xref: /linux/arch/powerpc/mm/mem.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *  Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9  *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
10  *
11  *  Derived from "arch/i386/mm/init.c"
12  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  *
19  */
20 
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/stddef.h>
30 #include <linux/init.h>
31 #include <linux/bootmem.h>
32 #include <linux/highmem.h>
33 #include <linux/initrd.h>
34 #include <linux/pagemap.h>
35 
36 #include <asm/pgalloc.h>
37 #include <asm/prom.h>
38 #include <asm/io.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/smp.h>
43 #include <asm/machdep.h>
44 #include <asm/btext.h>
45 #include <asm/tlb.h>
46 #include <asm/prom.h>
47 #include <asm/lmb.h>
48 #include <asm/sections.h>
49 #include <asm/vdso.h>
50 
51 #include "mmu_decl.h"
52 
53 #ifndef CPU_FTR_COHERENT_ICACHE
54 #define CPU_FTR_COHERENT_ICACHE	0	/* XXX for now */
55 #define CPU_FTR_NOEXECUTE	0
56 #endif
57 
58 int init_bootmem_done;
59 int mem_init_done;
60 unsigned long memory_limit;
61 
62 extern void hash_preload(struct mm_struct *mm, unsigned long ea,
63 			 unsigned long access, unsigned long trap);
64 
65 /*
66  * This is called by /dev/mem to know if a given address has to
67  * be mapped non-cacheable or not
68  */
69 int page_is_ram(unsigned long pfn)
70 {
71 	unsigned long paddr = (pfn << PAGE_SHIFT);
72 
73 #ifndef CONFIG_PPC64	/* XXX for now */
74 	return paddr < __pa(high_memory);
75 #else
76 	int i;
77 	for (i=0; i < lmb.memory.cnt; i++) {
78 		unsigned long base;
79 
80 		base = lmb.memory.region[i].base;
81 
82 		if ((paddr >= base) &&
83 			(paddr < (base + lmb.memory.region[i].size))) {
84 			return 1;
85 		}
86 	}
87 
88 	return 0;
89 #endif
90 }
91 EXPORT_SYMBOL(page_is_ram);
92 
93 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
94 			      unsigned long size, pgprot_t vma_prot)
95 {
96 	if (ppc_md.phys_mem_access_prot)
97 		return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
98 
99 	if (!page_is_ram(pfn))
100 		vma_prot = __pgprot(pgprot_val(vma_prot)
101 				    | _PAGE_GUARDED | _PAGE_NO_CACHE);
102 	return vma_prot;
103 }
104 EXPORT_SYMBOL(phys_mem_access_prot);
105 
106 #ifdef CONFIG_MEMORY_HOTPLUG
107 
108 void online_page(struct page *page)
109 {
110 	ClearPageReserved(page);
111 	init_page_count(page);
112 	__free_page(page);
113 	totalram_pages++;
114 	num_physpages++;
115 }
116 
117 #ifdef CONFIG_NUMA
118 int memory_add_physaddr_to_nid(u64 start)
119 {
120 	return hot_add_scn_to_nid(start);
121 }
122 #endif
123 
124 int __devinit arch_add_memory(int nid, u64 start, u64 size)
125 {
126 	struct pglist_data *pgdata;
127 	struct zone *zone;
128 	unsigned long start_pfn = start >> PAGE_SHIFT;
129 	unsigned long nr_pages = size >> PAGE_SHIFT;
130 
131 	pgdata = NODE_DATA(nid);
132 
133 	start = (unsigned long)__va(start);
134 	create_section_mapping(start, start + size);
135 
136 	/* this should work for most non-highmem platforms */
137 	zone = pgdata->node_zones;
138 
139 	return __add_pages(zone, start_pfn, nr_pages);
140 
141 	return 0;
142 }
143 
144 /*
145  * First pass at this code will check to determine if the remove
146  * request is within the RMO.  Do not allow removal within the RMO.
