xref: /linux/arch/powerpc/mm/nohash/mmu_context.c (revision 52a9dab6d892763b2a8334a568bd4e2c1a6fde66)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * This file contains the routines for handling the MMU on those
4  * PowerPC implementations where the MMU is not using the hash
5  * table, such as 8xx, 4xx, BookE's etc...
6  *
7  * Copyright 2008 Ben Herrenschmidt <benh@kernel.crashing.org>
8  *                IBM Corp.
9  *
10  *  Derived from previous arch/powerpc/mm/mmu_context.c
11  *  and arch/powerpc/include/asm/mmu_context.h
12  *
13  * TODO:
14  *
15  *   - The global context lock will not scale very well
16  *   - The maps should be dynamically allocated to allow for processors
17  *     that support more PID bits at runtime
18  *   - Implement flush_tlb_mm() by making the context stale and picking
19  *     a new one
20  *   - More aggressively clear stale map bits and maybe find some way to
21  *     also clear mm->cpu_vm_mask bits when processes are migrated
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/init.h>
27 #include <linux/spinlock.h>
28 #include <linux/memblock.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/slab.h>
32 
33 #include <asm/mmu_context.h>
34 #include <asm/tlbflush.h>
35 #include <asm/smp.h>
36 #include <asm/kup.h>
37 
38 #include <mm/mmu_decl.h>
39 
40 /*
41  * Room for two PTE table pointers, usually the kernel and current user
42  * pointer to their respective root page table (pgdir).
43  */
44 void *abatron_pteptrs[2];
45 
46 /*
47  * The MPC8xx has only 16 contexts. We rotate through them on each task switch.
48  * A better way would be to keep track of tasks that own contexts, and implement
49  * an LRU usage. That way very active tasks don't always have to pay the TLB
50  * reload overhead. The kernel pages are mapped shared, so the kernel can run on
51  * behalf of any task that makes a kernel entry. Shared does not mean they are
52  * not protected, just that the ASID comparison is not performed. -- Dan
53  *
54  * The IBM4xx has 256 contexts, so we can just rotate through these as a way of
55  * "switching" contexts. If the TID of the TLB is zero, the PID/TID comparison
56  * is disabled, so we can use a TID of zero to represent all kernel pages as
57  * shared among all contexts. -- Dan
58  *
59  * The IBM 47x core supports 16-bit PIDs, thus 65535 contexts. We should
60  * normally never have to steal though the facility is present if needed.
61  * -- BenH
62  */
63 #define FIRST_CONTEXT 1
64 #if defined(CONFIG_PPC_8xx)
65 #define LAST_CONTEXT 16
66 #elif defined(CONFIG_PPC_47x)
67 #define LAST_CONTEXT 65535
68 #else
69 #define LAST_CONTEXT 255
70 #endif
71 
72 static unsigned int next_context, nr_free_contexts;
73 static unsigned long *context_map;
74 static unsigned long *stale_map[NR_CPUS];
75 static struct mm_struct **context_mm;
76 static DEFINE_RAW_SPINLOCK(context_lock);
77 
78 #define CTX_MAP_SIZE	\
79 	(sizeof(unsigned long) * (LAST_CONTEXT / BITS_PER_LONG + 1))
80 
81 
82 /* Steal a context from a task that has one at the moment.
83  *
84  * This is used when we are running out of available PID numbers
85  * on the processors.
86  *
87  * This isn't an LRU system, it just frees up each context in
88  * turn (sort-of pseudo-random replacement :).  This would be the
89  * place to implement an LRU scheme if anyone was motivated to do it.
