xref: /linux/arch/powerpc/mm/pgtable.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * This file contains common routines for dealing with free of page tables
4  * Along with common page table handling code
5  *
6  *  Derived from arch/powerpc/mm/tlb_64.c:
7  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
8  *
9  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
10  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
11  *    Copyright (C) 1996 Paul Mackerras
12  *
13  *  Derived from "arch/i386/mm/init.c"
14  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
15  *
16  *  Dave Engebretsen <engebret@us.ibm.com>
17  *      Rework for PPC64 port.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/percpu.h>
24 #include <linux/hardirq.h>
25 #include <linux/hugetlb.h>
26 #include <asm/tlbflush.h>
27 #include <asm/tlb.h>
28 #include <asm/hugetlb.h>
29 #include <asm/pte-walk.h>
30 
31 #ifdef CONFIG_PPC64
32 #define PGD_ALIGN (sizeof(pgd_t) * MAX_PTRS_PER_PGD)
33 #else
34 #define PGD_ALIGN PAGE_SIZE
35 #endif
36 
37 pgd_t swapper_pg_dir[MAX_PTRS_PER_PGD] __section(".bss..page_aligned") __aligned(PGD_ALIGN);
38 
39 static inline int is_exec_fault(void)
40 {
41 	return current->thread.regs && TRAP(current->thread.regs) == 0x400;
42 }
43 
44 /* We only try to do i/d cache coherency on stuff that looks like
45  * reasonably "normal" PTEs. We currently require a PTE to be present
46  * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
47  * on userspace PTEs
48  */
49 static inline int pte_looks_normal(pte_t pte, unsigned long addr)
50 {
51 
52 	if (pte_present(pte) && !pte_special(pte)) {
53 		if (pte_ci(pte))
54 			return 0;
55 		if (!is_kernel_addr(addr))
56 			return 1;
57 	}
58 	return 0;
59 }
60 
61 static struct folio *maybe_pte_to_folio(pte_t pte)
62 {
63 	unsigned long pfn = pte_pfn(pte);
64 	struct page *page;
65 
66 	if (unlikely(!pfn_valid(pfn)))
67 		return NULL;
68 	page = pfn_to_page(pfn);
69 	if (PageReserved(page))
70 		return NULL;
71 	return page_folio(page);
72 }
73 
74 #ifdef CONFIG_PPC_BOOK3S
75 
76 /* Server-style MMU handles coherency when hashing if HW exec permission
77  * is supposed per page (currently 64-bit only). If not, then, we always
78  * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
79  * support falls into the same category.
80  */
81 
82 static pte_t set_pte_filter_hash(pte_t pte, unsigned long addr)
83 {
84 	pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
85 	if (pte_looks_normal(pte, addr) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
86 					     cpu_has_feature(CPU_FTR_NOEXECUTE))) {
87 		struct folio *folio = maybe_pte_to_folio(pte);
88 		if (!folio)
89 			return pte;
90 		if (!test_bit(PG_dcache_clean, &folio->flags)) {
91 			flush_dcache_icache_folio(folio);
92 			set_bit(PG_dcache_clean, &folio->flags);
93 		}
94 	}
95 	return pte;
96 }
97 
98 #else /* CONFIG_PPC_BOOK3S */
99 
100 static pte_t set_pte_filter_hash(pte_t pte, unsigned long addr) { return pte; }
101 
102 #endif /* CONFIG_PPC_BOOK3S */
103 
104 /* Embedded type MMU with HW exec support. This is a bit more complicated
105  * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
106  * instead we "filter out" the exec permission for non clean pages.
107  *
108  * This is also called once for the folio. So only work with folio->flags here.