147  */
148 int __devinit remove_memory(u64 start, u64 size)
149 {
150 	struct zone *zone;
151 	unsigned long start_pfn, end_pfn, nr_pages;
152 
153 	start_pfn = start >> PAGE_SHIFT;
154 	nr_pages = size >> PAGE_SHIFT;
155 	end_pfn = start_pfn + nr_pages;
156 
157 	printk("%s(): Attempting to remove memoy in range "
158 			"%lx to %lx\n", __func__, start, start+size);
159 	/*
160 	 * check for range within RMO
161 	 */
162 	zone = page_zone(pfn_to_page(start_pfn));
163 
164 	printk("%s(): memory will be removed from "
165 			"the %s zone\n", __func__, zone->name);
166 
167 	/*
168 	 * not handling removing memory ranges that
169 	 * overlap multiple zones yet
170 	 */
171 	if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
172 		goto overlap;
173 
174 	/* make sure it is NOT in RMO */
175 	if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
176 		printk("%s(): range to be removed must NOT be in RMO!\n",
177 			__func__);
178 		goto in_rmo;
179 	}
180 
181 	return __remove_pages(zone, start_pfn, nr_pages);
182 
183 overlap:
184 	printk("%s(): memory range to be removed overlaps "
185 		"multiple zones!!!\n", __func__);
186 in_rmo:
187 	return -1;
188 }
189 #endif /* CONFIG_MEMORY_HOTPLUG */
190 
191 void show_mem(void)
192 {
193 	unsigned long total = 0, reserved = 0;
194 	unsigned long shared = 0, cached = 0;
195 	unsigned long highmem = 0;
196 	struct page *page;
197 	pg_data_t *pgdat;
198 	unsigned long i;
199 
200 	printk("Mem-info:\n");
201 	show_free_areas();
202 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
203 	for_each_online_pgdat(pgdat) {
204 		unsigned long flags;
205 		pgdat_resize_lock(pgdat, &flags);
206 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
207 			if (!pfn_valid(pgdat->node_start_pfn + i))
208 				continue;
209 			page = pgdat_page_nr(pgdat, i);
210 			total++;
211 			if (PageHighMem(page))
212 				highmem++;
213 			if (PageReserved(page))
214 				reserved++;
215 			else if (PageSwapCache(page))
216 				cached++;
217 			else if (page_count(page))
218 				shared += page_count(page) - 1;
219 		}
220 		pgdat_resize_unlock(pgdat, &flags);
221 	}
222 	printk("%ld pages of RAM\n", total);
223 #ifdef CONFIG_HIGHMEM
224 	printk("%ld pages of HIGHMEM\n", highmem);
225 #endif
226 	printk("%ld reserved pages\n", reserved);
227 	printk("%ld pages shared\n", shared);
228 	printk("%ld pages swap cached\n", cached);
229 }
230 
231 /*
232  * Initialize the bootmem system and give it all the memory we
233  * have available.  If we are using highmem, we only put the
234  * lowmem into the bootmem system.
235  */
236 #ifndef CONFIG_NEED_MULTIPLE_NODES
237 void __init do_init_bootmem(void)
238 {
239 	unsigned long i;
240 	unsigned long start, bootmap_pages;
241 	unsigned long total_pages;
242 	int boot_mapsize;
243 
244 	max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
245 #ifdef CONFIG_HIGHMEM
246 	total_pages = total_lowmem >> PAGE_SHIFT;
247 #endif
248 
249 	/*
250 	 * Find an area to use for the bootmem bitmap.  Calculate the size of
251 	 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
252 	 * Add 1 additional page in case the address isn't page-aligned.
253 	 */
254 	bootmap_pages = bootmem_bootmap_pages(total_pages);
255 
256 	start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
257 
258 	boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
259 
260 	/* Add all physical memory to the bootmem map, mark each area
261 	 * present.
262 	 */
263 	for (i = 0; i < lmb.memory.cnt; i++) {
264 		unsigned long base = lmb.memory.region[i].base;
265 		unsigned long size = lmb_size_bytes(&lmb.memory, i);
266 #ifdef CONFIG_HIGHMEM
267 		if (base >= total_lowmem)
268 			continue;
269 		if (base + size > total_lowmem)
270 			size = total_lowmem - base;
271 #endif
272 		free_bootmem(base, size);
273 	}
274 
275 	/* reserve the sections we're already using */
276 	for (i = 0; i < lmb.reserved.cnt; i++)
277 		reserve_bootmem(lmb.reserved.region[i].base,
278 				lmb_size_bytes(&lmb.reserved, i));
279 
280 	/* XXX need to clip this if using highmem? */
281 	for (i = 0; i < lmb.memory.cnt; i++)
282 		memory_present(0, lmb_start_pfn(&lmb.memory, i),
283 			       lmb_end_pfn(&lmb.memory, i));
284 	init_bootmem_done = 1;
285 }
286 
287 /*
288  * paging_init() sets up the page tables - in fact we've already done this.
