xref: /linux/arch/powerpc/mm/pgtable.c (revision 59fff63cc2b75dcfe08f9eeb4b2187d73e53843d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * This file contains common routines for dealing with free of page tables
4  * Along with common page table handling code
5  *
6  *  Derived from arch/powerpc/mm/tlb_64.c:
7  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
8  *
9  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
10  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
11  *    Copyright (C) 1996 Paul Mackerras
12  *
13  *  Derived from "arch/i386/mm/init.c"
14  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
15  *
16  *  Dave Engebretsen <engebret@us.ibm.com>
17  *      Rework for PPC64 port.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/percpu.h>
24 #include <linux/hardirq.h>
25 #include <linux/hugetlb.h>
26 #include <asm/tlbflush.h>
27 #include <asm/tlb.h>
28 #include <asm/hugetlb.h>
29 #include <asm/pte-walk.h>
30 
31 #ifdef CONFIG_PPC64
32 #define PGD_ALIGN (sizeof(pgd_t) * MAX_PTRS_PER_PGD)
33 #else
34 #define PGD_ALIGN PAGE_SIZE
35 #endif
36 
37 pgd_t swapper_pg_dir[MAX_PTRS_PER_PGD] __section(".bss..page_aligned") __aligned(PGD_ALIGN);
38 
39 static inline int is_exec_fault(void)
40 {
41 	return current->thread.regs && TRAP(current->thread.regs) == 0x400;
42 }
43 
44 /* We only try to do i/d cache coherency on stuff that looks like
45  * reasonably "normal" PTEs. We currently require a PTE to be present
46  * and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
47  * on userspace PTEs
48  */
49 static inline int pte_looks_normal(pte_t pte)
50 {
51 
52 	if (pte_present(pte) && !pte_special(pte)) {
53 		if (pte_ci(pte))
54 			return 0;
55 		if (pte_user(pte))
56 			return 1;
57 	}
58 	return 0;
59 }
60 
61 static struct folio *maybe_pte_to_folio(pte_t pte)
62 {
63 	unsigned long pfn = pte_pfn(pte);
64 	struct page *page;
65 
66 	if (unlikely(!pfn_valid(pfn)))
67 		return NULL;
68 	page = pfn_to_page(pfn);
69 	if (PageReserved(page))
70 		return NULL;
71 	return page_folio(page);
72 }
73 
74 #ifdef CONFIG_PPC_BOOK3S
75 
76 /* Server-style MMU handles coherency when hashing if HW exec permission
77  * is supposed per page (currently 64-bit only). If not, then, we always
78  * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
79  * support falls into the same category.
80  */
81 
82 static pte_t set_pte_filter_hash(pte_t pte)
83 {
84 	pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
85 	if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
86 				       cpu_has_feature(CPU_FTR_NOEXECUTE))) {
87 		struct folio *folio = maybe_pte_to_folio(pte);
88 		if (!folio)
89 			return pte;
90 		if (!test_bit(PG_dcache_clean, &folio->flags)) {
91 			flush_dcache_icache_folio(folio);
92 			set_bit(PG_dcache_clean, &folio->flags);
93 		}
94 	}
95 	return pte;
96 }
97 
98 #else /* CONFIG_PPC_BOOK3S */
99 
100 static pte_t set_pte_filter_hash(pte_t pte) { return pte; }
101 
102 #endif /* CONFIG_PPC_BOOK3S */
103 
104 /* Embedded type MMU with HW exec support. This is a bit more complicated
105  * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
106  * instead we "filter out" the exec permission for non clean pages.
107  *
108  * This is also called once for the folio. So only work with folio->flags here.
