xref: /linux/arch/powerpc/mm/mem.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *  Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9  *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
10  *
11  *  Derived from "arch/i386/mm/init.c"
12  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  *
19  */
20 
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/stddef.h>
30 #include <linux/init.h>
31 #include <linux/bootmem.h>
32 #include <linux/highmem.h>
33 #include <linux/initrd.h>
34 #include <linux/pagemap.h>
35 
36 #include <asm/pgalloc.h>
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/smp.h>
43 #include <asm/machdep.h>
44 #include <asm/btext.h>
45 #include <asm/tlb.h>
46 #include <asm/prom.h>
47 #include <asm/lmb.h>
48 #include <asm/sections.h>
49 #include <asm/vdso.h>
50 
51 #include "mmu_decl.h"
52 
53 #ifndef CPU_FTR_COHERENT_ICACHE
54 #define CPU_FTR_COHERENT_ICACHE	0	/* XXX for now */
55 #define CPU_FTR_NOEXECUTE	0
56 #endif
57 
58 int init_bootmem_done;
59 int mem_init_done;
60 unsigned long memory_limit;
61 
62 extern void hash_preload(struct mm_struct *mm, unsigned long ea,
63 			 unsigned long access, unsigned long trap);
64 
65 /*
66  * This is called by /dev/mem to know if a given address has to
67  * be mapped non-cacheable or not
68  */
69 int page_is_ram(unsigned long pfn)
70 {
71 	unsigned long paddr = (pfn << PAGE_SHIFT);
72 
73 #ifndef CONFIG_PPC64	/* XXX for now */
74 	return paddr < __pa(high_memory);
75 #else
76 	int i;
77 	for (i=0; i < lmb.memory.cnt; i++) {
78 		unsigned long base;
79 
80 		base = lmb.memory.region[i].base;
81 
82 		if ((paddr >= base) &&
83 			(paddr < (base + lmb.memory.region[i].size))) {
84 			return 1;
85 		}
86 	}
87 
88 	return 0;
89 #endif
90 }
91 EXPORT_SYMBOL(page_is_ram);
92 
93 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
94 			      unsigned long size, pgprot_t vma_prot)
95 {
96 	if (ppc_md.phys_mem_access_prot)
97 		return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
98 
99 	if (!page_is_ram(pfn))
100 		vma_prot = __pgprot(pgprot_val(vma_prot)
101 				    | _PAGE_GUARDED | _PAGE_NO_CACHE);
102 	return vma_prot;
103 }
104 EXPORT_SYMBOL(phys_mem_access_prot);
105 
106 #ifdef CONFIG_MEMORY_HOTPLUG
107 
108 void online_page(struct page *page)
109 {
110 	ClearPageReserved(page);
111 	set_page_count(page, 0);
112 	free_cold_page(page);
113 	totalram_pages++;
114 	num_physpages++;
115 }
116 
117 /*
118  * This works only for the non-NUMA case.  Later, we'll need a lookup
119  * to convert from real physical addresses to nid, that doesn't use
120  * pfn_to_nid().
121  */
122 int __devinit add_memory(u64 start, u64 size)
123 {
124 	struct pglist_data *pgdata = NODE_DATA(0);
125 	struct zone *zone;
126 	unsigned long start_pfn = start >> PAGE_SHIFT;
127 	unsigned long nr_pages = size >> PAGE_SHIFT;
128 
129 	start += KERNELBASE;
130 	create_section_mapping(start, start + size);
131 
132 	/* this should work for most non-highmem platforms */
133 	zone = pgdata->node_zones;
134 
135 	return __add_pages(zone, start_pfn, nr_pages);
136 
137 	return 0;
138 }
139 
140 /*
141  * First pass at this code will check to determine if the remove
142  * request is within the RMO.  Do not allow removal within the RMO.