289  */
290 void __init paging_init(void)
291 {
292 	unsigned long zones_size[MAX_NR_ZONES];
293 	unsigned long zholes_size[MAX_NR_ZONES];
294 	unsigned long total_ram = lmb_phys_mem_size();
295 	unsigned long top_of_ram = lmb_end_of_DRAM();
296 
297 #ifdef CONFIG_HIGHMEM
298 	map_page(PKMAP_BASE, 0, 0);	/* XXX gross */
299 	pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
300 			(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
301 	map_page(KMAP_FIX_BEGIN, 0, 0);	/* XXX gross */
302 	kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
303 			(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
304 	kmap_prot = PAGE_KERNEL;
305 #endif /* CONFIG_HIGHMEM */
306 
307 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
308 	       top_of_ram, total_ram);
309 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
310 	       (top_of_ram - total_ram) >> 20);
311 	/*
312 	 * All pages are DMA-able so we put them all in the DMA zone.
313 	 */
314 	memset(zones_size, 0, sizeof(zones_size));
315 	memset(zholes_size, 0, sizeof(zholes_size));
316 
317 	zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
318 	zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
319 
320 #ifdef CONFIG_HIGHMEM
321 	zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
322 	zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
323 	zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
324 #else
325 	zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
326 	zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
327 #endif /* CONFIG_HIGHMEM */
328 
329 	free_area_init_node(0, NODE_DATA(0), zones_size,
330 			    __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
331 }
332 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
333 
334 void __init mem_init(void)
335 {
336 #ifdef CONFIG_NEED_MULTIPLE_NODES
337 	int nid;
338 #endif
339 	pg_data_t *pgdat;
340 	unsigned long i;
341 	struct page *page;
342 	unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
343 
344 	num_physpages = lmb.memory.size >> PAGE_SHIFT;
345 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
346 
347 #ifdef CONFIG_NEED_MULTIPLE_NODES
348         for_each_online_node(nid) {
349 		if (NODE_DATA(nid)->node_spanned_pages != 0) {
350 			printk("freeing bootmem node %d\n", nid);
351 			totalram_pages +=
352 				free_all_bootmem_node(NODE_DATA(nid));
353 		}
354 	}
355 #else
356 	max_mapnr = max_pfn;
357 	totalram_pages += free_all_bootmem();
358 #endif
359 	for_each_online_pgdat(pgdat) {
360 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
361 			if (!pfn_valid(pgdat->node_start_pfn + i))
362 				continue;
363 			page = pgdat_page_nr(pgdat, i);
364 			if (PageReserved(page))
365 				reservedpages++;
366 		}
367 	}
368 
369 	codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
370 	datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
371 	initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
372 	bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
373 
374 #ifdef CONFIG_HIGHMEM
375 	{
376 		unsigned long pfn, highmem_mapnr;
377 
378 		highmem_mapnr = total_lowmem >> PAGE_SHIFT;
379 		for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
380 			struct page *page = pfn_to_page(pfn);
381 
382 			ClearPageReserved(page);
383 			init_page_count(page);
384 			__free_page(page);
385 			totalhigh_pages++;
386 		}
387 		totalram_pages += totalhigh_pages;
388 		printk(KERN_DEBUG "High memory: %luk\n",
389 		       totalhigh_pages << (PAGE_SHIFT-10));
390 	}
391 #endif /* CONFIG_HIGHMEM */
392 
393 	printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
394 	       "%luk reserved, %luk data, %luk bss, %luk init)\n",
395 		(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
396 		num_physpages << (PAGE_SHIFT-10),
397 		codesize >> 10,
398 		reservedpages << (PAGE_SHIFT-10),
399 		datasize >> 10,
400 		bsssize >> 10,
401 		initsize >> 10);
402 
403 	mem_init_done = 1;
404 
405 	/* Initialize the vDSO */
406 	vdso_init();
407 }
408 
409 /*
410  * This is called when a page has been modified by the kernel.
411  * It just marks the page as not i-cache clean.  We do the i-cache
412  * flush later when the page is given to a user process, if necessary.
