;
216 }
217 
218 /*
219  * Do some sanity checking on the signal frame pointed to by sp.
220  * We check the pinfo and puc pointers in the frame.
221  */
222 static int sane_signal_64_frame(unsigned long sp)
223 {
224 	struct signal_frame_64 __user *sf;
225 	unsigned long pinfo, puc;
226 
227 	sf = (struct signal_frame_64 __user *) sp;
228 	if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
229 	    read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
230 		return 0;
231 	return pinfo == (unsigned long) &sf->info &&
232 		puc == (unsigned long) &sf->uc;
233 }
234 
235 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
236 				   struct pt_regs *regs)
237 {
238 	unsigned long sp, next_sp;
239 	unsigned long next_ip;
240 	unsigned long lr;
241 	long level = 0;
242 	struct signal_frame_64 __user *sigframe;
243 	unsigned long __user *fp, *uregs;
244 
245 	next_ip = perf_instruction_pointer(regs);
246 	lr = regs->link;
247 	sp = regs->gpr[1];
248 	perf_callchain_store(entry, next_ip);
249 
250 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
251 		fp = (unsigned long __user *) sp;
252 		if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
253 			return;
254 		if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
255 			return;
256 
257 		/*
258 		 * Note: the next_sp - sp >= signal frame size check
259 		 * is true when next_sp < sp, which can happen when
260 		 * transitioning from an alternate signal stack to the
261 		 * normal stack.
262 		 */
263 		if (next_sp - sp >= sizeof(struct signal_frame_64) &&
264 		    (is_sigreturn_64_address(next_ip, sp) ||
265 		     (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
266 		    sane_signal_64_frame(sp)) {
267 			/*
268 			 * This looks like an signal frame
269 			 */
270 			sigframe = (struct signal_frame_64 __user *) sp;
271 			uregs = sigframe->uc.uc_mcontext.gp_regs;
272 			if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
273 			    read_user_stack_64(&uregs[PT_LNK], &lr) ||
274 			    read_user_stack_64(&uregs[PT_R1], &sp))
275 				return;
276 			level = 0;
277 			perf_callchain_store(entry, PERF_CONTEXT_USER);
278 			perf_callchain_store(entry, next_ip);
279 			continue;
280 		}
281 
282 		if (level == 0)
283 			next_ip = lr;
284 		perf_callchain_store(entry, next_ip);
285 		++level;
286 		sp = next_sp;
287 	}
288 }
289 
290 static inline int current_is_64bit(void)
291 {
292 	/*
293 	 * We can't use test_thread_flag() here because we may be on an
294 	 * interrupt stack, and the thread flags don't get copied over
295 	 * from the thread_info on the main stack to the interrupt stack.
296 	 */
297 	return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
298 }
299 
300 #else  /* CONFIG_PPC64 */
301 /*
302  * On 32-bit we just access the address and let hash_page create a
303  * HPTE if necessary, so there is no need to fall back to reading
304  * the page tables.  Since this is called at interrupt level,
305  * do_page_fault() won't treat a DSI as a page fault.
306  */
307 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
308 {
309 	int rc;
310 
311 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
312 	    ((unsigned long)ptr & 3))
313 		return -EFAULT;
314 
315 	pagefault_disable();
316 	rc = __get_user_inatomic(*ret, ptr);
317 	pagefault_enable();
318 
319 	return rc;
320 }
321 
322 static inline void perf_callchain_user_64(struct perf_callchain_entry *entry,
323 					  struct pt_regs *regs)
324 {
325 }
326 
327 static inline int current_is_64bit(void)
328 {
329 	return 0;
330 }
331 
332 static inline int valid_user_sp(unsigned long sp, int is_64)
333 {
334 	if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
335 		return 0;
336 	return 1;
337 }
338 
339 #define __SIGNAL_FRAMESIZE32	__SIGNAL_FRAMESIZE
340 #define sigcontext32		sigcontext
341 #define mcontext32		mcontext
342 #define ucontext32		ucontext
343 #define compat_siginfo_t	struct siginfo
344 
345 #endif /* CONFIG_PPC64 */
346 
347 /*
348  * Layout for non-RT signal frames
349  */
350 struct signal_frame_32 {
351 	char			dummy[__SIGNAL_FRAMESIZE32];
352 	struct sigcontext32	sctx;
353 	struct mcontext32	mctx;
354 	int			abigap[56];
355 };
356 
357 /*