109  */
110 static inline pte_t set_pte_filter(pte_t pte)
111 {
112 	struct folio *folio;
113 
114 	if (radix_enabled())
115 		return pte;
116 
117 	if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
118 		return set_pte_filter_hash(pte);
119 
120 	/* No exec permission in the first place, move on */
121 	if (!pte_exec(pte) || !pte_looks_normal(pte))
122 		return pte;
123 
124 	/* If you set _PAGE_EXEC on weird pages you're on your own */
125 	folio = maybe_pte_to_folio(pte);
126 	if (unlikely(!folio))
127 		return pte;
128 
129 	/* If the page clean, we move on */
130 	if (test_bit(PG_dcache_clean, &folio->flags))
131 		return pte;
132 
133 	/* If it's an exec fault, we flush the cache and make it clean */
134 	if (is_exec_fault()) {
135 		flush_dcache_icache_folio(folio);
136 		set_bit(PG_dcache_clean, &folio->flags);
137 		return pte;
138 	}
139 
140 	/* Else, we filter out _PAGE_EXEC */
141 	return pte_exprotect(pte);
142 }
143 
144 static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
145 				     int dirty)
146 {
147 	struct folio *folio;
148 
149 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64))
150 		return pte;
151 
152 	if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
153 		return pte;
154 
155 	/* So here, we only care about exec faults, as we use them
156 	 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
157 	 * if necessary. Also if _PAGE_EXEC is already set, same deal,
158 	 * we just bail out
159 	 */
160 	if (dirty || pte_exec(pte) || !is_exec_fault())
161 		return pte;
162 
163 #ifdef CONFIG_DEBUG_VM
164 	/* So this is an exec fault, _PAGE_EXEC is not set. If it was
165 	 * an error we would have bailed out earlier in do_page_fault()
166 	 * but let's make sure of it
167 	 */
168 	if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
169 		return pte;
170 #endif /* CONFIG_DEBUG_VM */
171 
172 	/* If you set _PAGE_EXEC on weird pages you're on your own */
173 	folio = maybe_pte_to_folio(pte);
174 	if (unlikely(!folio))
175 		goto bail;
176 
177 	/* If the page is already clean, we move on */
178 	if (test_bit(PG_dcache_clean, &folio->flags))
179 		goto bail;
180 
181 	/* Clean the page and set PG_dcache_clean */
182 	flush_dcache_icache_folio(folio);
183 	set_bit(PG_dcache_clean, &folio->flags);
184 
185  bail:
186 	return pte_mkexec(pte);
187 }
188 
189 /*
190  * set_pte stores a linux PTE into the linux page table.
191  */
192 void set_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
193 		pte_t pte, unsigned int nr)
194 {
195 
196 	/* Note: mm->context.id might not yet have been assigned as
197 	 * this context might not have been activated yet when this
198 	 * is called. Filter the pte value and use the filtered value
199 	 * to setup all the ptes in the range.
200 	 */
201 	pte = set_pte_filter(pte);
202 
203 	/*
204 	 * We don't need to call arch_enter/leave_lazy_mmu_mode()
205 	 * because we expect set_ptes to be only be used on not present
206 	 * and not hw_valid ptes. Hence there is no translation cache flush
207 	 * involved that need to be batched.
208 	 */
209 	for (;;) {
210 
211 		/*
212 		 * Make sure hardware valid bit is not set. We don't do
213 		 * tlb flush for this update.
214 		 */
215 		VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
216 
217 		/* Perform the setting of the PTE */
218 		__set_pte_at(mm, addr, ptep, pte, 0);
219 		if (--nr == 0)
220 			break;
221 		ptep++;
222 		addr += PAGE_SIZE;
223 		/*
224 		 * increment the pfn.
225 		 */
226 		pte = pfn_pte(pte_pfn(pte) + 1, pte_pgprot((pte)));
227 	}
228 }
229 
230 void unmap_kernel_page(unsigned long va)
231 {
232 	pmd_t *pmdp = pmd_off_k(va);
233 	pte_t *ptep = pte_offset_kernel(pmdp, va);
234 
235 	pte_clear(&init_mm, va, ptep);
236 	flush_tlb_kernel_range(va, va + PAGE_SIZE);
237 }
238 
239 /*
240  * This is called when relaxing access to a PTE. It's also called in the page
241  * fault path when we don't hit any of the major fault cases, ie, a minor
242  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
243  * handled those two for us, we additionally deal with missing execute
244  * permission here on some processors
245  */
246 int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
247 			  pte_t *ptep, pte_t entry, int dirty)
248 {
249 	int changed;
250 	entry = set_access_flags_filter(entry, vma, dirty);
251 	changed = !pte_same(*(ptep), entry);
252 	if (changed) {
253 		assert_pte_locked(vma->vm_mm, address);
254 		__ptep_set_access_flags(vma, ptep, entry,
255 					address, mmu_virtual_psize);
256 	}
257 	return changed;
258 }
259 
260 #ifdef CONFIG_HUGETLB_PAGE
261 int huge_ptep_set_access_flags(struct vm_area_struct *vma,
262 			       unsigned long addr, pte_t *ptep,
263 			       pte_t pte, int dirty)
264 {
265 #ifdef HUGETLB_NEED_PRELOAD
266 	/*
267 	 * The "return 1" forces a call of update_mmu_cache, which will write a
268 	 * TLB entry.  Without this, platforms that don't do a write of the TLB
269 	 * entry in the TLB miss handler asm will fault ad infinitum.