109  */
110 static inline pte_t set_pte_filter(pte_t pte, unsigned long addr)
111 {
112 	struct folio *folio;
113 
114 	if (radix_enabled())
115 		return pte;
116 
117 	if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
118 		return set_pte_filter_hash(pte, addr);
119 
120 	/* No exec permission in the first place, move on */
121 	if (!pte_exec(pte) || !pte_looks_normal(pte, addr))
122 		return pte;
123 
124 	/* If you set _PAGE_EXEC on weird pages you're on your own */
125 	folio = maybe_pte_to_folio(pte);
126 	if (unlikely(!folio))
127 		return pte;
128 
129 	/* If the page clean, we move on */
130 	if (test_bit(PG_dcache_clean, &folio->flags))
131 		return pte;
132 
133 	/* If it's an exec fault, we flush the cache and make it clean */
134 	if (is_exec_fault()) {
135 		flush_dcache_icache_folio(folio);
136 		set_bit(PG_dcache_clean, &folio->flags);
137 		return pte;
138 	}
139 
140 	/* Else, we filter out _PAGE_EXEC */
141 	return pte_exprotect(pte);
142 }
143 
144 static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
145 				     int dirty)
146 {
147 	struct folio *folio;
148 
149 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64))
150 		return pte;
151 
152 	if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
153 		return pte;
154 
155 	/* So here, we only care about exec faults, as we use them
156 	 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
157 	 * if necessary. Also if _PAGE_EXEC is already set, same deal,
158 	 * we just bail out
159 	 */
160 	if (dirty || pte_exec(pte) || !is_exec_fault())
161 		return pte;
162 
163 #ifdef CONFIG_DEBUG_VM
164 	/* So this is an exec fault, _PAGE_EXEC is not set. If it was
165 	 * an error we would have bailed out earlier in do_page_fault()
166 	 * but let's make sure of it
167 	 */
168 	if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
169 		return pte;
170 #endif /* CONFIG_DEBUG_VM */
171 
172 	/* If you set _PAGE_EXEC on weird pages you're on your own */
173 	folio = maybe_pte_to_folio(pte);
174 	if (unlikely(!folio))
175 		goto bail;
176 
177 	/* If the page is already clean, we move on */
178 	if (test_bit(PG_dcache_clean, &folio->flags))
179 		goto bail;
180 
181 	/* Clean the page and set PG_dcache_clean */
182 	flush_dcache_icache_folio(folio);
183 	set_bit(PG_dcache_clean, &folio->flags);
184 
185  bail:
186 	return pte_mkexec(pte);
187 }
188 
189 /*
190  * set_pte stores a linux PTE into the linux page table.
191  */
192 void set_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
193 		pte_t pte, unsigned int nr)
194 {
195 
196 	/* Note: mm->context.id might not yet have been assigned as
197 	 * this context might not have been activated yet when this
198 	 * is called. Filter the pte value and use the filtered value
199 	 * to setup all the ptes in the range.
200 	 */
201 	pte = set_pte_filter(pte, addr);
202 
203 	/*
204 	 * We don't need to call arch_enter/leave_lazy_mmu_mode()
205 	 * because we expect set_ptes to be only be used on not present
206 	 * and not hw_valid ptes. Hence there is no translation cache flush
207 	 * involved that need to be batched.
208 	 */
209 	for (;;) {
210 
211 		/*
212 		 * Make sure hardware valid bit is not set. We don't do
213 		 * tlb flush for this update.
