1 /* 2 * PowerPC version 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * 5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) 6 * and Cort Dougan (PReP) (cort@cs.nmt.edu) 7 * Copyright (C) 1996 Paul Mackerras 8 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com) 9 * 10 * Derived from "arch/i386/mm/init.c" 11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License 15 * as published by the Free Software Foundation; either version 16 * 2 of the License, or (at your option) any later version. 17 * 18 */ 19 20 #include <linux/module.h> 21 #include <linux/sched.h> 22 #include <linux/kernel.h> 23 #include <linux/errno.h> 24 #include <linux/string.h> 25 #include <linux/types.h> 26 #include <linux/mm.h> 27 #include <linux/stddef.h> 28 #include <linux/init.h> 29 #include <linux/bootmem.h> 30 #include <linux/highmem.h> 31 #include <linux/initrd.h> 32 #include <linux/pagemap.h> 33 #include <linux/suspend.h> 34 35 #include <asm/pgalloc.h> 36 #include <asm/prom.h> 37 #include <asm/io.h> 38 #include <asm/mmu_context.h> 39 #include <asm/pgtable.h> 40 #include <asm/mmu.h> 41 #include <asm/smp.h> 42 #include <asm/machdep.h> 43 #include <asm/btext.h> 44 #include <asm/tlb.h> 45 #include <asm/lmb.h> 46 #include <asm/sections.h> 47 #include <asm/vdso.h> 48 49 #include "mmu_decl.h" 50 51 #ifndef CPU_FTR_COHERENT_ICACHE 52 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */ 53 #define CPU_FTR_NOEXECUTE 0 54 #endif 55 56 int init_bootmem_done; 57 int mem_init_done; 58 unsigned long memory_limit; 59 60 int page_is_ram(unsigned long pfn) 61 { 62 unsigned long paddr = (pfn << PAGE_SHIFT); 63 64 #ifndef CONFIG_PPC64 /* XXX for now */ 65 return paddr < __pa(high_memory); 66 #else 67 int i; 68 for (i=0; i < lmb.memory.cnt; i++) { 69 unsigned long base; 70 71 base = lmb.memory.region[i].base; 72 73 if ((paddr >= base) && 74 (paddr < (base + lmb.memory.region[i].size))) { 75 return 1; 76 } 77 } 78 79 return 0; 80 #endif 81 } 82 83 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 84 unsigned long size, pgprot_t vma_prot) 85 { 86 if (ppc_md.phys_mem_access_prot) 87 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot); 88 89 if (!page_is_ram(pfn)) 90 vma_prot = __pgprot(pgprot_val(vma_prot) 91 | _PAGE_GUARDED | _PAGE_NO_CACHE); 92 return vma_prot; 93 } 94 EXPORT_SYMBOL(phys_mem_access_prot); 95 96 #ifdef CONFIG_MEMORY_HOTPLUG 97 98 void online_page(struct page *page) 99 { 100 ClearPageReserved(page); 101 init_page_count(page); 102 __free_page(page); 103 totalram_pages++; 104 num_physpages++; 105 } 106 107 #ifdef CONFIG_NUMA 108 int memory_add_physaddr_to_nid(u64 start) 109 { 110 return hot_add_scn_to_nid(start); 111 } 112 #endif 113 114 int __devinit arch_add_memory(int nid, u64 start, u64 size) 115 { 116 struct pglist_data *pgdata; 117 struct zone *zone; 118 unsigned long start_pfn = start >> PAGE_SHIFT; 119 unsigned long nr_pages = size >> PAGE_SHIFT; 120 121 pgdata = NODE_DATA(nid); 122 123 start = (unsigned long)__va(start); 124 create_section_mapping(start, start + size); 125 126 /* this should work for most non-highmem platforms */ 127 zone = pgdata->node_zones; 128 129 return __add_pages(zone, start_pfn, nr_pages); 130 } 131 132 #endif /* CONFIG_MEMORY_HOTPLUG */ 133 134 void show_mem(void) 135 { 136 unsigned long total = 0, reserved = 0; 137 unsigned long shared = 0, cached = 0; 138 unsigned long highmem = 0; 139 struct page *page; 140 pg_data_t *pgdat; 141 unsigned long i; 142 143 printk("Mem-info:\n"); 144 show_free_areas(); 145 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); 146 for_each_online_pgdat(pgdat) { 147 unsigned long flags; 148 pgdat_resize_lock(pgdat, &flags); 