90  *  -- paulus
91  *
92  * For context stealing, we use a slightly different approach for
93  * SMP and UP. Basically, the UP one is simpler and doesn't use
94  * the stale map as we can just flush the local CPU
95  *  -- benh
96  */
97 static unsigned int steal_context_smp(unsigned int id)
98 {
99 	struct mm_struct *mm;
100 	unsigned int cpu, max, i;
101 
102 	max = LAST_CONTEXT - FIRST_CONTEXT;
103 
104 	/* Attempt to free next_context first and then loop until we manage */
105 	while (max--) {
106 		/* Pick up the victim mm */
107 		mm = context_mm[id];
108 
109 		/* We have a candidate victim, check if it's active, on SMP
110 		 * we cannot steal active contexts
111 		 */
112 		if (mm->context.active) {
113 			id++;
114 			if (id > LAST_CONTEXT)
115 				id = FIRST_CONTEXT;
116 			continue;
117 		}
118 
119 		/* Mark this mm has having no context anymore */
120 		mm->context.id = MMU_NO_CONTEXT;
121 
122 		/* Mark it stale on all CPUs that used this mm. For threaded
123 		 * implementations, we set it on all threads on each core
124 		 * represented in the mask. A future implementation will use
125 		 * a core map instead but this will do for now.
126 		 */
127 		for_each_cpu(cpu, mm_cpumask(mm)) {
128 			for (i = cpu_first_thread_sibling(cpu);
129 			     i <= cpu_last_thread_sibling(cpu); i++) {
130 				if (stale_map[i])
131 					__set_bit(id, stale_map[i]);
132 			}
133 			cpu = i - 1;
134 		}
135 		return id;
136 	}
137 
138 	/* This will happen if you have more CPUs than available contexts,
139 	 * all we can do here is wait a bit and try again
140 	 */
141 	raw_spin_unlock(&context_lock);
142 	cpu_relax();
143 	raw_spin_lock(&context_lock);
144 
145 	/* This will cause the caller to try again */
146 	return MMU_NO_CONTEXT;
147 }
148 
149 static unsigned int steal_all_contexts(void)
150 {
151 	struct mm_struct *mm;
152 	int cpu = smp_processor_id();
153 	unsigned int id;
154 
155 	for (id = FIRST_CONTEXT; id <= LAST_CONTEXT; id++) {
156 		/* Pick up the victim mm */
157 		mm = context_mm[id];
158 
159 		/* Mark this mm as having no context anymore */
160 		mm->context.id = MMU_NO_CONTEXT;
161 		if (id != FIRST_CONTEXT) {
162 			context_mm[id] = NULL;
163 			__clear_bit(id, context_map);
164 		}
165 		if (IS_ENABLED(CONFIG_SMP))
166 			__clear_bit(id, stale_map[cpu]);
167 	}
168 
169 	/* Flush the TLB for all contexts (not to be used on SMP) */
170 	_tlbil_all();
171 
172 	nr_free_contexts = LAST_CONTEXT - FIRST_CONTEXT;
173 
174 	return FIRST_CONTEXT;
175 }
176 
177 /* Note that this will also be called on SMP if all other CPUs are
178  * offlined, which means that it may be called for cpu != 0. For
179  * this to work, we somewhat assume that CPUs that are onlined
180  * come up with a fully clean TLB (or are cleaned when offlined)
181  */
182 static unsigned int steal_context_up(unsigned int id)
183 {
184 	struct mm_struct *mm;
185 	int cpu = smp_processor_id();
186 
187 	/* Pick up the victim mm */
188 	mm = context_mm[id];
189 
190 	/* Flush the TLB for that context */
191 	local_flush_tlb_mm(mm);
192 
193 	/* Mark this mm has having no context anymore */
194 	mm->context.id = MMU_NO_CONTEXT;
195 
196 	/* XXX This clear should ultimately be part of local_flush_tlb_mm */
197 	if (IS_ENABLED(CONFIG_SMP))
198 		__clear_bit(id, stale_map[cpu]);
199 
200 	return id;
201 }
202 
203 static void set_context(unsigned long id, pgd_t *pgd)
204 {
205 	if (IS_ENABLED(CONFIG_PPC_8xx)) {
206 		s16 offset = (s16)(__pa(swapper_pg_dir));
207 
208 		/*
209 		 * Register M_TWB will contain base address of level 1 table minus the
210 		 * lower part of the kernel PGDIR base address, so that all accesses to
211 		 * level 1 table are done relative to lower part of kernel PGDIR base
212 		 * address.
