xref: /linux/arch/powerpc/mm/pgtable.c (revision 981368e1440b76f68b1ac8f5fb14e739f80ecc4e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * This file contains common routines for dealing with free of page tables
4  * Along with common page table handling code
5  *
6  *  Derived from arch/powerpc/mm/tlb_64.c:
7  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
8  *
9  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
10  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
11  *    Copyright (C) 1996 Paul Mackerras
12  *
13  *  Derived from "arch/i386/mm/init.c"
14  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
15  *
16  *  Dave Engebretsen <engebret@us.ibm.com>
17  *      Rework for PPC64 port.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/percpu.h>
24 #include <linux/hardirq.h>
25 #include <linux/hugetlb.h>
26 #include <asm/tlbflush.h>
27 #include <asm/tlb.h>
28 #include <asm/hugetlb.h>
29 #include <asm/pte-walk.h>
30 
31 #ifdef CONFIG_PPC64
32 #define PGD_ALIGN (sizeof(pgd_t) * MAX_PTRS_PER_PGD)
33 #else
34 #define PGD_ALIGN PAGE_SIZE
35 #endif
36 
37 pgd_t swapper_pg_dir[MAX_PTRS_PER_PGD] __section(".bss..page_aligned") __aligned(PGD_ALIGN);
38 
39 static inline int is_exec_fault(void)
40 {
41 	return current->thread.regs && TRAP(current->thread.regs) == 0x400;
42 }
43 
44 /* We only try to do i/d cache coherency on stuff that looks like
45  * reasonably "normal" PTEs. We currently require a PTE to be present
46  * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
47  * on userspace PTEs
48  */
49 static inline int pte_looks_normal(pte_t pte)
50 {
51 
52 	if (pte_present(pte) && !pte_special(pte)) {
53 		if (pte_ci(pte))
54 			return 0;
55 		if (pte_user(pte))
56 			return 1;
57 	}
58 	return 0;
59 }
60 
61 static struct folio *maybe_pte_to_folio(pte_t pte)
62 {
63 	unsigned long pfn = pte_pfn(pte);
64 	struct page *page;
65 
66 	if (unlikely(!pfn_valid(pfn)))
67 		return NULL;
68 	page = pfn_to_page(pfn);
69 	if (PageReserved(page))
70 		return NULL;
71 	return page_folio(page);
72 }
73 
74 #ifdef CONFIG_PPC_BOOK3S
75 
76 /* Server-style MMU handles coherency when hashing if HW exec permission
77  * is supposed per page (currently 64-bit only). If not, then, we always
78  * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
79  * support falls into the same category.
80  */
81 
82 static pte_t set_pte_filter_hash(pte_t pte)
83 {
84 	pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
85 	if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
86 				       cpu_has_feature(CPU_FTR_NOEXECUTE))) {
87 		struct folio *folio = maybe_pte_to_folio(pte);
88 		if (!folio)
89 			return pte;
90 		if (!test_bit(PG_dcache_clean, &folio->flags)) {
91 			flush_dcache_icache_folio(folio);
92 			set_bit(PG_dcache_clean, &folio->flags);
93 		}
94 	}
95 	return pte;
96 }
97 
98 #else /* CONFIG_PPC_BOOK3S */
99 
100 static pte_t set_pte_filter_hash(pte_t pte) { return pte; }
101 
102 #endif /* CONFIG_PPC_BOOK3S */
103 
104 /* Embedded type MMU with HW exec support. This is a bit more complicated
105  * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
106  * instead we "filter out" the exec permission for non clean pages.