143  */
144 int __devinit remove_memory(u64 start, u64 size)
145 {
146 	struct zone *zone;
147 	unsigned long start_pfn, end_pfn, nr_pages;
148 
149 	start_pfn = start >> PAGE_SHIFT;
150 	nr_pages = size >> PAGE_SHIFT;
151 	end_pfn = start_pfn + nr_pages;
152 
153 	printk("%s(): Attempting to remove memoy in range "
154 			"%lx to %lx\n", __func__, start, start+size);
155 	/*
156 	 * check for range within RMO
157 	 */
158 	zone = page_zone(pfn_to_page(start_pfn));
159 
160 	printk("%s(): memory will be removed from "
161 			"the %s zone\n", __func__, zone->name);
162 
163 	/*
164 	 * not handling removing memory ranges that
165 	 * overlap multiple zones yet
166 	 */
167 	if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
168 		goto overlap;
169 
170 	/* make sure it is NOT in RMO */
171 	if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
172 		printk("%s(): range to be removed must NOT be in RMO!\n",
173 			__func__);
174 		goto in_rmo;
175 	}
176 
177 	return __remove_pages(zone, start_pfn, nr_pages);
178 
179 overlap:
180 	printk("%s(): memory range to be removed overlaps "
181 		"multiple zones!!!\n", __func__);
182 in_rmo:
183 	return -1;
184 }
185 #endif /* CONFIG_MEMORY_HOTPLUG */
186 
187 void show_mem(void)
188 {
189 	unsigned long total = 0, reserved = 0;
190 	unsigned long shared = 0, cached = 0;
191 	unsigned long highmem = 0;
192 	struct page *page;
193 	pg_data_t *pgdat;
194 	unsigned long i;
195 
196 	printk("Mem-info:\n");
197 	show_free_areas();
198 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
199 	for_each_pgdat(pgdat) {
200 		unsigned long flags;
201 		pgdat_resize_lock(pgdat, &flags);
202 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
203 			if (!pfn_valid(pgdat->node_start_pfn + i))
204 				continue;
205 			page = pgdat_page_nr(pgdat, i);
206 			total++;
207 			if (PageHighMem(page))
208 				highmem++;
209 			if (PageReserved(page))
210 				reserved++;
211 			else if (PageSwapCache(page))
212 				cached++;
213 			else if (page_count(page))
214 				shared += page_count(page) - 1;
215 		}
216 		pgdat_resize_unlock(pgdat, &flags);
217 	}
218 	printk("%ld pages of RAM\n", total);
219 #ifdef CONFIG_HIGHMEM
220 	printk("%ld pages of HIGHMEM\n", highmem);
221 #endif
222 	printk("%ld reserved pages\n", reserved);
223 	printk("%ld pages shared\n", shared);
224 	printk("%ld pages swap cached\n", cached);
225 }
226 
227 /*
228  * Initialize the bootmem system and give it all the memory we
229  * have available.  If we are using highmem, we only put the
230  * lowmem into the bootmem system.
231  */
232 #ifndef CONFIG_NEED_MULTIPLE_NODES
233 void __init do_init_bootmem(void)
234 {
235 	unsigned long i;
236 	unsigned long start, bootmap_pages;
237 	unsigned long total_pages;
238 	int boot_mapsize;
239 
240 	max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
241 #ifdef CONFIG_HIGHMEM
242 	total_pages = total_lowmem >> PAGE_SHIFT;
243 #endif
244 
245 	/*
246 	 * Find an area to use for the bootmem bitmap.  Calculate the size of
247 	 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
248 	 * Add 1 additional page in case the address isn't page-aligned.
249 	 */
250 	bootmap_pages = bootmem_bootmap_pages(total_pages);
251 
252 	start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
253 	BUG_ON(!start);
254 
255 	boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
256 
257 	/* Add all physical memory to the bootmem map, mark each area
258 	 * present.
259 	 */
260 	for (i = 0; i < lmb.memory.cnt; i++) {
261 		unsigned long base = lmb.memory.region[i].base;
262 		unsigned long size = lmb_size_bytes(&lmb.memory, i);
263 #ifdef CONFIG_HIGHMEM
264 		if (base >= total_lowmem)
265 			continue;
266 		if (base + size > total_lowmem)
267 			size = total_lowmem - base;
268 #endif
269 		free_bootmem(base, size);
270 	}
271 
272 	/* reserve the sections we're already using */
273 	for (i = 0; i < lmb.reserved.cnt; i++)
274 		reserve_bootmem(lmb.reserved.region[i].base,
275 				lmb_size_bytes(&lmb.reserved, i));
276 
277 	/* XXX need to clip this if using highmem? */
278 	for (i = 0; i < lmb.memory.cnt; i++)
279 		memory_present(0, lmb_start_pfn(&lmb.memory, i),
280 			       lmb_end_pfn(&lmb.memory, i));
281 	init_bootmem_done = 1;
282 }
283 
284 /*
285  * paging_init() sets up the page tables - in fact we've already done this.