213 		 */
214 		mtspr(SPRN_M_TWB, __pa(pgd) - offset);
215 
216 		/* Update context */
217 		mtspr(SPRN_M_CASID, id - 1);
218 
219 		/* sync */
220 		mb();
221 	} else if (kuap_is_disabled()) {
222 		if (IS_ENABLED(CONFIG_40x))
223 			mb();	/* sync */
224 
225 		mtspr(SPRN_PID, id);
226 		isync();
227 	}
228 }
229 
230 void switch_mmu_context(struct mm_struct *prev, struct mm_struct *next,
231 			struct task_struct *tsk)
232 {
233 	unsigned int id;
234 	unsigned int i, cpu = smp_processor_id();
235 	unsigned long *map;
236 
237 	/* No lockless fast path .. yet */
238 	raw_spin_lock(&context_lock);
239 
240 	if (IS_ENABLED(CONFIG_SMP)) {
241 		/* Mark us active and the previous one not anymore */
242 		next->context.active++;
243 		if (prev) {
244 			WARN_ON(prev->context.active < 1);
245 			prev->context.active--;
246 		}
247 	}
248 
249  again:
250 
251 	/* If we already have a valid assigned context, skip all that */
252 	id = next->context.id;
253 	if (likely(id != MMU_NO_CONTEXT))
254 		goto ctxt_ok;
255 
256 	/* We really don't have a context, let's try to acquire one */
257 	id = next_context;
258 	if (id > LAST_CONTEXT)
259 		id = FIRST_CONTEXT;
260 	map = context_map;
261 
262 	/* No more free contexts, let's try to steal one */
263 	if (nr_free_contexts == 0) {
264 		if (num_online_cpus() > 1) {
265 			id = steal_context_smp(id);
266 			if (id == MMU_NO_CONTEXT)
267 				goto again;
268 			goto stolen;
269 		}
270 		if (IS_ENABLED(CONFIG_PPC_8xx))
271 			id = steal_all_contexts();
272 		else
273 			id = steal_context_up(id);
274 		goto stolen;
275 	}
276 	nr_free_contexts--;
277 
278 	/* We know there's at least one free context, try to find it */
279 	while (__test_and_set_bit(id, map)) {
280 		id = find_next_zero_bit(map, LAST_CONTEXT+1, id);
281 		if (id > LAST_CONTEXT)
282 			id = FIRST_CONTEXT;
283 	}
284  stolen:
285 	next_context = id + 1;
286 	context_mm[id] = next;
287 	next->context.id = id;
288 
289  ctxt_ok:
290 
291 	/* If that context got marked stale on this CPU, then flush the
292 	 * local TLB for it and unmark it before we use it
293 	 */
294 	if (IS_ENABLED(CONFIG_SMP) && test_bit(id, stale_map[cpu])) {
295 		local_flush_tlb_mm(next);
296 
297 		/* XXX This clear should ultimately be part of local_flush_tlb_mm */
298 		for (i = cpu_first_thread_sibling(cpu);
299 		     i <= cpu_last_thread_sibling(cpu); i++) {
300 			if (stale_map[i])
301 				__clear_bit(id, stale_map[i]);
302 		}
303 	}
304 
305 	/* Flick the MMU and release lock */
306 	if (IS_ENABLED(CONFIG_BDI_SWITCH))
307 		abatron_pteptrs[1] = next->pgd;
308 	set_context(id, next->pgd);
309 #if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
310 	tsk->thread.pid = id;
311 #endif
312 	raw_spin_unlock(&context_lock);
313 }
314 
315 /*
316  * Set up the context for a new address space.
317  */
318 int init_new_context(struct task_struct *t, struct mm_struct *mm)
319 {
320 	/*
321 	 * We have MMU_NO_CONTEXT set to be ~0. Hence check
322 	 * explicitly against context.id == 0. This ensures that we properly
323 	 * initialize context slice details for newly allocated mm's (which will
324 	 * have id == 0) and don't alter context slice inherited via fork (which
325 	 * will have id != 0).
326 	 */
327 	if (mm->context.id == 0)
328 		slice_init_new_context_exec(mm);
329 	mm->context.id = MMU_NO_CONTEXT;
330 	mm->context.active = 0;
331 	pte_frag_set(&mm->context, NULL);
332 	return 0;
333 }
334 
335 /*
336  * We're finished using the context for an address space.