107  */
108 static inline pte_t set_pte_filter(pte_t pte)
109 {
110 	struct folio *folio;
111 
112 	if (radix_enabled())
113 		return pte;
114 
115 	if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
116 		return set_pte_filter_hash(pte);
117 
118 	/* No exec permission in the first place, move on */
119 	if (!pte_exec(pte) || !pte_looks_normal(pte))
120 		return pte;
121 
122 	/* If you set _PAGE_EXEC on weird pages you're on your own */
123 	folio = maybe_pte_to_folio(pte);
124 	if (unlikely(!folio))
125 		return pte;
126 
127 	/* If the page clean, we move on */
128 	if (test_bit(PG_dcache_clean, &folio->flags))
129 		return pte;
130 
131 	/* If it's an exec fault, we flush the cache and make it clean */
132 	if (is_exec_fault()) {
133 		flush_dcache_icache_folio(folio);
134 		set_bit(PG_dcache_clean, &folio->flags);
135 		return pte;
136 	}
137 
138 	/* Else, we filter out _PAGE_EXEC */
139 	return pte_exprotect(pte);
140 }
141 
142 static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
143 				     int dirty)
144 {
145 	struct folio *folio;
146 
147 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64))
148 		return pte;
149 
150 	if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
151 		return pte;
152 
153 	/* So here, we only care about exec faults, as we use them
154 	 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
155 	 * if necessary. Also if _PAGE_EXEC is already set, same deal,
156 	 * we just bail out
157 	 */
158 	if (dirty || pte_exec(pte) || !is_exec_fault())
159 		return pte;
160 
161 #ifdef CONFIG_DEBUG_VM
162 	/* So this is an exec fault, _PAGE_EXEC is not set. If it was
163 	 * an error we would have bailed out earlier in do_page_fault()
164 	 * but let's make sure of it
165 	 */
166 	if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
167 		return pte;
168 #endif /* CONFIG_DEBUG_VM */
169 
170 	/* If you set _PAGE_EXEC on weird pages you're on your own */
171 	folio = maybe_pte_to_folio(pte);
172 	if (unlikely(!folio))
173 		goto bail;
174 
175 	/* If the page is already clean, we move on */
176 	if (test_bit(PG_dcache_clean, &folio->flags))
177 		goto bail;
178 
179 	/* Clean the page and set PG_dcache_clean */
180 	flush_dcache_icache_folio(folio);
181 	set_bit(PG_dcache_clean, &folio->flags);
182 
183  bail:
184 	return pte_mkexec(pte);
185 }
186 
187 /*
188  * set_pte stores a linux PTE into the linux page table.
189  */
190 void set_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
191 		pte_t pte, unsigned int nr)
192 {
193 	/*
194 	 * Make sure hardware valid bit is not set. We don't do
195 	 * tlb flush for this update.
196 	 */
197 	VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
198 
199 	/* Note: mm->context.id might not yet have been assigned as
200 	 * this context might not have been activated yet when this
201 	 * is called.
202 	 */
203 	pte = set_pte_filter(pte);
204 
205 	/* Perform the setting of the PTE */
206 	arch_enter_lazy_mmu_mode();
207 	for (;;) {
208 		__set_pte_at(mm, addr, ptep, pte, 0);
209 		if (--nr == 0)
210 			break;
211 		ptep++;
212 		pte = __pte(pte_val(pte) + (1UL << PTE_RPN_SHIFT));
213 		addr += PAGE_SIZE;
214 	}
215 	arch_leave_lazy_mmu_mode();
216 }
217 
218 void unmap_kernel_page(unsigned long va)
219 {
220 	pmd_t *pmdp = pmd_off_k(va);
221 	pte_t *ptep = pte_offset_kernel(pmdp, va);
222 
223 	pte_clear(&init_mm, va, ptep);
224 	flush_tlb_kernel_range(va, va + PAGE_SIZE);
225 }
226 
227 /*
228  * This is called when relaxing access to a PTE. It's also called in the page
229  * fault path when we don't hit any of the major fault cases, ie, a minor
230  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
231  * handled those two for us, we additionally deal with missing execute
232  * permission here on some processors
233  */
234 int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
235 			  pte_t *ptep, pte_t entry, int dirty)
236 {
237 	int changed;
238 	entry = set_access_flags_filter(entry, vma, dirty);
239 	changed = !pte_same(*(ptep), entry);
240 	if (changed) {
241 		assert_pte_locked(vma->vm_mm, address);
242 		__ptep_set_access_flags(vma, ptep, entry,
243 					address, mmu_virtual_psize);
244 	}
245 	return changed;
246 }
247 
248 #ifdef CONFIG_HUGETLB_PAGE
249 int huge_ptep_set_access_flags(struct vm_area_struct *vma,
250 			       unsigned long addr, pte_t *ptep,
251 			       pte_t pte, int dirty)
252 {
253 #ifdef HUGETLB_NEED_PRELOAD
254 	/*
255 	 * The "return 1" forces a call of update_mmu_cache, which will write a
256 	 * TLB entry.  Without this, platforms that don't do a write of the TLB
257 	 * entry in the TLB miss handler asm will fault ad infinitum.