286  */
287 void __init paging_init(void)
288 {
289 	unsigned long zones_size[MAX_NR_ZONES];
290 	unsigned long zholes_size[MAX_NR_ZONES];
291 	unsigned long total_ram = lmb_phys_mem_size();
292 	unsigned long top_of_ram = lmb_end_of_DRAM();
293 
294 #ifdef CONFIG_HIGHMEM
295 	map_page(PKMAP_BASE, 0, 0);	/* XXX gross */
296 	pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
297 			(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
298 	map_page(KMAP_FIX_BEGIN, 0, 0);	/* XXX gross */
299 	kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
300 			(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
301 	kmap_prot = PAGE_KERNEL;
302 #endif /* CONFIG_HIGHMEM */
303 
304 	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
305 	       top_of_ram, total_ram);
306 	printk(KERN_INFO "Memory hole size: %ldMB\n",
307 	       (top_of_ram - total_ram) >> 20);
308 	/*
309 	 * All pages are DMA-able so we put them all in the DMA zone.
310 	 */
311 	memset(zones_size, 0, sizeof(zones_size));
312 	memset(zholes_size, 0, sizeof(zholes_size));
313 
314 	zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
315 	zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
316 
317 #ifdef CONFIG_HIGHMEM
318 	zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
319 	zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
320 	zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
321 #else
322 	zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
323 	zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
324 #endif /* CONFIG_HIGHMEM */
325 
326 	free_area_init_node(0, NODE_DATA(0), zones_size,
327 			    __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
328 }
329 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
330 
331 void __init mem_init(void)
332 {
333 #ifdef CONFIG_NEED_MULTIPLE_NODES
334 	int nid;
335 #endif
336 	pg_data_t *pgdat;
337 	unsigned long i;
338 	struct page *page;
339 	unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
340 
341 	num_physpages = lmb.memory.size >> PAGE_SHIFT;
342 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
343 
344 #ifdef CONFIG_NEED_MULTIPLE_NODES
345         for_each_online_node(nid) {
346 		if (NODE_DATA(nid)->node_spanned_pages != 0) {
347 			printk("freeing bootmem node %x\n", nid);
348 			totalram_pages +=
349 				free_all_bootmem_node(NODE_DATA(nid));
350 		}
351 	}
352 #else
353 	max_mapnr = max_pfn;
354 	totalram_pages += free_all_bootmem();
355 #endif
356 	for_each_pgdat(pgdat) {
357 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
358 			if (!pfn_valid(pgdat->node_start_pfn + i))
359 				continue;
360 			page = pgdat_page_nr(pgdat, i);
361 			if (PageReserved(page))
362 				reservedpages++;
363 		}
364 	}
365 
366 	codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
367 	datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
368 	initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
369 	bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
370 
371 #ifdef CONFIG_HIGHMEM
372 	{
373 		unsigned long pfn, highmem_mapnr;
374 
375 		highmem_mapnr = total_lowmem >> PAGE_SHIFT;
376 		for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
377 			struct page *page = pfn_to_page(pfn);
378 
379 			ClearPageReserved(page);
380 			set_page_count(page, 1);
381 			__free_page(page);
382 			totalhigh_pages++;
383 		}
384 		totalram_pages += totalhigh_pages;
385 		printk(KERN_INFO "High memory: %luk\n",
386 		       totalhigh_pages << (PAGE_SHIFT-10));
387 	}
388 #endif /* CONFIG_HIGHMEM */
389 
390 	printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
391 	       "%luk reserved, %luk data, %luk bss, %luk init)\n",
392 		(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
393 		num_physpages << (PAGE_SHIFT-10),
394 		codesize >> 10,
395 		reservedpages << (PAGE_SHIFT-10),
396 		datasize >> 10,
397 		bsssize >> 10,
398 		initsize >> 10);
399 
400 	mem_init_done = 1;
401 
402 	/* Initialize the vDSO */
403 	vdso_init();
404 }
405 
406 /*
407  * This is called when a page has been modified by the kernel.
408  * It just marks the page as not i-cache clean.  We do the i-cache
409  * flush later when the page is given to a user process, if necessary.
