1 /* 2 * PowerPC version 3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 4 * 5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) 6 * and Cort Dougan (PReP) (cort@cs.nmt.edu) 7 * Copyright (C) 1996 Paul Mackerras 8 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com) 9 * 10 * Derived from "arch/i386/mm/init.c" 11 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License 15 * as published by the Free Software Foundation; either version 16 * 2 of the License, or (at your option) any later version. 17 * 18 */ 19 20 #include <linux/module.h> 21 #include <linux/sched.h> 22 #include <linux/kernel.h> 23 #include <linux/errno.h> 24 #include <linux/string.h> 25 #include <linux/types.h> 26 #include <linux/mm.h> 27 #include <linux/stddef.h> 28 #include <linux/init.h> 29 #include <linux/bootmem.h> 30 #include <linux/highmem.h> 31 #include <linux/initrd.h> 32 #include <linux/pagemap.h> 33 #include <linux/suspend.h> 34 35 #include <asm/pgalloc.h> 36 #include <asm/prom.h> 37 #include <asm/io.h> 38 #include <asm/mmu_context.h> 39 #include <asm/pgtable.h> 40 #include <asm/mmu.h> 41 #include <asm/smp.h> 42 #include <asm/machdep.h> 43 #include <asm/btext.h> 44 #include <asm/tlb.h> 45 #include <asm/lmb.h> 46 #include <asm/sections.h> 47 #include <asm/vdso.h> 48 49 #include "mmu_decl.h" 50 51 #ifndef CPU_FTR_COHERENT_ICACHE 52 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */ 53 #define CPU_FTR_NOEXECUTE 0 54 #endif 55 56 int init_bootmem_done; 57 int mem_init_done; 58 unsigned long memory_limit; 59 60 int page_is_ram(unsigned long pfn) 61 { 62 unsigned long paddr = (pfn << PAGE_SHIFT); 63 64 #ifndef CONFIG_PPC64 /* XXX for now */ 65 return paddr < __pa(high_memory); 66 #else 67 int i; 68 for (i=0; i < lmb.memory.cnt; i++) { 69 unsigned long base; 70 71 base = lmb.memory.region[i].base; 72 73 if ((paddr >= base) && 74 (paddr < (base + lmb.memory.region[i].size))) { 75 return 1; 76 } 77 } 78 79 return 0; 80 #endif 81 } 82 83 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 84 unsigned long size, pgprot_t vma_prot) 85 { 86 if (ppc_md.phys_mem_access_prot) 87 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot); 88 89 if (!page_is_ram(pfn)) 90 vma_prot = __pgprot(pgprot_val(vma_prot) 91 | _PAGE_GUARDED | _PAGE_NO_CACHE); 92 return vma_prot; 93 } 94 EXPORT_SYMBOL(phys_mem_access_prot); 95 96 #ifdef CONFIG_MEMORY_HOTPLUG 97 98 void online_page(struct page *page) 99 { 100 ClearPageReserved(page); 101 init_page_count(page); 102 __free_page(page); 103 totalram_pages++; 104 num_physpages++; 105 } 106 107 #ifdef CONFIG_NUMA 108 int memory_add_physaddr_to_nid(u64 start) 109 { 110 return hot_add_scn_to_nid(start); 111 } 112 #endif 113 114 int __devinit arch_add_memory(int nid, u64 start, u64 size) 115 { 116 struct pglist_data *pgdata; 117 struct zone *zone; 118 unsigned long start_pfn = start >> PAGE_SHIFT; 119 unsigned long nr_pages = size >> PAGE_SHIFT; 120 121 pgdata = NODE_DATA(nid); 122 123 start = (unsigned long)__va(start); 124 create_section_mapping(start, start + size); 125 126 /* this should work for most non-highmem platforms */ 127 zone = pgdata->node_zones; 128 129 return __add_pages(zone, start_pfn, nr_pages); 130 } 131 132 /* 133 * First pass at this code will check to determine if the remove 134 * request is within the RMO. Do not allow removal within the RMO. 135 */ 136 int __devinit remove_memory(u64 start, u64 size) 137 { 138 struct zone *zone; 139 unsigned long