xref: /linux/arch/powerpc/mm/mem.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *  Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9  *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
10  *
11  *  Derived from "arch/i386/mm/init.c"
12  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  *
19  */
20 
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/stddef.h>
30 #include <linux/init.h>
31 #include <linux/bootmem.h>
32 #include <linux/highmem.h>
33 #include <linux/initrd.h>
34 #include <linux/pagemap.h>
35 
36 #include <asm/pgalloc.h>
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/smp.h>
43 #include <asm/machdep.h>
44 #include <asm/btext.h>
45 #include <asm/tlb.h>
46 #include <asm/prom.h>
47 #include <asm/lmb.h>
48 #include <asm/sections.h>
49 #include <asm/vdso.h>
50 
51 #include "mmu_decl.h"
52 
53 #ifndef CPU_FTR_COHERENT_ICACHE
54 #define CPU_FTR_COHERENT_ICACHE	0	/* XXX for now */
55 #define CPU_FTR_NOEXECUTE	0
56 #endif
57 
58 int init_bootmem_done;
59 int mem_init_done;
60 unsigned long memory_limit;
61 
62 extern void hash_preload(struct mm_struct *mm, unsigned long ea,
63 			 unsigned long access, unsigned long trap);
64 
65 /*
66  * This is called by /dev/mem to know if a given address has to
67  * be mapped non-cacheable or not
68  */
69 int page_is_ram(unsigned long pfn)
70 {
71 	unsigned long paddr = (pfn << PAGE_SHIFT);
72 
73 #ifndef CONFIG_PPC64	/* XXX for now */
74 	return paddr < __pa(high_memory);
75 #else
76 	int i;
77 	for (i=0; i < lmb.memory.cnt; i++) {
78 		unsigned long base;
79 
80 		base = lmb.memory.region[i].base;
81 
82 		if ((paddr >= base) &&
83 			(paddr < (base + lmb.memory.region[i].size))) {
84 			return 1;
85 		}
86 	}
87 
88 	return 0;
89 #endif
90 }
91 EXPORT_SYMBOL(page_is_ram);
92 
93 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
94 			      unsigned long size, pgprot_t vma_prot)
95 {
96 	if (ppc_md.phys_mem_access_prot)
97 		return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
98 
99 	if (!page_is_ram(pfn))
100 		vma_prot = __pgprot(pgprot_val(vma_prot)
101 				    | _PAGE_GUARDED | _PAGE_NO_CACHE);
102 	return vma_prot;
103 }
104 EXPORT_SYMBOL(phys_mem_access_prot);
105 
106 #ifdef CONFIG_MEMORY_HOTPLUG
107 
108 void online_page(struct page *page)
109 {
110 	ClearPageReserved(page);
111 	init_page_count(page);
112 	__free_page(page);
113 	totalram_pages++;
114 	num_physpages++;
115 }
116 
117 int __devinit add_memory(u64 start, u64 size)
118 {
119 	struct pglist_data *pgdata;
120 	struct zone *zone;
121 	int nid;
122 	unsigned long start_pfn = start >> PAGE_SHIFT;
123 	unsigned long nr_pages = size >> PAGE_SHIFT;
124 
125 	nid = hot_add_scn_to_nid(start);
126 	pgdata = NODE_DATA(nid);
127 
128 	start = (unsigned long)__va(start);
129 	create_section_mapping(start, start + size);
130 
131 	/* this should work for most non-highmem platforms */
132 	zone = pgdata->node_zones;
133 
134 	return __add_pages(zone, start_pfn, nr_pages);
135 
136 	return 0;
137 }
138 
139 /*
140  * First pass at this code will check to determine if the remove
141  * request is within the RMO.  Do not allow removal within the RMO.