270 	 */
271 	ptep_set_access_flags(vma, addr, ptep, pte, dirty);
272 	return 1;
273 #else
274 	int changed, psize;
275 
276 	pte = set_access_flags_filter(pte, vma, dirty);
277 	changed = !pte_same(*(ptep), pte);
278 	if (changed) {
279 
280 #ifdef CONFIG_PPC_BOOK3S_64
281 		struct hstate *h = hstate_vma(vma);
282 
283 		psize = hstate_get_psize(h);
284 #ifdef CONFIG_DEBUG_VM
285 		assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep));
286 #endif
287 
288 #else
289 		/*
290 		 * Not used on non book3s64 platforms.
291 		 * 8xx compares it with mmu_virtual_psize to
292 		 * know if it is a huge page or not.
293 		 */
294 		psize = MMU_PAGE_COUNT;
295 #endif
296 		__ptep_set_access_flags(vma, ptep, pte, addr, psize);
297 	}
298 	return changed;
299 #endif
300 }
301 
302 #if defined(CONFIG_PPC_8xx)
303 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
304 		     pte_t pte, unsigned long sz)
305 {
306 	pmd_t *pmd = pmd_off(mm, addr);
307 	pte_basic_t val;
308 	pte_basic_t *entry = (pte_basic_t *)ptep;
309 	int num, i;
310 
311 	/*
312 	 * Make sure hardware valid bit is not set. We don't do
313 	 * tlb flush for this update.
314 	 */
315 	VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
316 
317 	pte = set_pte_filter(pte);
318 
319 	val = pte_val(pte);
320 
321 	num = number_of_cells_per_pte(pmd, val, 1);
322 
323 	for (i = 0; i < num; i++, entry++, val += SZ_4K)
324 		*entry = val;
325 }
326 #endif
327 #endif /* CONFIG_HUGETLB_PAGE */
328 
329 #ifdef CONFIG_DEBUG_VM
330 void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
331 {
332 	pgd_t *pgd;
333 	p4d_t *p4d;
334 	pud_t *pud;
335 	pmd_t *pmd;
336 	pte_t *pte;
337 	spinlock_t *ptl;
338 
339 	if (mm == &init_mm)
340 		return;
341 	pgd = mm->pgd + pgd_index(addr);
342 	BUG_ON(pgd_none(*pgd));
343 	p4d = p4d_offset(pgd, addr);
344 	BUG_ON(p4d_none(*p4d));
345 	pud = pud_offset(p4d, addr);
346 	BUG_ON(pud_none(*pud));
347 	pmd = pmd_offset(pud, addr);
348 	/*
349 	 * khugepaged to collapse normal pages to hugepage, first set
350 	 * pmd to none to force page fault/gup to take mmap_lock. After
351 	 * pmd is set to none, we do a pte_clear which does this assertion
352 	 * so if we find pmd none, return.
353 	 */
354 	if (pmd_none(*pmd))
355 		return;
356 	pte = pte_offset_map_nolock(mm, pmd, addr, &ptl);
357 	BUG_ON(!pte);
358 	assert_spin_locked(ptl);
359 	pte_unmap(pte);
360 }
361 #endif /* CONFIG_DEBUG_VM */
362 
363 unsigned long vmalloc_to_phys(void *va)
364 {
365 	unsigned long pfn = vmalloc_to_pfn(va);
366 
367 	BUG_ON(!pfn);
368 	return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
369 }
370 EXPORT_SYMBOL_GPL(vmalloc_to_phys);
371 
372 /*
373  * We have 4 cases for pgds and pmds:
374  * (1) invalid (all zeroes)
375  * (2) pointer to next table, as normal; bottom 6 bits == 0
376  * (3) leaf pte for huge page _PAGE_PTE set
377  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
378  *
379  * So long as we atomically load page table pointers we are safe against teardown,
380  * we can follow the address down to the page and take a ref on it.
381  * This function need to be called with interrupts disabled. We use this variant
382  * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
383  */
384 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
385 			bool *is_thp, unsigned *hpage_shift)
386 {
387 	pgd_t *pgdp;
388 	p4d_t p4d, *p4dp;
389 	pud_t pud, *pudp;
390 	pmd_t pmd, *pmdp;
391 	pte_t *ret_pte;
392 	hugepd_t *hpdp = NULL;
393 	unsigned pdshift;
394 
395 	if (hpage_shift)
396 		*hpage_shift = 0;
397 
398 	if (is_thp)
399 		*is_thp = false;
400 
401 	/*
402 	 * Always operate on the local stack value. This make sure the
403 	 * value don't get updated by a parallel THP split/collapse,
404 	 * page fault or a page unmap. The return pte_t * is still not
405 	 * stable. So should be checked there for above conditions.