149 for (i = 0; i < pgdat->node_spanned_pages; i++) { 150 if (!pfn_valid(pgdat->node_start_pfn + i)) 151 continue; 152 page = pgdat_page_nr(pgdat, i); 153 total++; 154 if (PageHighMem(page)) 155 highmem++; 156 if (PageReserved(page)) 157 reserved++; 158 else if (PageSwapCache(page)) 159 cached++; 160 else if (page_count(page)) 161 shared += page_count(page) - 1; 162 } 163 pgdat_resize_unlock(pgdat, &flags); 164 } 165 printk("%ld pages of RAM\n", total); 166 #ifdef CONFIG_HIGHMEM 167 printk("%ld pages of HIGHMEM\n", highmem); 168 #endif 169 printk("%ld reserved pages\n", reserved); 170 printk("%ld pages shared\n", shared); 171 printk("%ld pages swap cached\n", cached); 172 } 173 174 /* 175 * Initialize the bootmem system and give it all the memory we 176 * have available. If we are using highmem, we only put the 177 * lowmem into the bootmem system. 178 */ 179 #ifndef CONFIG_NEED_MULTIPLE_NODES 180 void __init do_init_bootmem(void) 181 { 182 unsigned long i; 183 unsigned long start, bootmap_pages; 184 unsigned long total_pages; 185 int boot_mapsize; 186 187 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT; 188 #ifdef CONFIG_HIGHMEM 189 total_pages = total_lowmem >> PAGE_SHIFT; 190 #endif 191 192 /* 193 * Find an area to use for the bootmem bitmap. Calculate the size of 194 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. 195 * Add 1 additional page in case the address isn't page-aligned. 196 */ 197 bootmap_pages = bootmem_bootmap_pages(total_pages); 198 199 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE); 200 201 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages); 202 203 /* Add active regions with valid PFNs */ 204 for (i = 0; i < lmb.memory.cnt; i++) { 205 unsigned long start_pfn, end_pfn; 206 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; 207 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); 208 add_active_range(0, start_pfn, end_pfn); 209 } 210 211 /* Add all physical memory to the bootmem map, mark each area 212 * present. 213 */ 214 #ifdef CONFIG_HIGHMEM 215 free_bootmem_with_active_regions(0, total_lowmem >> PAGE_SHIFT); 216 #else 217 free_bootmem_with_active_regions(0, max_pfn); 218 #endif 219 220 /* reserve the sections we're already using */ 221 for (i = 0; i < lmb.reserved.cnt; i++) 222 reserve_bootmem(lmb.reserved.region[i].base, 223 lmb_size_bytes(&lmb.reserved, i)); 224 225 /* XXX need to clip this if using highmem? */ 226 sparse_memory_present_with_active_regions(0); 227 228 init_bootmem_done = 1; 229 } 230 231 /* mark pages that don't exist as nosave */ 232 static int __init mark_nonram_nosave(void) 233 { 234 unsigned long lmb_next_region_start_pfn, 235 lmb_region_max_pfn; 236 int i; 237 238 for (i = 0; i < lmb.memory.cnt - 1; i++) { 239 lmb_region_max_pfn = 240 (lmb.memory.region[i].base >> PAGE_SHIFT) + 241 (lmb.memory.region[i].size >> PAGE_SHIFT); 242 lmb_next_region_start_pfn = 243 lmb.memory.region[i+1].base >> PAGE_SHIFT; 244 245 if (lmb_region_max_pfn < lmb_next_region_start_pfn) 246 register_nosave_region(lmb_region_max_pfn, 247 lmb_next_region_start_pfn); 248 } 249 250 return 0; 251 } 252 253 /* 254 * paging_init() sets up the page tables - in fact we've already done this. 255 */ 256 void __init paging_init(void) 257 { 258 unsigned long total_ram = lmb_phys_mem_size(); 259 unsigned long top_of_ram = lmb_end_of_DRAM(); 260 unsigned long max_zone_pfns[MAX_NR_ZONES]; 261 262 #ifdef CONFIG_HIGHMEM 263 map_page(PKMAP_BASE, 0, 0); /* XXX gross */ 264 pkmap_page_table = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k 265 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE), PKMAP_BASE); 266 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */ 267 kmap_pte = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k 268 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), 269 KMAP_FIX_BEGIN); 270 kmap_prot = PAGE_KERNEL; 271 #endif /* CONFIG_HIGHMEM */ 272 273 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 274 top_of_ram, total_ram); 275 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 276 (top_of_ram - total_ram) >> 20); 277 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 278 #ifdef CONFIG_HIGHMEM 279 max_zone_pfns[ZONE_DMA] = total_lowmem >> PAGE_SHIFT; 280 max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT; 281 #else 282 max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT; 283 #endif 284 free_area_init_nodes(max_zone_pfns); 285 286 mark_nonram_nosave(); 287 } 288 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */ 289 290 void __init mem_init(void) 291 { 292 #ifdef CONFIG_NEED_MULTIPLE_NODES 293 int nid; 294 #endif 295 pg_data_t *pgdat; 296 unsigned long i; 297 struct page *page; 298 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize; 299 300 num_physpages = lmb.memory.size >> PAGE_SHIFT; 301 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); 302 303 #ifdef CONFIG_NEED_MULTIPLE_NODES 304 for_each_online_node(nid) { 305 if (NODE_DATA(nid)->node_spanned_pages != 0) { 306 printk("freeing bootmem node %d\n", nid); 307 totalram_pages += 308 free_all_bootmem_node(NODE_DATA(nid)); 309 } 310 } 311 #else 312 max_mapnr = max_pfn; 313 totalram_pages += free_all_bootmem(); 314 #endif 315 for_each_online_pgdat(pgdat) { 316 for (i = 0; i < pgdat->node_spanned_pages; i++) { 317 if (!pfn_valid(pgdat->node_start_pfn + i)) 318 continue; 319 page = pgdat_page_nr(pgdat, i); 320 if (PageReserved(page)) 321 reservedpages++; 322 } 323 } 324 325 codesize = (unsigned long)&_sdata - (unsigned long)&_stext; 326 datasize = (unsigned long)&_edata - (unsigned long)&_sdata; 327 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin; 328 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start; 329 330 #ifdef CONFIG_HIGHMEM 331 { 332 unsigned long pfn, highmem_mapnr; 333 334 highmem_mapnr = total_lowmem >> PAGE_SHIFT; 335 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) { 336 struct page *page = pfn_to_page(pfn); 337 338 ClearPageReserved(page); 339 init_page_count(page); 340 __free_page(page); 341 totalhigh_pages++; 342 } 343 totalram_pages += totalhigh_pages; 344 printk(KERN_DEBUG "High memory: %luk\n", 345 totalhigh_pages << (PAGE_SHIFT-10)); 346 } 347 #endif /* CONFIG_HIGHMEM */ 348 349 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, " 350 "%luk reserved, %luk data, %luk bss, %luk init)\n", 351 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), 352 num_physpages << (PAGE_SHIFT-10), 353 codesize >> 10, 354 reservedpages << (PAGE_SHIFT-10), 355 datasize >> 10, 356 bsssize >> 10, 357 initsize >> 10); 358 359 mem_init_done = 1; 360 } 361 362 /* 363 * This is called when a page has been modified by the kernel. 364 * It just marks the page as not i-cache clean. We do the i-cache 365 * flush later when the page is given to a user process, if necessary. 