xref: /linux/arch/powerpc/perf/callchain.c (revision 1ebfc603d046f1dda6507d11803f9b4046cee712)
1 /*
2  * Performance counter callchain support - powerpc architecture code
3  *
4  * Copyright © 2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/mm.h>
17 #include <asm/ptrace.h>
18 #include <asm/pgtable.h>
19 #include <asm/sigcontext.h>
20 #include <asm/ucontext.h>
21 #include <asm/vdso.h>
22 #ifdef CONFIG_PPC64
23 #include "../kernel/ppc32.h"
24 #endif
25 #include <asm/pte-walk.h>
26 
27 
28 /*
29  * Is sp valid as the address of the next kernel stack frame after prev_sp?
30  * The next frame may be in a different stack area but should not go
31  * back down in the same stack area.
32  */
33 static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
34 {
35 	if (sp & 0xf)
36 		return 0;		/* must be 16-byte aligned */
37 	if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
38 		return 0;
39 	if (sp >= prev_sp + STACK_FRAME_MIN_SIZE)
40 		return 1;
41 	/*
42 	 * sp could decrease when we jump off an interrupt stack
43 	 * back to the regular process stack.
44 	 */
45 	if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
46 		return 1;
47 	return 0;
48 }
49 
50 void
51 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
52 {
53 	unsigned long sp, next_sp;
54 	unsigned long next_ip;
55 	unsigned long lr;
56 	long level = 0;
57 	unsigned long *fp;
58 
59 	lr = regs->link;
60 	sp = regs->gpr[1];
61 	perf_callchain_store(entry, perf_instruction_pointer(regs));
62 
63 	if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
64 		return;
65 
66 	for (;;) {
67 		fp = (unsigned long *) sp;
68 		next_sp = fp[0];
69 
70 		if (next_sp == sp + STACK_INT_FRAME_SIZE &&
71 		    fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
72 			/*
73 			 * This looks like an interrupt frame for an
74 			 * interrupt that occurred in the kernel
75 			 */
76 			regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
77 			next_ip = regs->nip;
78 			lr = regs->link;
79 			level = 0;
80 			perf_callchain_store_context(entry, PERF_CONTEXT_KERNEL);
81 
82 		} else {
83 			if (level == 0)
84 				next_ip = lr;
85 			else
86 				next_ip = fp[STACK_FRAME_LR_SAVE];
87 
88 			/*
89 			 * We can't tell which of the first two addresses
90 			 * we get are valid, but we can filter out the
91 			 * obviously bogus ones here.  We replace them
92 			 * with 0 rather than removing them entirely so
93 			 * that userspace can tell which is which.
94 			 */
95 			if ((level == 1 && next_ip == lr) ||
96 			    (level <= 1 && !kernel_text_address(next_ip)))
97 				next_ip = 0;
98 
99 			++level;
100 		}
101 
102 		perf_callchain_store(entry, next_ip);
103 		if (!valid_next_sp(next_sp, sp))
104 			return;
105 		sp = next_sp;
106 	}
107 }
108 
109 #ifdef CONFIG_PPC64
110 /*
111  * On 64-bit we don't want to invoke hash_page on user addresses from
112  * interrupt context, so if the access faults, we read the page tables
113  * to find which page (if any) is mapped and access it directly.
114  */
115 static int read_user_stack_slow(void __user *ptr, void *buf, int nb)
116 {
117 	int ret = -EFAULT;
118 	pgd_t *pgdir;
119 	pte_t *ptep, pte;
120 	unsigned shift;
121 	unsigned long addr = (unsigned long) ptr;
122 	unsigned long offset;
123 	unsigned long pfn, flags;
124 	void *kaddr;
125 
126 	pgdir = current->mm->pgd;
127 	if (!pgdir)
128 		return -EFAULT;
129 
130 	local_irq_save(flags);
131 	ptep = find_current_mm_pte(pgdir, addr, NULL, &shift);
132 	if (!ptep)
133 		goto err_out;
134 	if (!shift)
135 		shift = PAGE_SHIFT;
136 
137 	/* align address to page boundary */
138 	offset = addr & ((1UL << shift) - 1);
139 
140 	pte = READ_ONCE(*ptep);
141 	if (!pte_present(pte) || !pte_user(pte))
142 		goto err_out;
143 	pfn = pte_pfn(pte);
144 	if (!page_is_ram(pfn))
145 		goto err_out;
146 
147 	/* no highmem to worry about here */
148 	kaddr = pfn_to_kaddr(pfn);
149 	memcpy(buf, kaddr + offset, nb);
150 	ret = 0;
151 err_out:
152 	local_irq_restore(flags);
153 	return ret;
154 }
155 
156 static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
157 {
158 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
159 	    ((unsigned long)ptr & 7))
160 		return -EFAULT;
161 
162 	pagefault_disable();
163 	if (!__get_user_inatomic(*ret, ptr)) {
164 		pagefault_enable();
165 		return 0;
166 	}
167 	pagefault_enable();
168 
169 	return read_user_stack_slow(ptr, ret, 8);
170 }
171 
172 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
173 {
174 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
175 	    ((unsigned long)ptr & 3))
176 		return -EFAULT;
177 
178 	pagefault_disable();
179 	if (!__get_user_inatomic(*ret, ptr)) {
180 		pagefault_enable();
181 		return 0;
182 	}
183 	pagefault_enable();
184 
185 	return read_user_stack_slow(ptr, ret, 4);
186 }
187 
188 static inline int valid_user_sp(unsigned long sp, int is_64)
189 {
190 	if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
191 		return 0;
192 	return 1;
193 }
194 
195 /*
196  * 64-bit user processes use the same stack frame for RT and non-RT signals.