410  */
411 void flush_dcache_page(struct page *page)
412 {
413 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
414 		return;
415 	/* avoid an atomic op if possible */
416 	if (test_bit(PG_arch_1, &page->flags))
417 		clear_bit(PG_arch_1, &page->flags);
418 }
419 EXPORT_SYMBOL(flush_dcache_page);
420 
421 void flush_dcache_icache_page(struct page *page)
422 {
423 #ifdef CONFIG_BOOKE
424 	void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
425 	__flush_dcache_icache(start);
426 	kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
427 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
428 	/* On 8xx there is no need to kmap since highmem is not supported */
429 	__flush_dcache_icache(page_address(page));
430 #else
431 	__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
432 #endif
433 
434 }
435 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
436 {
437 	clear_page(page);
438 
439 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
440 		return;
441 	/*
442 	 * We shouldnt have to do this, but some versions of glibc
443 	 * require it (ld.so assumes zero filled pages are icache clean)
444 	 * - Anton
445 	 */
446 
447 	/* avoid an atomic op if possible */
448 	if (test_bit(PG_arch_1, &pg->flags))
449 		clear_bit(PG_arch_1, &pg->flags);
450 }
451 EXPORT_SYMBOL(clear_user_page);
452 
453 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
454 		    struct page *pg)
455 {
456 	copy_page(vto, vfrom);
457 
458 	/*
459 	 * We should be able to use the following optimisation, however
460 	 * there are two problems.
461 	 * Firstly a bug in some versions of binutils meant PLT sections
462 	 * were not marked executable.
463 	 * Secondly the first word in the GOT section is blrl, used
464 	 * to establish the GOT address. Until recently the GOT was
465 	 * not marked executable.
466 	 * - Anton
467 	 */
468 #if 0
469 	if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
470 		return;
471 #endif
472 
473 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
474 		return;
475 
476 	/* avoid an atomic op if possible */
477 	if (test_bit(PG_arch_1, &pg->flags))
478 		clear_bit(PG_arch_1, &pg->flags);
479 }
480 
481 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
482 			     unsigned long addr, int len)
483 {
484 	unsigned long maddr;
485 
486 	maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
487 	flush_icache_range(maddr, maddr + len);
488 	kunmap(page);
489 }
490 EXPORT_SYMBOL(flush_icache_user_range);
491 
492 /*
493  * This is called at the end of handling a user page fault, when the
494  * fault has been handled by updating a PTE in the linux page tables.
495  * We use it to preload an HPTE into the hash table corresponding to
496  * the updated linux PTE.
497  *
498  * This must always be called with the pte lock held.
499  */
500 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
501 		      pte_t pte)
502 {
503 #ifdef CONFIG_PPC_STD_MMU
504 	unsigned long access = 0, trap;
505 #endif
506 	unsigned long pfn = pte_pfn(pte);
507 
508 	/* handle i-cache coherency */
509 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
510 	    !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
511 	    pfn_valid(pfn)) {
512 		struct page *page = pfn_to_page(pfn);
513 		if (!PageReserved(page)
514 		    && !test_bit(PG_arch_1, &page->flags)) {
515 			if (vma->vm_mm == current->active_mm) {
516 #ifdef CONFIG_8xx
517 			/* On 8xx, cache control instructions (particularly
518 		 	 * "dcbst" from flush_dcache_icache) fault as write
519 			 * operation if there is an unpopulated TLB entry
520 			 * for the address in question. To workaround that,
521 			 * we invalidate the TLB here, thus avoiding dcbst
522 			 * misbehaviour.
523 			 */
524 				_tlbie(address);
525 #endif
526 				__flush_dcache_icache((void *) address);
527 			} else
528 				flush_dcache_icache_page(page);
529 			set_bit(PG_arch_1, &page->flags);
530 		}
531 	}
532 
533 #ifdef CONFIG_PPC_STD_MMU
534 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
535 	if (!pte_young(pte) || address >= TASK_SIZE)
536 		return;
537 
538 	/* We try to figure out if we are coming from an instruction
539 	 * access fault and pass that down to __hash_page so we avoid
540 	 * double-faulting on execution of fresh text. We have to test
541 	 * for regs NULL since init will get here first thing at boot
542 	 *
543 	 * We also avoid filling the hash if not coming from a fault
544 	 */
545 	if (current->thread.regs == NULL)
546 		return;
547 	trap = TRAP(current->thread.regs);
548 	if (trap == 0x400)
549 		access |= _PAGE_EXEC;
550 	else if (trap != 0x300)
551 		return;
552 	hash_preload(vma->vm_mm, address, access, trap);
553 #endif /* CONFIG_PPC_STD_MMU */
554 }
555