258 	 */
259 	ptep_set_access_flags(vma, addr, ptep, pte, dirty);
260 	return 1;
261 #else
262 	int changed, psize;
263 
264 	pte = set_access_flags_filter(pte, vma, dirty);
265 	changed = !pte_same(*(ptep), pte);
266 	if (changed) {
267 
268 #ifdef CONFIG_PPC_BOOK3S_64
269 		struct hstate *h = hstate_vma(vma);
270 
271 		psize = hstate_get_psize(h);
272 #ifdef CONFIG_DEBUG_VM
273 		assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep));
274 #endif
275 
276 #else
277 		/*
278 		 * Not used on non book3s64 platforms.
279 		 * 8xx compares it with mmu_virtual_psize to
280 		 * know if it is a huge page or not.
281 		 */
282 		psize = MMU_PAGE_COUNT;
283 #endif
284 		__ptep_set_access_flags(vma, ptep, pte, addr, psize);
285 	}
286 	return changed;
287 #endif
288 }
289 
290 #if defined(CONFIG_PPC_8xx)
291 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte)
292 {
293 	pmd_t *pmd = pmd_off(mm, addr);
294 	pte_basic_t val;
295 	pte_basic_t *entry = (pte_basic_t *)ptep;
296 	int num, i;
297 
298 	/*
299 	 * Make sure hardware valid bit is not set. We don't do
300 	 * tlb flush for this update.
301 	 */
302 	VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
303 
304 	pte = set_pte_filter(pte);
305 
306 	val = pte_val(pte);
307 
308 	num = number_of_cells_per_pte(pmd, val, 1);
309 
310 	for (i = 0; i < num; i++, entry++, val += SZ_4K)
311 		*entry = val;
312 }
313 #endif
314 #endif /* CONFIG_HUGETLB_PAGE */
315 
316 #ifdef CONFIG_DEBUG_VM
317 void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
318 {
319 	pgd_t *pgd;
320 	p4d_t *p4d;
321 	pud_t *pud;
322 	pmd_t *pmd;
323 	pte_t *pte;
324 	spinlock_t *ptl;
325 
326 	if (mm == &init_mm)
327 		return;
328 	pgd = mm->pgd + pgd_index(addr);
329 	BUG_ON(pgd_none(*pgd));
330 	p4d = p4d_offset(pgd, addr);
331 	BUG_ON(p4d_none(*p4d));
332 	pud = pud_offset(p4d, addr);
333 	BUG_ON(pud_none(*pud));
334 	pmd = pmd_offset(pud, addr);
335 	/*
336 	 * khugepaged to collapse normal pages to hugepage, first set
337 	 * pmd to none to force page fault/gup to take mmap_lock. After
338 	 * pmd is set to none, we do a pte_clear which does this assertion
339 	 * so if we find pmd none, return.
340 	 */
341 	if (pmd_none(*pmd))
342 		return;
343 	pte = pte_offset_map_nolock(mm, pmd, addr, &ptl);
344 	BUG_ON(!pte);
345 	assert_spin_locked(ptl);
346 	pte_unmap(pte);
347 }
348 #endif /* CONFIG_DEBUG_VM */
349 
350 unsigned long vmalloc_to_phys(void *va)
351 {
352 	unsigned long pfn = vmalloc_to_pfn(va);
353 
354 	BUG_ON(!pfn);
355 	return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
356 }
357 EXPORT_SYMBOL_GPL(vmalloc_to_phys);
358 
359 /*
360  * We have 4 cases for pgds and pmds:
361  * (1) invalid (all zeroes)
362  * (2) pointer to next table, as normal; bottom 6 bits == 0
363  * (3) leaf pte for huge page _PAGE_PTE set
364  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
365  *
366  * So long as we atomically load page table pointers we are safe against teardown,
367  * we can follow the address down to the page and take a ref on it.
368  * This function need to be called with interrupts disabled. We use this variant
369  * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
370  */
371 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
372 			bool *is_thp, unsigned *hpage_shift)
373 {
374 	pgd_t *pgdp;
375 	p4d_t p4d, *p4dp;
376 	pud_t pud, *pudp;
377 	pmd_t pmd, *pmdp;
378 	pte_t *ret_pte;
379 	hugepd_t *hpdp = NULL;
380 	unsigned pdshift;
381 
382 	if (hpage_shift)
383 		*hpage_shift = 0;
384 
385 	if (is_thp)
386 		*is_thp = false;
387 
388 	/*
389 	 * Always operate on the local stack value. This make sure the
390 	 * value don't get updated by a parallel THP split/collapse,
391 	 * page fault or a page unmap. The return pte_t * is still not
392 	 * stable. So should be checked there for above conditions.