214 		 */
215 		VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
216 
217 		/* Perform the setting of the PTE */
218 		__set_pte_at(mm, addr, ptep, pte, 0);
219 		if (--nr == 0)
220 			break;
221 		ptep++;
222 		addr += PAGE_SIZE;
223 		pte = pte_next_pfn(pte);
224 	}
225 }
226 
227 void unmap_kernel_page(unsigned long va)
228 {
229 	pmd_t *pmdp = pmd_off_k(va);
230 	pte_t *ptep = pte_offset_kernel(pmdp, va);
231 
232 	pte_clear(&init_mm, va, ptep);
233 	flush_tlb_kernel_range(va, va + PAGE_SIZE);
234 }
235 
236 /*
237  * This is called when relaxing access to a PTE. It's also called in the page
238  * fault path when we don't hit any of the major fault cases, ie, a minor
239  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
240  * handled those two for us, we additionally deal with missing execute
241  * permission here on some processors
242  */
243 int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
244 			  pte_t *ptep, pte_t entry, int dirty)
245 {
246 	int changed;
247 	entry = set_access_flags_filter(entry, vma, dirty);
248 	changed = !pte_same(*(ptep), entry);
249 	if (changed) {
250 		assert_pte_locked(vma->vm_mm, address);
251 		__ptep_set_access_flags(vma, ptep, entry,
252 					address, mmu_virtual_psize);
253 	}
254 	return changed;
255 }
256 
257 #ifdef CONFIG_HUGETLB_PAGE
258 int huge_ptep_set_access_flags(struct vm_area_struct *vma,
259 			       unsigned long addr, pte_t *ptep,
260 			       pte_t pte, int dirty)
261 {
262 #ifdef HUGETLB_NEED_PRELOAD
263 	/*
264 	 * The "return 1" forces a call of update_mmu_cache, which will write a
265 	 * TLB entry.  Without this, platforms that don't do a write of the TLB
266 	 * entry in the TLB miss handler asm will fault ad infinitum.
267 	 */
268 	ptep_set_access_flags(vma, addr, ptep, pte, dirty);
269 	return 1;
270 #else
271 	int changed, psize;
272 
273 	pte = set_access_flags_filter(pte, vma, dirty);
274 	changed = !pte_same(*(ptep), pte);
275 	if (changed) {
276 
277 #ifdef CONFIG_PPC_BOOK3S_64
278 		struct hstate *h = hstate_vma(vma);
279 
280 		psize = hstate_get_psize(h);
281 #ifdef CONFIG_DEBUG_VM
282 		assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep));
283 #endif
284 
285 #else
286 		/*
287 		 * Not used on non book3s64 platforms.
288 		 * 8xx compares it with mmu_virtual_psize to
289 		 * know if it is a huge page or not.
290 		 */
291 		psize = MMU_PAGE_COUNT;
292 #endif
293 		__ptep_set_access_flags(vma, ptep, pte, addr, psize);
294 	}
295 	return changed;
296 #endif
297 }
298 
299 #if defined(CONFIG_PPC_8xx)
300 
301 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) || defined(CONFIG_SPLIT_PMD_PTLOCKS)
302 /* We need the same lock to protect the PMD table and the two PTE tables. */
303 #error "8M hugetlb folios are incompatible with split page table locks"
304 #endif
305 
306 static void __set_huge_pte_at(pmd_t *pmd, pte_t *ptep, pte_basic_t val)
307 {
308 	pte_basic_t *entry = (pte_basic_t *)ptep;
309 	int num, i;
310 
311 	/*
312 	 * Make sure hardware valid bit is not set. We don't do
313 	 * tlb flush for this update.
314 	 */
315 	VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
316 
317 	num = number_of_cells_per_pte(pmd, val, 1);
318 
319 	for (i = 0; i < num; i++, entry++, val += SZ_4K)
320 		*entry = val;
321 }
322 
323 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
324 		     pte_t pte, unsigned long sz)
325 {
326 	pmd_t *pmdp = pmd_off(mm, addr);
327 
328 	pte = set_pte_filter(pte, addr);
329 
330 	if (sz == SZ_8M) { /* Flag both PMD entries as 8M and fill both page tables */
331 		*pmdp = __pmd(pmd_val(*pmdp) | _PMD_PAGE_8M);
332 		*(pmdp + 1) = __pmd(pmd_val(*(pmdp + 1)) | _PMD_PAGE_8M);
333 
334 		__set_huge_pte_at(pmdp, pte_offset_kernel(pmdp, 0), pte_val(pte));
335 		__set_huge_pte_at(pmdp, pte_offset_kernel(pmdp + 1, 0), pte_val(pte) + SZ_4M);
336 	} else {
337 		__set_huge_pte_at(pmdp, ptep, pte_val(pte));
338 	}
339 }
340 #else
341 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
342 		     pte_t pte, unsigned long sz)
343 {
344 	unsigned long pdsize;
345 	int i;
346 
347 	pte = set_pte_filter(pte, addr);
348 
349 	/*
350 	 * Make sure hardware valid bit is not set. We don't do
351 	 * tlb flush for this update.