366 */ 367 void flush_dcache_page(struct page *page) 368 { 369 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) 370 return; 371 /* avoid an atomic op if possible */ 372 if (test_bit(PG_arch_1, &page->flags)) 373 clear_bit(PG_arch_1, &page->flags); 374 } 375 EXPORT_SYMBOL(flush_dcache_page); 376 377 void flush_dcache_icache_page(struct page *page) 378 { 379 #ifdef CONFIG_BOOKE 380 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE); 381 __flush_dcache_icache(start); 382 kunmap_atomic(start, KM_PPC_SYNC_ICACHE); 383 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64) 384 /* On 8xx there is no need to kmap since highmem is not supported */ 385 __flush_dcache_icache(page_address(page)); 386 #else 387 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT); 388 #endif 389 390 } 391 void clear_user_page(void *page, unsigned long vaddr, struct page *pg) 392 { 393 clear_page(page); 394 395 /* 396 * We shouldnt have to do this, but some versions of glibc 397 * require it (ld.so assumes zero filled pages are icache clean) 398 * - Anton 399 */ 400 flush_dcache_page(pg); 401 } 402 EXPORT_SYMBOL(clear_user_page); 403 404 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, 405 struct page *pg) 406 { 407 copy_page(vto, vfrom); 408 409 /* 410 * We should be able to use the following optimisation, however 411 * there are two problems. 412 * Firstly a bug in some versions of binutils meant PLT sections 413 * were not marked executable. 414 * Secondly the first word in the GOT section is blrl, used 415 * to establish the GOT address. Until recently the GOT was 416 * not marked executable. 417 * - Anton 418 */ 419 #if 0 420 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0)) 421 return; 422 #endif 423 424 flush_dcache_page(pg); 425 } 426 427 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, 428 unsigned long addr, int len) 429 { 430 unsigned long maddr; 431 432 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK); 433 flush_icache_range(maddr, maddr + len); 434 kunmap(page); 435 } 436 EXPORT_SYMBOL(flush_icache_user_range); 437 438 /* 439 * This is called at the end of handling a user page fault, when the 440 * fault has been handled by updating a PTE in the linux page tables. 441 * We use it to preload an HPTE into the hash table corresponding to 442 * the updated linux PTE. 443 * 444 * This must always be called with the pte lock held. 445 */ 446 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, 447 pte_t pte) 448 { 449 #ifdef CONFIG_PPC_STD_MMU 450 unsigned long access = 0, trap; 451 #endif 452 unsigned long pfn = pte_pfn(pte); 453 454 /* handle i-cache coherency */ 455 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) && 456 !cpu_has_feature(CPU_FTR_NOEXECUTE) && 457 pfn_valid(pfn)) { 458 struct page *page = pfn_to_page(pfn); 459 #ifdef CONFIG_8xx 460 /* On 8xx, cache control instructions (particularly 461 * "dcbst" from flush_dcache_icache) fault as write 462 * operation if there is an unpopulated TLB entry 463 * for the address in question. To workaround that, 464 * we invalidate the TLB here, thus avoiding dcbst 465 * misbehaviour. 466 */ 467 _tlbie(address); 468 #endif 469 if (!PageReserved(page) 470 && !test_bit(PG_arch_1, &page->flags)) { 471 if (vma->vm_mm == current->active_mm) { 472 __flush_dcache_icache((void *) address); 473 } else 474 flush_dcache_icache_page(page); 475 set_bit(PG_arch_1, &page->flags); 476 } 477 } 478 479 #ifdef CONFIG_PPC_STD_MMU 480 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ 481 if (!pte_young(pte) || address >= TASK_SIZE) 482 return; 483 484 /* We try to figure out if we are coming from an instruction 485 * access fault and pass that down to __hash_page so we avoid 486 * double-faulting on execution of fresh text. We have to test 487 * for regs NULL since init will get here first thing at boot 488 * 489 * We also avoid filling the hash if not coming from a fault 490 */ 491 if (current->thread.regs == NULL) 492 return; 493 trap = TRAP(current->thread.regs); 494 if (trap == 0x400) 495 access |= _PAGE_EXEC; 496 else if (trap != 0x300) 497 return; 498 hash_preload(vma->vm_mm, address, access, trap); 499 #endif /* CONFIG_PPC_STD_MMU */ 500 } 501