406 	 * Top level is an exception because it is folded into p4d.
407 	 */
408 	pgdp = pgdir + pgd_index(ea);
409 	p4dp = p4d_offset(pgdp, ea);
410 	p4d  = READ_ONCE(*p4dp);
411 	pdshift = P4D_SHIFT;
412 
413 	if (p4d_none(p4d))
414 		return NULL;
415 
416 	if (p4d_is_leaf(p4d)) {
417 		ret_pte = (pte_t *)p4dp;
418 		goto out;
419 	}
420 
421 	if (is_hugepd(__hugepd(p4d_val(p4d)))) {
422 		hpdp = (hugepd_t *)&p4d;
423 		goto out_huge;
424 	}
425 
426 	/*
427 	 * Even if we end up with an unmap, the pgtable will not
428 	 * be freed, because we do an rcu free and here we are
429 	 * irq disabled
430 	 */
431 	pdshift = PUD_SHIFT;
432 	pudp = pud_offset(&p4d, ea);
433 	pud  = READ_ONCE(*pudp);
434 
435 	if (pud_none(pud))
436 		return NULL;
437 
438 	if (pud_is_leaf(pud)) {
439 		ret_pte = (pte_t *)pudp;
440 		goto out;
441 	}
442 
443 	if (is_hugepd(__hugepd(pud_val(pud)))) {
444 		hpdp = (hugepd_t *)&pud;
445 		goto out_huge;
446 	}
447 
448 	pdshift = PMD_SHIFT;
449 	pmdp = pmd_offset(&pud, ea);
450 	pmd  = READ_ONCE(*pmdp);
451 
452 	/*
453 	 * A hugepage collapse is captured by this condition, see
454 	 * pmdp_collapse_flush.
455 	 */
456 	if (pmd_none(pmd))
457 		return NULL;
458 
459 #ifdef CONFIG_PPC_BOOK3S_64
460 	/*
461 	 * A hugepage split is captured by this condition, see
462 	 * pmdp_invalidate.
463 	 *
464 	 * Huge page modification can be caught here too.
465 	 */
466 	if (pmd_is_serializing(pmd))
467 		return NULL;
468 #endif
469 
470 	if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
471 		if (is_thp)
472 			*is_thp = true;
473 		ret_pte = (pte_t *)pmdp;
474 		goto out;
475 	}
476 
477 	if (pmd_is_leaf(pmd)) {
478 		ret_pte = (pte_t *)pmdp;
479 		goto out;
480 	}
481 
482 	if (is_hugepd(__hugepd(pmd_val(pmd)))) {
483 		hpdp = (hugepd_t *)&pmd;
484 		goto out_huge;
485 	}
486 
487 	return pte_offset_kernel(&pmd, ea);
488 
489 out_huge:
490 	if (!hpdp)
491 		return NULL;
492 
493 	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
494 	pdshift = hugepd_shift(*hpdp);
495 out:
496 	if (hpage_shift)
497 		*hpage_shift = pdshift;
498 	return ret_pte;
499 }
500 EXPORT_SYMBOL_GPL(__find_linux_pte);
501 
502 /* Note due to the way vm flags are laid out, the bits are XWR */
503 const pgprot_t protection_map[16] = {
504 	[VM_NONE]					= PAGE_NONE,
505 	[VM_READ]					= PAGE_READONLY,
506 	[VM_WRITE]					= PAGE_COPY,
507 	[VM_WRITE | VM_READ]				= PAGE_COPY,
508 	[VM_EXEC]					= PAGE_READONLY_X,
509 	[VM_EXEC | VM_READ]				= PAGE_READONLY_X,
510 	[VM_EXEC | VM_WRITE]				= PAGE_COPY_X,
511 	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_X,
512 	[VM_SHARED]					= PAGE_NONE,
513 	[VM_SHARED | VM_READ]				= PAGE_READONLY,
514 	[VM_SHARED | VM_WRITE]				= PAGE_SHARED,
515 	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
516 	[VM_SHARED | VM_EXEC]				= PAGE_READONLY_X,
517 	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_READONLY_X,
518 	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_SHARED_X,
519 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_SHARED_X
520 };
521 
522 #ifndef CONFIG_PPC_BOOK3S_64
523 DECLARE_VM_GET_PAGE_PROT
524 #endif
525