358  * Layout for RT signal frames
359  */
360 struct rt_signal_frame_32 {
361 	char			dummy[__SIGNAL_FRAMESIZE32 + 16];
362 	compat_siginfo_t	info;
363 	struct ucontext32	uc;
364 	int			abigap[56];
365 };
366 
367 static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
368 {
369 	if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
370 		return 1;
371 	if (vdso32_sigtramp && current->mm->context.vdso_base &&
372 	    nip == current->mm->context.vdso_base + vdso32_sigtramp)
373 		return 1;
374 	return 0;
375 }
376 
377 static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
378 {
379 	if (nip == fp + offsetof(struct rt_signal_frame_32,
380 				 uc.uc_mcontext.mc_pad))
381 		return 1;
382 	if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
383 	    nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
384 		return 1;
385 	return 0;
386 }
387 
388 static int sane_signal_32_frame(unsigned int sp)
389 {
390 	struct signal_frame_32 __user *sf;
391 	unsigned int regs;
392 
393 	sf = (struct signal_frame_32 __user *) (unsigned long) sp;
394 	if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
395 		return 0;
396 	return regs == (unsigned long) &sf->mctx;
397 }
398 
399 static int sane_rt_signal_32_frame(unsigned int sp)
400 {
401 	struct rt_signal_frame_32 __user *sf;
402 	unsigned int regs;
403 
404 	sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
405 	if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
406 		return 0;
407 	return regs == (unsigned long) &sf->uc.uc_mcontext;
408 }
409 
410 static unsigned int __user *signal_frame_32_regs(unsigned int sp,
411 				unsigned int next_sp, unsigned int next_ip)
412 {
413 	struct mcontext32 __user *mctx = NULL;
414 	struct signal_frame_32 __user *sf;
415 	struct rt_signal_frame_32 __user *rt_sf;
416 
417 	/*
418 	 * Note: the next_sp - sp >= signal frame size check
419 	 * is true when next_sp < sp, for example, when
420 	 * transitioning from an alternate signal stack to the
421 	 * normal stack.
422 	 */
423 	if (next_sp - sp >= sizeof(struct signal_frame_32) &&
424 	    is_sigreturn_32_address(next_ip, sp) &&
425 	    sane_signal_32_frame(sp)) {
426 		sf = (struct signal_frame_32 __user *) (unsigned long) sp;
427 		mctx = &sf->mctx;
428 	}
429 
430 	if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
431 	    is_rt_sigreturn_32_address(next_ip, sp) &&
432 	    sane_rt_signal_32_frame(sp)) {
433 		rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
434 		mctx = &rt_sf->uc.uc_mcontext;
435 	}
436 
437 	if (!mctx)
438 		return NULL;
439 	return mctx->mc_gregs;
440 }
441 
442 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
443 				   struct pt_regs *regs)
444 {
445 	unsigned int sp, next_sp;
446 	unsigned int next_ip;
447 	unsigned int lr;
448 	long level = 0;
449 	unsigned int __user *fp, *uregs;
450 
451 	next_ip = perf_instruction_pointer(regs);
452 	lr = regs->link;
453 	sp = regs->gpr[1];
454 	perf_callchain_store(entry, next_ip);
455 
456 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
457 		fp = (unsigned int __user *) (unsigned long) sp;
458 		if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
459 			return;
460 		if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
461 			return;
462 
463 		uregs = signal_frame_32_regs(sp, next_sp, next_ip);
464 		if (!uregs && level <= 1)
465 			uregs = signal_frame_32_regs(sp, next_sp, lr);
466 		if (uregs) {
467 			/*
468 			 * This looks like an signal frame, so restart
469 			 * the stack trace with the values in it.
470 			 */
471 			if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
472 			    read_user_stack_32(&uregs[PT_LNK], &lr) ||
473 			    read_user_stack_32(&uregs[PT_R1], &sp))
474 				return;
475 			level = 0;
476 			perf_callchain_store(entry, PERF_CONTEXT_USER);
477 			perf_callchain_store(entry, next_ip);
478 			continue;
479 		}
480 
481 		if (level == 0)
482 			next_ip = lr;
483 		perf_callchain_store(entry, next_ip);
484 		++level;
485 		sp = next_sp;
486 	}
487 }
488 
489 void
490 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
491 {
492 	if (current_is_64bit())
493 		perf_callchain_user_64(entry, regs);
494 	else
495 		perf_callchain_user_32(entry, regs);
496 }
497