352 	 */
353 	VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
354 
355 	if (sz < PMD_SIZE)
356 		pdsize = PAGE_SIZE;
357 	else if (sz < PUD_SIZE)
358 		pdsize = PMD_SIZE;
359 	else if (sz < P4D_SIZE)
360 		pdsize = PUD_SIZE;
361 	else if (sz < PGDIR_SIZE)
362 		pdsize = P4D_SIZE;
363 	else
364 		pdsize = PGDIR_SIZE;
365 
366 	for (i = 0; i < sz / pdsize; i++, ptep++, addr += pdsize) {
367 		__set_pte_at(mm, addr, ptep, pte, 0);
368 		pte = __pte(pte_val(pte) + ((unsigned long long)pdsize / PAGE_SIZE << PFN_PTE_SHIFT));
369 	}
370 }
371 #endif
372 #endif /* CONFIG_HUGETLB_PAGE */
373 
374 #ifdef CONFIG_DEBUG_VM
375 void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
376 {
377 	pgd_t *pgd;
378 	p4d_t *p4d;
379 	pud_t *pud;
380 	pmd_t *pmd;
381 	pte_t *pte;
382 	spinlock_t *ptl;
383 
384 	if (mm == &init_mm)
385 		return;
386 	pgd = mm->pgd + pgd_index(addr);
387 	BUG_ON(pgd_none(*pgd));
388 	p4d = p4d_offset(pgd, addr);
389 	BUG_ON(p4d_none(*p4d));
390 	pud = pud_offset(p4d, addr);
391 	BUG_ON(pud_none(*pud));
392 	pmd = pmd_offset(pud, addr);
393 	/*
394 	 * khugepaged to collapse normal pages to hugepage, first set
395 	 * pmd to none to force page fault/gup to take mmap_lock. After
396 	 * pmd is set to none, we do a pte_clear which does this assertion
397 	 * so if we find pmd none, return.
398 	 */
399 	if (pmd_none(*pmd))
400 		return;
401 	pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl);
402 	BUG_ON(!pte);
403 	assert_spin_locked(ptl);
404 	pte_unmap(pte);
405 }
406 #endif /* CONFIG_DEBUG_VM */
407 
408 unsigned long vmalloc_to_phys(void *va)
409 {
410 	unsigned long pfn = vmalloc_to_pfn(va);
411 
412 	BUG_ON(!pfn);
413 	return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
414 }
415 EXPORT_SYMBOL_GPL(vmalloc_to_phys);
416 
417 /*
418  * We have 3 cases for pgds and pmds:
419  * (1) invalid (all zeroes)
420  * (2) pointer to next table, as normal; bottom 6 bits == 0
421  * (3) leaf pte for huge page _PAGE_PTE set
422  *
423  * So long as we atomically load page table pointers we are safe against teardown,
424  * we can follow the address down to the page and take a ref on it.
425  * This function need to be called with interrupts disabled. We use this variant
426  * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
427  */
428 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
429 			bool *is_thp, unsigned *hpage_shift)
430 {
431 	pgd_t *pgdp;
432 #ifdef CONFIG_PPC64
433 	p4d_t p4d, *p4dp;
434 	pud_t pud, *pudp;
435 #endif
436 	pmd_t pmd, *pmdp;
437 	pte_t *ret_pte;
438 	unsigned pdshift;
439 
440 	if (hpage_shift)
441 		*hpage_shift = 0;
442 
443 	if (is_thp)
444 		*is_thp = false;
445 
446 	/*
447 	 * Always operate on the local stack value. This make sure the
448 	 * value don't get updated by a parallel THP split/collapse,
449 	 * page fault or a page unmap. The return pte_t * is still not
450 	 * stable. So should be checked there for above conditions.