413  */
414 void flush_dcache_page(struct page *page)
415 {
416 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
417 		return;
418 	/* avoid an atomic op if possible */
419 	if (test_bit(PG_arch_1, &page->flags))
420 		clear_bit(PG_arch_1, &page->flags);
421 }
422 EXPORT_SYMBOL(flush_dcache_page);
423 
424 void flush_dcache_icache_page(struct page *page)
425 {
426 #ifdef CONFIG_BOOKE
427 	void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
428 	__flush_dcache_icache(start);
429 	kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
430 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
431 	/* On 8xx there is no need to kmap since highmem is not supported */
432 	__flush_dcache_icache(page_address(page));
433 #else
434 	__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
435 #endif
436 
437 }
438 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
439 {
440 	clear_page(page);
441 
442 	/*
443 	 * We shouldnt have to do this, but some versions of glibc
444 	 * require it (ld.so assumes zero filled pages are icache clean)
445 	 * - Anton
446 	 */
447 	flush_dcache_page(pg);
448 }
449 EXPORT_SYMBOL(clear_user_page);
450 
451 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
452 		    struct page *pg)
453 {
454 	copy_page(vto, vfrom);
455 
456 	/*
457 	 * We should be able to use the following optimisation, however
458 	 * there are two problems.
459 	 * Firstly a bug in some versions of binutils meant PLT sections
460 	 * were not marked executable.
461 	 * Secondly the first word in the GOT section is blrl, used
462 	 * to establish the GOT address. Until recently the GOT was
463 	 * not marked executable.
464 	 * - Anton
465 	 */
466 #if 0
467 	if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
468 		return;
469 #endif
470 
471 	flush_dcache_page(pg);
472 }
473 
474 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
475 			     unsigned long addr, int len)
476 {
477 	unsigned long maddr;
478 
479 	maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
480 	flush_icache_range(maddr, maddr + len);
481 	kunmap(page);
482 }
483 EXPORT_SYMBOL(flush_icache_user_range);
484 
485 /*
486  * This is called at the end of handling a user page fault, when the
487  * fault has been handled by updating a PTE in the linux page tables.
488  * We use it to preload an HPTE into the hash table corresponding to
489  * the updated linux PTE.
490  *
491  * This must always be called with the pte lock held.
492  */
493 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
494 		      pte_t pte)
495 {
496 #ifdef CONFIG_PPC_STD_MMU
497 	unsigned long access = 0, trap;
498 #endif
499 	unsigned long pfn = pte_pfn(pte);
500 
501 	/* handle i-cache coherency */
502 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
503 	    !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
504 	    pfn_valid(pfn)) {
505 		struct page *page = pfn_to_page(pfn);
506 		if (!PageReserved(page)
507 		    && !test_bit(PG_arch_1, &page->flags)) {
508 			if (vma->vm_mm == current->active_mm) {
509 #ifdef CONFIG_8xx
510 			/* On 8xx, cache control instructions (particularly
511 		 	 * "dcbst" from flush_dcache_icache) fault as write
512 			 * operation if there is an unpopulated TLB entry
513 			 * for the address in question. To workaround that,
514 			 * we invalidate the TLB here, thus avoiding dcbst
515 			 * misbehaviour.
516 			 */
517 				_tlbie(address);
518 #endif
519 				__flush_dcache_icache((void *) address);
520 			} else
521 				flush_dcache_icache_page(page);
522 			set_bit(PG_arch_1, &page->flags);
523 		}
524 	}
525 
526 #ifdef CONFIG_PPC_STD_MMU
527 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
528 	if (!pte_young(pte) || address >= TASK_SIZE)
529 		return;
530 
531 	/* We try to figure out if we are coming from an instruction
532 	 * access fault and pass that down to __hash_page so we avoid
533 	 * double-faulting on execution of fresh text. We have to test
534 	 * for regs NULL since init will get here first thing at boot
535 	 *
536 	 * We also avoid filling the hash if not coming from a fault
537 	 */
538 	if (current->thread.regs == NULL)
539 		return;
540 	trap = TRAP(current->thread.regs);
541 	if (trap == 0x400)
542 		access |= _PAGE_EXEC;
543 	else if (trap != 0x300)
544 		return;
545 	hash_preload(vma->vm_mm, address, access, trap);
546 #endif /* CONFIG_PPC_STD_MMU */
547 }
548