197  */
198 struct signal_frame_64 {
199 	char		dummy[__SIGNAL_FRAMESIZE];
200 	struct ucontext	uc;
201 	unsigned long	unused[2];
202 	unsigned int	tramp[6];
203 	struct siginfo	*pinfo;
204 	void		*puc;
205 	struct siginfo	info;
206 	char		abigap[288];
207 };
208 
209 static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
210 {
211 	if (nip == fp + offsetof(struct signal_frame_64, tramp))
212 		return 1;
213 	if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
214 	    nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
215 		return 1;
216 	return 0;
217 }
218 
219 /*
220  * Do some sanity checking on the signal frame pointed to by sp.
221  * We check the pinfo and puc pointers in the frame.
222  */
223 static int sane_signal_64_frame(unsigned long sp)
224 {
225 	struct signal_frame_64 __user *sf;
226 	unsigned long pinfo, puc;
227 
228 	sf = (struct signal_frame_64 __user *) sp;
229 	if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
230 	    read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
231 		return 0;
232 	return pinfo == (unsigned long) &sf->info &&
233 		puc == (unsigned long) &sf->uc;
234 }
235 
236 static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
237 				   struct pt_regs *regs)
238 {
239 	unsigned long sp, next_sp;
240 	unsigned long next_ip;
241 	unsigned long lr;
242 	long level = 0;
243 	struct signal_frame_64 __user *sigframe;
244 	unsigned long __user *fp, *uregs;
245 
246 	next_ip = perf_instruction_pointer(regs);
247 	lr = regs->link;
248 	sp = regs->gpr[1];
249 	perf_callchain_store(entry, next_ip);
250 
251 	while (entry->nr < entry->max_stack) {
252 		fp = (unsigned long __user *) sp;
253 		if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
254 			return;
255 		if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
256 			return;
257 
258 		/*
259 		 * Note: the next_sp - sp >= signal frame size check
260 		 * is true when next_sp < sp, which can happen when
261 		 * transitioning from an alternate signal stack to the
262 		 * normal stack.
263 		 */
264 		if (next_sp - sp >= sizeof(struct signal_frame_64) &&
265 		    (is_sigreturn_64_address(next_ip, sp) ||
266 		     (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
267 		    sane_signal_64_frame(sp)) {
268 			/*
269 			 * This looks like an signal frame
270 			 */
271 			sigframe = (struct signal_frame_64 __user *) sp;
272 			uregs = sigframe->uc.uc_mcontext.gp_regs;
273 			if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
274 			    read_user_stack_64(&uregs[PT_LNK], &lr) ||
275 			    read_user_stack_64(&uregs[PT_R1], &sp))
276 				return;
277 			level = 0;
278 			perf_callchain_store_context(entry, PERF_CONTEXT_USER);
279 			perf_callchain_store(entry, next_ip);
280 			continue;
281 		}
282 
283 		if (level == 0)
284 			next_ip = lr;
285 		perf_callchain_store(entry, next_ip);
286 		++level;
287 		sp = next_sp;
288 	}
289 }
290 
291 static inline int current_is_64bit(void)
292 {
293 	/*
294 	 * We can't use test_thread_flag() here because we may be on an
295 	 * interrupt stack, and the thread flags don't get copied over
296 	 * from the thread_info on the main stack to the interrupt stack.
297 	 */
298 	return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
299 }
300 
301 #else  /* CONFIG_PPC64 */
302 /*
303  * On 32-bit we just access the address and let hash_page create a
304  * HPTE if necessary, so there is no need to fall back to reading
305  * the page tables.  Since this is called at interrupt level,
306  * do_page_fault() won't treat a DSI as a page fault.