142  */
143 int __devinit remove_memory(u64 start, u64 size)
144 {
145 	struct zone *zone;
146 	unsigned long start_pfn, end_pfn, nr_pages;
147 
148 	start_pfn = start >> PAGE_SHIFT;
149 	nr_pages = size >> PAGE_SHIFT;
150 	end_pfn = start_pfn + nr_pages;
151 
152 	printk("%s(): Attempting to remove memoy in range "
153 			"%lx to %lx\n", __func__, start, start+size);
154 	/*
155 	 * check for range within RMO
156 	 */
157 	zone = page_zone(pfn_to_page(start_pfn));
158 
159 	printk("%s(): memory will be removed from "
160 			"the %s zone\n", __func__, zone->name);
161 
162 	/*
163 	 * not handling removing memory ranges that
164 	 * overlap multiple zones yet
165 	 */
166 	if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
167 		goto overlap;
168 
169 	/* make sure it is NOT in RMO */
170 	if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
171 		printk("%s(): range to be removed must NOT be in RMO!\n",
172 			__func__);
173 		goto in_rmo;
174 	}
175 
176 	return __remove_pages(zone, start_pfn, nr_pages);
177 
178 overlap:
179 	printk("%s(): memory range to be removed overlaps "
180 		"multiple zones!!!\n", __func__);
181 in_rmo:
182 	return -1;
183 }
184 #endif /* CONFIG_MEMORY_HOTPLUG */
185 
186 void show_mem(void)
187 {
188 	unsigned long total = 0, reserved = 0;
189 	unsigned long shared = 0, cached = 0;
190 	unsigned long highmem = 0;
191 	struct page *page;
192 	pg_data_t *pgdat;
193 	unsigned long i;
194 
195 	printk("Mem-info:\n");
196 	show_free_areas();
197 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
198 	for_each_online_pgdat(pgdat) {
199 		unsigned long flags;
200 		pgdat_resize_lock(pgdat, &flags);
201 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
202 			if (!pfn_valid(pgdat->node_start_pfn + i))
203 				continue;
204 			page = pgdat_page_nr(pgdat, i);
205 			total++;
206 			if (PageHighMem(page))
207 				highmem++;
208 			if (PageReserved(page))
209 				reserved++;
210 			else if (PageSwapCache(page))
211 				cached++;
212 			else if (page_count(page))
213 				shared += page_count(page) - 1;
214 		}
215 		pgdat_resize_unlock(pgdat, &flags);
216 	}
217 	printk("%ld pages of RAM\n", total);
218 #ifdef CONFIG_HIGHMEM
219 	printk("%ld pages of HIGHMEM\n", highmem);
220 #endif
221 	printk("%ld reserved pages\n", reserved);
222 	printk("%ld pages shared\n", shared);
223 	printk("%ld pages swap cached\n", cached);
224 }
225 
226 /*
227  * Initialize the bootmem system and give it all the memory we
228  * have available.  If we are using highmem, we only put the
229  * lowmem into the bootmem system.
230  */
231 #ifndef CONFIG_NEED_MULTIPLE_NODES
232 void __init do_init_bootmem(void)
233 {
234 	unsigned long i;
235 	unsigned long start, bootmap_pages;
236 	unsigned long total_pages;
237 	int boot_mapsize;
238 
239 	max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
240 #ifdef CONFIG_HIGHMEM
241 	total_pages = total_lowmem >> PAGE_SHIFT;
242 #endif
243 
244 	/*
245 	 * Find an area to use for the bootmem bitmap.  Calculate the size of
246 	 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
247 	 * Add 1 additional page in case the address isn't page-aligned.
248 	 */
249 	bootmap_pages = bootmem_bootmap_pages(total_pages);
250 
251 	start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
252 
253 	boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
254 
255 	/* Add all physical memory to the bootmem map, mark each area
256 	 * present.
257 	 */
258 	for (i = 0; i < lmb.memory.cnt; i++) {
259 		unsigned long base = lmb.memory.region[i].base;
260 		unsigned long size = lmb_size_bytes(&lmb.memory, i);
261 #ifdef CONFIG_HIGHMEM
262 		if (base >= total_lowmem)
263 			continue;
264 		if (base + size > total_lowmem)
265 			size = total_lowmem - base;
266 #endif
267 		free_bootmem(base, size);
268 	}
269 
270 	/* reserve the sections we're already using */
271 	for (i = 0; i < lmb.reserved.cnt; i++)
272 		reserve_bootmem(lmb.reserved.region[i].base,
273 				lmb_size_bytes(&lmb.reserved, i));
274 
275 	/* XXX need to clip this if using highmem? */
276 	for (i = 0; i < lmb.memory.cnt; i++)
277 		memory_present(0, lmb_start_pfn(&lmb.memory, i),
278 			       lmb_end_pfn(&lmb.memory, i));
279 	init_bootmem_done = 1;
280 }
281 
282 /*
283  * paging_init() sets up the page tables - in fact we've already done this.