337  */
338 void destroy_context(struct mm_struct *mm)
339 {
340 	unsigned long flags;
341 	unsigned int id;
342 
343 	if (mm->context.id == MMU_NO_CONTEXT)
344 		return;
345 
346 	WARN_ON(mm->context.active != 0);
347 
348 	raw_spin_lock_irqsave(&context_lock, flags);
349 	id = mm->context.id;
350 	if (id != MMU_NO_CONTEXT) {
351 		__clear_bit(id, context_map);
352 		mm->context.id = MMU_NO_CONTEXT;
353 		context_mm[id] = NULL;
354 		nr_free_contexts++;
355 	}
356 	raw_spin_unlock_irqrestore(&context_lock, flags);
357 }
358 
359 static int mmu_ctx_cpu_prepare(unsigned int cpu)
360 {
361 	/* We don't touch CPU 0 map, it's allocated at aboot and kept
362 	 * around forever
363 	 */
364 	if (cpu == boot_cpuid)
365 		return 0;
366 
367 	stale_map[cpu] = kzalloc(CTX_MAP_SIZE, GFP_KERNEL);
368 	return 0;
369 }
370 
371 static int mmu_ctx_cpu_dead(unsigned int cpu)
372 {
373 #ifdef CONFIG_HOTPLUG_CPU
374 	if (cpu == boot_cpuid)
375 		return 0;
376 
377 	kfree(stale_map[cpu]);
378 	stale_map[cpu] = NULL;
379 
380 	/* We also clear the cpu_vm_mask bits of CPUs going away */
381 	clear_tasks_mm_cpumask(cpu);
382 #endif
383 	return 0;
384 }
385 
386 /*
387  * Initialize the context management stuff.
388  */
389 void __init mmu_context_init(void)
390 {
391 	/* Mark init_mm as being active on all possible CPUs since
392 	 * we'll get called with prev == init_mm the first time
393 	 * we schedule on a given CPU
394 	 */
395 	init_mm.context.active = NR_CPUS;
396 
397 	/*
398 	 * Allocate the maps used by context management
399 	 */
400 	context_map = memblock_alloc(CTX_MAP_SIZE, SMP_CACHE_BYTES);
401 	if (!context_map)
402 		panic("%s: Failed to allocate %zu bytes\n", __func__,
403 		      CTX_MAP_SIZE);
404 	context_mm = memblock_alloc(sizeof(void *) * (LAST_CONTEXT + 1),
405 				    SMP_CACHE_BYTES);
406 	if (!context_mm)
407 		panic("%s: Failed to allocate %zu bytes\n", __func__,
408 		      sizeof(void *) * (LAST_CONTEXT + 1));
409 	if (IS_ENABLED(CONFIG_SMP)) {
410 		stale_map[boot_cpuid] = memblock_alloc(CTX_MAP_SIZE, SMP_CACHE_BYTES);
411 		if (!stale_map[boot_cpuid])
412 			panic("%s: Failed to allocate %zu bytes\n", __func__,
413 			      CTX_MAP_SIZE);
414 
415 		cpuhp_setup_state_nocalls(CPUHP_POWERPC_MMU_CTX_PREPARE,
416 					  "powerpc/mmu/ctx:prepare",
417 					  mmu_ctx_cpu_prepare, mmu_ctx_cpu_dead);
418 	}
419 
420 	printk(KERN_INFO
421 	       "MMU: Allocated %zu bytes of context maps for %d contexts\n",
422 	       2 * CTX_MAP_SIZE + (sizeof(void *) * (LAST_CONTEXT + 1)),
423 	       LAST_CONTEXT - FIRST_CONTEXT + 1);
424 
425 	/*
426 	 * Some processors have too few contexts to reserve one for
427 	 * init_mm, and require using context 0 for a normal task.
428 	 * Other processors reserve the use of context zero for the kernel.
429 	 * This code assumes FIRST_CONTEXT < 32.
430 	 */
431 	context_map[0] = (1 << FIRST_CONTEXT) - 1;
432 	next_context = FIRST_CONTEXT;
433 	nr_free_contexts = LAST_CONTEXT - FIRST_CONTEXT + 1;
434 }
435