1 /* 2 * This file contains common routines for dealing with free of page tables 3 * Along with common page table handling code 4 * 5 * Derived from arch/powerpc/mm/tlb_64.c: 6 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 7 * 8 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) 9 * and Cort Dougan (PReP) (cort@cs.nmt.edu) 10 * Copyright (C) 1996 Paul Mackerras 11 * 12 * Derived from "arch/i386/mm/init.c" 13 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 14 * 15 * Dave Engebretsen <engebret@us.ibm.com> 16 * Rework for PPC64 port. 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 #include <linux/kernel.h> 25 #include <linux/gfp.h> 26 #include <linux/mm.h> 27 #include <linux/init.h> 28 #include <linux/percpu.h> 29 #include <linux/hardirq.h> 30 #include <linux/hugetlb.h> 31 #include <asm/pgalloc.h> 32 #include <asm/tlbflush.h> 33 #include <asm/tlb.h> 34 35 #include "mmu_decl.h" 36 37 static inline int is_exec_fault(void) 38 { 39 return current->thread.regs && TRAP(current->thread.regs) == 0x400; 40 } 41 42 /* We only try to do i/d cache coherency on stuff that looks like 43 * reasonably "normal" PTEs. We currently require a PTE to be present 44 * and we avoid _PAGE_SPECIAL and _PAGE_NO_CACHE. We also only do that 45 * on userspace PTEs 46 */ 47 static inline int pte_looks_normal(pte_t pte) 48 { 49 return (pte_val(pte) & 50 (_PAGE_PRESENT | _PAGE_SPECIAL | _PAGE_NO_CACHE | _PAGE_USER)) == 51 (_PAGE_PRESENT | _PAGE_USER); 52 } 53 54 struct page * maybe_pte_to_page(pte_t pte) 55 { 56 unsigned long pfn = pte_pfn(pte); 57 struct page *page; 58 59 if (unlikely(!pfn_valid(pfn))) 60 return NULL; 61 page = pfn_to_page(pfn); 62 if (PageReserved(page)) 63 return NULL; 64 return page; 65 } 66 67 #if defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 68 69 /* Server-style MMU handles coherency when hashing if HW exec permission 70 * is supposed per page (currently 64-bit only). If not, then, we always 71 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec 72 * support falls into the same category. 73 */ 74 75 static pte_t set_pte_filter(pte_t pte, unsigned long addr) 76 { 77 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); 78 if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) || 79 cpu_has_feature(CPU_FTR_NOEXECUTE))) { 80 struct page *pg = maybe_pte_to_page(pte); 81 if (!pg) 82 return pte; 83 if (!test_bit(PG_arch_1, &pg->flags)) { 84 #ifdef CONFIG_8xx 85 /* On 8xx, cache control instructions (particularly 86 * "dcbst" from flush_dcache_icache) fault as write 87 * operation if there is an unpopulated TLB entry 88 * for the address in question. To workaround that, 89 * we invalidate the TLB here, thus avoiding dcbst 90 * misbehaviour. 91 */ 92 /* 8xx doesn't care about PID, size or ind args */ 93 _tlbil_va(addr, 0, 0, 0); 94 #endif /* CONFIG_8xx */ 95 flush_dcache_icache_page(pg); 96 set_bit(PG_arch_1, &pg->flags); 97 } 98 } 99 return pte; 100 } 101 102 static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma, 103 int dirty) 104 { 105 return pte; 106 } 107 108 #else /* defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 */ 109 110 /* Embedded type MMU with HW exec support. This is a bit more complicated 111 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so 112 * instead we "filter out" the exec permission for non clean pages. 113 */ 114 static pte_t set_pte_filter(pte_t pte, unsigned long addr) 115 { 116 struct page *pg; 117 118 /* No exec permission in the first place, move on */ 119 if (!