284  */
285 void __init paging_init(void)
286 {
287 	unsigned long zones_size[MAX_NR_ZONES];
288 	unsigned long zholes_size[MAX_NR_ZONES];
289 	unsigned long total_ram = lmb_phys_mem_size();
290 	unsigned long top_of_ram = lmb_end_of_DRAM();
291 
292 #ifdef CONFIG_HIGHMEM
293 	map_page(PKMAP_BASE, 0, 0);	/* XXX gross */
294 	pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
295 			(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
296 	map_page(KMAP_FIX_BEGIN, 0, 0);	/* XXX gross */
297 	kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
298 			(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
299 	kmap_prot = PAGE_KERNEL;
300 #endif /* CONFIG_HIGHMEM */
301 
302 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
303 	       top_of_ram, total_ram);
304 	printk(KERN_INFO "Memory hole size: %ldMB\n",
305 	       (top_of_ram - total_ram) >> 20);
306 	/*
307 	 * All pages are DMA-able so we put them all in the DMA zone.
308 	 */
309 	memset(zones_size, 0, sizeof(zones_size));
310 	memset(zholes_size, 0, sizeof(zholes_size));
311 
312 	zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
313 	zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
314 
315 #ifdef CONFIG_HIGHMEM
316 	zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
317 	zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
318 	zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
319 #else
320 	zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
321 	zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
322 #endif /* CONFIG_HIGHMEM */
323 
324 	free_area_init_node(0, NODE_DATA(0), zones_size,
325 			    __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
326 }
327 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
328 
329 void __init mem_init(void)
330 {
331 #ifdef CONFIG_NEED_MULTIPLE_NODES
332 	int nid;
333 #endif
334 	pg_data_t *pgdat;
335 	unsigned long i;
336 	struct page *page;
337 	unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
338 
339 	num_physpages = lmb.memory.size >> PAGE_SHIFT;
340 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
341 
342 #ifdef CONFIG_NEED_MULTIPLE_NODES
343         for_each_online_node(nid) {
344 		if (NODE_DATA(nid)->node_spanned_pages != 0) {
345 			printk("freeing bootmem node %d\n", nid);
346 			totalram_pages +=
347 				free_all_bootmem_node(NODE_DATA(nid));
348 		}
349 	}
350 #else
351 	max_mapnr = max_pfn;
352 	totalram_pages += free_all_bootmem();
353 #endif
354 	for_each_online_pgdat(pgdat) {
355 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
356 			if (!pfn_valid(pgdat->node_start_pfn + i))
357 				continue;
358 			page = pgdat_page_nr(pgdat, i);
359 			if (PageReserved(page))
360 				reservedpages++;
361 		}
362 	}
363 
364 	codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
365 	datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
366 	initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
367 	bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
368 
369 #ifdef CONFIG_HIGHMEM
370 	{
371 		unsigned long pfn, highmem_mapnr;
372 
373 		highmem_mapnr = total_lowmem >> PAGE_SHIFT;
374 		for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
375 			struct page *page = pfn_to_page(pfn);
376 
377 			ClearPageReserved(page);
378 			init_page_count(page);
379 			__free_page(page);
380 			totalhigh_pages++;
381 		}
382 		totalram_pages += totalhigh_pages;
383 		printk(KERN_INFO "High memory: %luk\n",
384 		       totalhigh_pages << (PAGE_SHIFT-10));
385 	}
386 #endif /* CONFIG_HIGHMEM */
387 
388 	printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
389 	       "%luk reserved, %luk data, %luk bss, %luk init)\n",
390 		(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
391 		num_physpages << (PAGE_SHIFT-10),
392 		codesize >> 10,
393 		reservedpages << (PAGE_SHIFT-10),
394 		datasize >> 10,
395 		bsssize >> 10,
396 		initsize >> 10);
397 
398 	mem_init_done = 1;
399 
400 	/* Initialize the vDSO */
401 	vdso_init();
402 }
403 
404 /*
405  * This is called when a page has been modified by the kernel.
406  * It just marks the page as not i-cache clean.  We do the i-cache
407  * flush later when the page is given to a user process, if necessary.