307  */
308 static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
309 {
310 	int rc;
311 
312 	if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
313 	    ((unsigned long)ptr & 3))
314 		return -EFAULT;
315 
316 	pagefault_disable();
317 	rc = __get_user_inatomic(*ret, ptr);
318 	pagefault_enable();
319 
320 	return rc;
321 }
322 
323 static inline void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
324 					  struct pt_regs *regs)
325 {
326 }
327 
328 static inline int current_is_64bit(void)
329 {
330 	return 0;
331 }
332 
333 static inline int valid_user_sp(unsigned long sp, int is_64)
334 {
335 	if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
336 		return 0;
337 	return 1;
338 }
339 
340 #define __SIGNAL_FRAMESIZE32	__SIGNAL_FRAMESIZE
341 #define sigcontext32		sigcontext
342 #define mcontext32		mcontext
343 #define ucontext32		ucontext
344 #define compat_siginfo_t	struct siginfo
345 
346 #endif /* CONFIG_PPC64 */
347 
348 /*
349  * Layout for non-RT signal frames
350  */
351 struct signal_frame_32 {
352 	char			dummy[__SIGNAL_FRAMESIZE32];
353 	struct sigcontext32	sctx;
354 	struct mcontext32	mctx;
355 	int			abigap[56];
356 };
357 
358 /*
359  * Layout for RT signal frames
360  */
361 struct rt_signal_frame_32 {
362 	char			dummy[__SIGNAL_FRAMESIZE32 + 16];
363 	compat_siginfo_t	info;
364 	struct ucontext32	uc;
365 	int			abigap[56];
366 };
367 
368 static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
369 {
370 	if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
371 		return 1;
372 	if (vdso32_sigtramp && current->mm->context.vdso_base &&
373 	    nip == current->mm->context.vdso_base + vdso32_sigtramp)
374 		return 1;
375 	return 0;
376 }
377 
378 static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
379 {
380 	if (nip == fp + offsetof(struct rt_signal_frame_32,
381 				 uc.uc_mcontext.mc_pad))
382 		return 1;
383 	if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
384 	    nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
385 		return 1;
386 	return 0;
387 }
388 
389 static int sane_signal_32_frame(unsigned int sp)
390 {
391 	struct signal_frame_32 __user *sf;
392 	unsigned int regs;
393 
394 	sf = (struct signal_frame_32 __user *) (unsigned long) sp;
395 	if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
396 		return 0;
397 	return regs == (unsigned long) &sf->mctx;
398 }
399 
400 static int sane_rt_signal_32_frame(unsigned int sp)
401 {
402 	struct rt_signal_frame_32 __user *sf;
403 	unsigned int regs;
404 
405 	sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
406 	if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
407 		return 0;
408 	return regs == (unsigned long) &sf->uc.uc_mcontext;
409 }
410 
411 static unsigned int __user *signal_frame_32_regs(unsigned int sp,
412 				unsigned int next_sp, unsigned int next_ip)
413 {
414 	struct mcontext32 __user *mctx = NULL;
415 	struct signal_frame_32 __user *sf;
416 	struct rt_signal_frame_32 __user *rt_sf;
417 
418 	/*
419 	 * Note: the next_sp - sp >= signal frame size check
420 	 * is true when next_sp < sp, for example, when
421 	 * transitioning from an alternate signal stack to the
422 	 * normal stack.
423 	 */
424 	if (next_sp - sp >= sizeof(struct signal_frame_32) &&
425 	    is_sigreturn_32_address(next_ip, sp) &&
426 	    sane_signal_32_frame(sp)) {
427 		sf = (struct signal_frame_32 __user *) (unsigned long) sp;
428 		mctx = &sf->mctx;
429 	}
430 
431 	if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
432 	    is_rt_sigreturn_32_address(next_ip, sp) &&
433 	    sane_rt_signal_32_frame(sp)) {
434 		rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
435 		mctx = &rt_sf->uc.uc_mcontext;
436 	}
437 
438 	if (!mctx)
439 		return NULL;
440 	return mctx->mc_gregs;
441 }
442 
443 static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
444 				   struct pt_regs *regs)
445 {
446 	unsigned int sp, next_sp;
447 	unsigned int next_ip;
448 	unsigned int lr;
449 	long level = 0;
450 	unsigned int __user *fp, *uregs;
451 
452 	next_ip = perf_instruction_pointer(regs);
453 	lr = regs->link;
454 	sp = regs->gpr[1];
455 	perf_callchain_store(entry, next_ip);
456 
457 	while (entry->nr < entry->max_stack) {
458 		fp = (unsigned int __user *) (unsigned long) sp;
459 		if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
460 			return;
461 		if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
462 			return;
463 
464 		uregs = signal_frame_32_regs(sp, next_sp, next_ip);
465 		if (!uregs && level <= 1)
466 			uregs = signal_frame_32_regs(sp, next_sp, lr);
467 		if (uregs) {
468 			/*
469 			 * This looks like an signal frame, so restart
470 			 * the stack trace with the values in it.
471 			 */
472 			if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
473 			    read_user_stack_32(&uregs[PT_LNK], &lr) ||
474 			    read_user_stack_32(&uregs[PT_R1], &sp))
475 				return;
476 			level = 0;
477 			perf_callchain_store_context(entry, PERF_CONTEXT_USER);
478 			perf_callchain_store(entry, next_ip);
479 			continue;
480 		}
481 
482 		if (level == 0)
483 			next_ip = lr;
484 		perf_callchain_store(entry, next_ip);
485 		++level;
486 		sp = next_sp;
487 	}
488 }
489 
490 void
491 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
492 {
493 	if (current_is_64bit())
494 		perf_callchain_user_64(entry, regs);
495 	else
496 		perf_callchain_user_32(entry, regs);
497 }
498