(pte_val(pte) & _PAGE_EXEC) || !pte_looks_normal(pte)) 120 return pte; 121 122 /* If you set _PAGE_EXEC on weird pages you're on your own */ 123 pg = maybe_pte_to_page(pte); 124 if (unlikely(!pg)) 125 return pte; 126 127 /* If the page clean, we move on */ 128 if (test_bit(PG_arch_1, &pg->flags)) 129 return pte; 130 131 /* If it's an exec fault, we flush the cache and make it clean */ 132 if (is_exec_fault()) { 133 flush_dcache_icache_page(pg); 134 set_bit(PG_arch_1, &pg->flags); 135 return pte; 136 } 137 138 /* Else, we filter out _PAGE_EXEC */ 139 return __pte(pte_val(pte) & ~_PAGE_EXEC); 140 } 141 142 static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma, 143 int dirty) 144 { 145 struct page *pg; 146 147 /* So here, we only care about exec faults, as we use them 148 * to recover lost _PAGE_EXEC and perform I$/D$ coherency 149 * if necessary. Also if _PAGE_EXEC is already set, same deal, 150 * we just bail out 151 */ 152 if (dirty || (pte_val(pte) & _PAGE_EXEC) || !is_exec_fault()) 153 return pte; 154 155 #ifdef CONFIG_DEBUG_VM 156 /* So this is an exec fault, _PAGE_EXEC is not set. If it was 157 * an error we would have bailed out earlier in do_page_fault() 158 * but let's make sure of it 159 */ 160 if (WARN_ON(!(vma->vm_flags & VM_EXEC))) 161 return pte; 162 #endif /* CONFIG_DEBUG_VM */ 163 164 /* If you set _PAGE_EXEC on weird pages you're on your own */ 165 pg = maybe_pte_to_page(pte); 166 if (unlikely(!pg)) 167 goto bail; 168 169 /* If the page is already clean, we move on */ 170 if (test_bit(PG_arch_1, &pg->flags)) 171 goto bail; 172 173 /* Clean the page and set PG_arch_1 */ 174 flush_dcache_icache_page(pg); 175 set_bit(PG_arch_1, &pg->flags); 176 177 bail: 178 return __pte(pte_val(pte) | _PAGE_EXEC); 179 } 180 181 #endif /* !(defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0) */ 182 183 /* 184 * set_pte stores a linux PTE into the linux page table. 185 */ 186 void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, 187 pte_t pte) 188 { 189 #ifdef CONFIG_DEBUG_VM 190 WARN_ON(pte_present(*ptep)); 191 #endif 192 /* Note: mm->context.id might not yet have been assigned as 193 * this context might not have been activated yet when this 194 * is called. 195 */ 196 pte = set_pte_filter(pte, addr); 197 198 /* Perform the setting of the PTE */ 199 __set_pte_at(mm, addr, ptep, pte, 0); 200 } 201 202 /* 203 * This is called when relaxing access to a PTE. It's also called in the page 204 * fault path when we don't hit any of the major fault cases, ie, a minor 205 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 206 * handled those two for us, we additionally deal with missing execute 207 * permission here on some processors 208 */ 209 int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, 210 pte_t *ptep, pte_t entry, int dirty) 211 { 212 int changed; 213 entry = set_access_flags_filter(entry, vma, dirty); 214 changed = !pte_same(*(ptep), entry); 215 if (changed) { 216 if (!is_vm_hugetlb_page(vma)) 217 assert_pte_locked(vma->vm_mm, address); 218 __ptep_set_access_flags(ptep, entry); 219 flush_tlb_page_nohash(vma, address); 220 } 221 return changed; 222 } 223 224 #ifdef CONFIG_DEBUG_VM 225 void assert_pte_locked(struct mm_struct *mm, unsigned long addr) 226 { 227 pgd_t *pgd; 228 pud_t *pud; 229 pmd_t *pmd; 230 231 if (mm == &init_mm) 232 return; 233 pgd = mm->pgd + pgd_index(addr); 234 BUG_ON(pgd_none(*pgd)); 235 pud = pud_offset(pgd, addr); 236 BUG_ON(pud_none(*pud)); 237 pmd = pmd_offset(pud, addr); 238 /* 239 * khugepaged to collapse normal pages to hugepage, first set 240 * pmd to none to force page fault/gup to take mmap_sem. After 241 * pmd is set to none, we do a pte_clear which does this assertion 242 * so if we find pmd none, return. 243 */ 244 if (pmd_none(*pmd)) 245 return; 246 BUG_ON(!pmd_present(*pmd)); 247 assert_spin_locked(pte_lockptr(mm, pmd)); 248 } 249 #endif /* CONFIG_DEBUG_VM */ 250 251