408  */
409 void flush_dcache_page(struct page *page)
410 {
411 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
412 		return;
413 	/* avoid an atomic op if possible */
414 	if (test_bit(PG_arch_1, &page->flags))
415 		clear_bit(PG_arch_1, &page->flags);
416 }
417 EXPORT_SYMBOL(flush_dcache_page);
418 
419 void flush_dcache_icache_page(struct page *page)
420 {
421 #ifdef CONFIG_BOOKE
422 	void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
423 	__flush_dcache_icache(start);
424 	kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
425 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
426 	/* On 8xx there is no need to kmap since highmem is not supported */
427 	__flush_dcache_icache(page_address(page));
428 #else
429 	__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
430 #endif
431 
432 }
433 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
434 {
435 	clear_page(page);
436 
437 	/*
438 	 * We shouldnt have to do this, but some versions of glibc
439 	 * require it (ld.so assumes zero filled pages are icache clean)
440 	 * - Anton
441 	 */
442 	flush_dcache_page(pg);
443 }
444 EXPORT_SYMBOL(clear_user_page);
445 
446 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
447 		    struct page *pg)
448 {
449 	copy_page(vto, vfrom);
450 
451 	/*
452 	 * We should be able to use the following optimisation, however
453 	 * there are two problems.
454 	 * Firstly a bug in some versions of binutils meant PLT sections
455 	 * were not marked executable.
456 	 * Secondly the first word in the GOT section is blrl, used
457 	 * to establish the GOT address. Until recently the GOT was
458 	 * not marked executable.
459 	 * - Anton
460 	 */
461 #if 0
462 	if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
463 		return;
464 #endif
465 
466 	flush_dcache_page(pg);
467 }
468 
469 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
470 			     unsigned long addr, int len)
471 {
472 	unsigned long maddr;
473 
474 	maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
475 	flush_icache_range(maddr, maddr + len);
476 	kunmap(page);
477 }
478 EXPORT_SYMBOL(flush_icache_user_range);
479 
480 /*
481  * This is called at the end of handling a user page fault, when the
482  * fault has been handled by updating a PTE in the linux page tables.
483  * We use it to preload an HPTE into the hash table corresponding to
484  * the updated linux PTE.
485  *
486  * This must always be called with the pte lock held.
487  */
488 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
489 		      pte_t pte)
490 {
491 #ifdef CONFIG_PPC_STD_MMU
492 	unsigned long access = 0, trap;
493 #endif
494 	unsigned long pfn = pte_pfn(pte);
495 
496 	/* handle i-cache coherency */
497 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
498 	    !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
499 	    pfn_valid(pfn)) {
500 		struct page *page = pfn_to_page(pfn);
501 		if (!PageReserved(page)
502 		    && !test_bit(PG_arch_1, &page->flags)) {
503 			if (vma->vm_mm == current->active_mm) {
504 #ifdef CONFIG_8xx
505 			/* On 8xx, cache control instructions (particularly
506 		 	 * "dcbst" from flush_dcache_icache) fault as write
507 			 * operation if there is an unpopulated TLB entry
508 			 * for the address in question. To workaround that,
509 			 * we invalidate the TLB here, thus avoiding dcbst
510 			 * misbehaviour.
511 			 */
512 				_tlbie(address);
513 #endif
514 				__flush_dcache_icache((void *) address);
515 			} else
516 				flush_dcache_icache_page(page);
517 			set_bit(PG_arch_1, &page->flags);
518 		}
519 	}
520 
521 #ifdef CONFIG_PPC_STD_MMU
522 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
523 	if (!pte_young(pte) || address >= TASK_SIZE)
524 		return;
525 
526 	/* We try to figure out if we are coming from an instruction
527 	 * access fault and pass that down to __hash_page so we avoid
528 	 * double-faulting on execution of fresh text. We have to test
529 	 * for regs NULL since init will get here first thing at boot
530 	 *
531 	 * We also avoid filling the hash if not coming from a fault
532 	 */
533 	if (current->thread.regs == NULL)
534 		return;
535 	trap = TRAP(current->thread.regs);
536 	if (trap == 0x400)
537 		access |= _PAGE_EXEC;
538 	else if (trap != 0x300)
539 		return;
540 	hash_preload(vma->vm_mm, address, access, trap);
541 #endif /* CONFIG_PPC_STD_MMU */
542 }
543