451 	 * Top level is an exception because it is folded into p4d.
452 	 *
453 	 * On PPC32, P4D/PUD/PMD are folded into PGD so go straight to
454 	 * PMD level.
455 	 */
456 	pgdp = pgdir + pgd_index(ea);
457 #ifdef CONFIG_PPC64
458 	p4dp = p4d_offset(pgdp, ea);
459 	p4d  = READ_ONCE(*p4dp);
460 	pdshift = P4D_SHIFT;
461 
462 	if (p4d_none(p4d))
463 		return NULL;
464 
465 	if (p4d_leaf(p4d)) {
466 		ret_pte = (pte_t *)p4dp;
467 		goto out;
468 	}
469 
470 	/*
471 	 * Even if we end up with an unmap, the pgtable will not
472 	 * be freed, because we do an rcu free and here we are
473 	 * irq disabled
474 	 */
475 	pdshift = PUD_SHIFT;
476 	pudp = pud_offset(&p4d, ea);
477 	pud  = READ_ONCE(*pudp);
478 
479 	if (pud_none(pud))
480 		return NULL;
481 
482 	if (pud_leaf(pud)) {
483 		ret_pte = (pte_t *)pudp;
484 		goto out;
485 	}
486 
487 	pmdp = pmd_offset(&pud, ea);
488 #else
489 	pmdp = pmd_offset(pud_offset(p4d_offset(pgdp, ea), ea), ea);
490 #endif
491 	pdshift = PMD_SHIFT;
492 	pmd  = READ_ONCE(*pmdp);
493 
494 	/*
495 	 * A hugepage collapse is captured by this condition, see
496 	 * pmdp_collapse_flush.
497 	 */
498 	if (pmd_none(pmd))
499 		return NULL;
500 
501 #ifdef CONFIG_PPC_BOOK3S_64
502 	/*
503 	 * A hugepage split is captured by this condition, see
504 	 * pmdp_invalidate.
505 	 *
506 	 * Huge page modification can be caught here too.
507 	 */
508 	if (pmd_is_serializing(pmd))
509 		return NULL;
510 #endif
511 
512 	if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
513 		if (is_thp)
514 			*is_thp = true;
515 		ret_pte = (pte_t *)pmdp;
516 		goto out;
517 	}
518 
519 	if (pmd_leaf(pmd)) {
520 		ret_pte = (pte_t *)pmdp;
521 		goto out;
522 	}
523 
524 	return pte_offset_kernel(&pmd, ea);
525 
526 out:
527 	if (hpage_shift)
528 		*hpage_shift = pdshift;
529 	return ret_pte;
530 }
531 EXPORT_SYMBOL_GPL(__find_linux_pte);
532 
533 /* Note due to the way vm flags are laid out, the bits are XWR */
534 const pgprot_t protection_map[16] = {
535 	[VM_NONE]					= PAGE_NONE,
536 	[VM_READ]					= PAGE_READONLY,
537 	[VM_WRITE]					= PAGE_COPY,
538 	[VM_WRITE | VM_READ]				= PAGE_COPY,
539 	[VM_EXEC]					= PAGE_EXECONLY_X,
540 	[VM_EXEC | VM_READ]				= PAGE_READONLY_X,
541 	[VM_EXEC | VM_WRITE]				= PAGE_COPY_X,
542 	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_X,
543 	[VM_SHARED]					= PAGE_NONE,
544 	[VM_SHARED | VM_READ]				= PAGE_READONLY,
545 	[VM_SHARED | VM_WRITE]				= PAGE_SHARED,
546 	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
547 	[VM_SHARED | VM_EXEC]				= PAGE_EXECONLY_X,
548 	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_READONLY_X,
549 	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_SHARED_X,
550 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_SHARED_X
551 };
552 
553 #ifndef CONFIG_PPC_BOOK3S_64
554 DECLARE_VM_GET_PAGE_PROT
555 #endif
556