393 	 * Top level is an exception because it is folded into p4d.
394 	 */
395 	pgdp = pgdir + pgd_index(ea);
396 	p4dp = p4d_offset(pgdp, ea);
397 	p4d  = READ_ONCE(*p4dp);
398 	pdshift = P4D_SHIFT;
399 
400 	if (p4d_none(p4d))
401 		return NULL;
402 
403 	if (p4d_is_leaf(p4d)) {
404 		ret_pte = (pte_t *)p4dp;
405 		goto out;
406 	}
407 
408 	if (is_hugepd(__hugepd(p4d_val(p4d)))) {
409 		hpdp = (hugepd_t *)&p4d;
410 		goto out_huge;
411 	}
412 
413 	/*
414 	 * Even if we end up with an unmap, the pgtable will not
415 	 * be freed, because we do an rcu free and here we are
416 	 * irq disabled
417 	 */
418 	pdshift = PUD_SHIFT;
419 	pudp = pud_offset(&p4d, ea);
420 	pud  = READ_ONCE(*pudp);
421 
422 	if (pud_none(pud))
423 		return NULL;
424 
425 	if (pud_is_leaf(pud)) {
426 		ret_pte = (pte_t *)pudp;
427 		goto out;
428 	}
429 
430 	if (is_hugepd(__hugepd(pud_val(pud)))) {
431 		hpdp = (hugepd_t *)&pud;
432 		goto out_huge;
433 	}
434 
435 	pdshift = PMD_SHIFT;
436 	pmdp = pmd_offset(&pud, ea);
437 	pmd  = READ_ONCE(*pmdp);
438 
439 	/*
440 	 * A hugepage collapse is captured by this condition, see
441 	 * pmdp_collapse_flush.
442 	 */
443 	if (pmd_none(pmd))
444 		return NULL;
445 
446 #ifdef CONFIG_PPC_BOOK3S_64
447 	/*
448 	 * A hugepage split is captured by this condition, see
449 	 * pmdp_invalidate.
450 	 *
451 	 * Huge page modification can be caught here too.
452 	 */
453 	if (pmd_is_serializing(pmd))
454 		return NULL;
455 #endif
456 
457 	if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
458 		if (is_thp)
459 			*is_thp = true;
460 		ret_pte = (pte_t *)pmdp;
461 		goto out;
462 	}
463 
464 	if (pmd_is_leaf(pmd)) {
465 		ret_pte = (pte_t *)pmdp;
466 		goto out;
467 	}
468 
469 	if (is_hugepd(__hugepd(pmd_val(pmd)))) {
470 		hpdp = (hugepd_t *)&pmd;
471 		goto out_huge;
472 	}
473 
474 	return pte_offset_kernel(&pmd, ea);
475 
476 out_huge:
477 	if (!hpdp)
478 		return NULL;
479 
480 	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
481 	pdshift = hugepd_shift(*hpdp);
482 out:
483 	if (hpage_shift)
484 		*hpage_shift = pdshift;
485 	return ret_pte;
486 }
487 EXPORT_SYMBOL_GPL(__find_linux_pte);
488 
489 /* Note due to the way vm flags are laid out, the bits are XWR */
490 const pgprot_t protection_map[16] = {
491 	[VM_NONE]					= PAGE_NONE,
492 	[VM_READ]					= PAGE_READONLY,
493 	[VM_WRITE]					= PAGE_COPY,
494 	[VM_WRITE | VM_READ]				= PAGE_COPY,
495 	[VM_EXEC]					= PAGE_READONLY_X,
496 	[VM_EXEC | VM_READ]				= PAGE_READONLY_X,
497 	[VM_EXEC | VM_WRITE]				= PAGE_COPY_X,
498 	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_X,
499 	[VM_SHARED]					= PAGE_NONE,
500 	[VM_SHARED | VM_READ]				= PAGE_READONLY,
501 	[VM_SHARED | VM_WRITE]				= PAGE_SHARED,
502 	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
503 	[VM_SHARED | VM_EXEC]				= PAGE_READONLY_X,
504 	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_READONLY_X,
505 	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_SHARED_X,
506 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_SHARED_X
507 };
508 
509 #ifndef CONFIG_PPC_BOOK3S_64
510 DECLARE_VM_GET_PAGE_PROT
511 #endif
512