start_pfn, end_pfn, nr_pages; 140 141 start_pfn = start >> PAGE_SHIFT; 142 nr_pages = size >> PAGE_SHIFT; 143 end_pfn = start_pfn + nr_pages; 144 145 printk("%s(): Attempting to remove memoy in range " 146 "%lx to %lx\n", __func__, start, start+size); 147 /* 148 * check for range within RMO 149 */ 150 zone = page_zone(pfn_to_page(start_pfn)); 151 152 printk("%s(): memory will be removed from " 153 "the %s zone\n", __func__, zone->name); 154 155 /* 156 * not handling removing memory ranges that 157 * overlap multiple zones yet 158 */ 159 if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages)) 160 goto overlap; 161 162 /* make sure it is NOT in RMO */ 163 if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) { 164 printk("%s(): range to be removed must NOT be in RMO!\n", 165 __func__); 166 goto in_rmo; 167 } 168 169 return __remove_pages(zone, start_pfn, nr_pages); 170 171 overlap: 172 printk("%s(): memory range to be removed overlaps " 173 "multiple zones!!!\n", __func__); 174 in_rmo: 175 return -1; 176 } 177 #endif /* CONFIG_MEMORY_HOTPLUG */ 178 179 void show_mem(void) 180 { 181 unsigned long total = 0, reserved = 0; 182 unsigned long shared = 0, cached = 0; 183 unsigned long highmem = 0; 184 struct page *page; 185 pg_data_t *pgdat; 186 unsigned long i; 187 188 printk("Mem-info:\n"); 189 show_free_areas(); 190 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); 191 for_each_online_pgdat(pgdat) { 192 unsigned long flags; 193 pgdat_resize_lock(pgdat, &flags); 194 for (i = 0; i < pgdat->node_spanned_pages; i++) { 195 if (!pfn_valid(pgdat->node_start_pfn + i)) 196 continue; 197 page = pgdat_page_nr(pgdat, i); 198 total++; 199 if (PageHighMem(page)) 200 highmem++; 201 if (PageReserved(page)) 202 reserved++; 203 else if (PageSwapCache(page)) 204 cached++; 205 else if (page_count(page)) 206 shared += page_count(page) - 1; 207 } 208 pgdat_resize_unlock(pgdat, &flags); 209 } 210 printk("%ld pages of RAM\n", total); 211 #ifdef CONFIG_HIGHMEM 212 printk("%ld pages of HIGHMEM\n", highmem); 213 #endif 214 printk("%ld reserved pages\n", reserved); 215 printk("%ld pages shared\n", shared); 216 printk("%ld pages swap cached\n", cached); 217 } 218 219 /* 220 * Initialize the bootmem system and give it all the memory we 221 * have available. If we are using highmem, we only put the 222 * lowmem into the bootmem system. 223 */ 224 #ifndef CONFIG_NEED_MULTIPLE_NODES 225 void __init do_init_bootmem(void) 226 { 227 unsigned long i; 228 unsigned long start, bootmap_pages; 229 unsigned long total_pages; 230 int boot_mapsize; 231 232 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT; 233 #ifdef CONFIG_HIGHMEM 234 total_pages = total_lowmem >> PAGE_SHIFT; 235 #endif 236 237 /* 238 * Find an area to use for the bootmem bitmap. Calculate the size of 239 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. 240 * Add 1 additional page in case the address isn't page-aligned. 241 */ 242 bootmap_pages = bootmem_bootmap_pages(total_pages); 243 244 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE); 245 246 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages); 247 248 /* Add active regions with valid PFNs */ 249 for (i = 0; i < lmb.memory.cnt; i++) { 250 unsigned long start_pfn, end_pfn; 251 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; 252 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); 253 add_active_range(0, start_pfn, end_pfn); 254 } 255 256 /* Add all physical memory to the bootmem map, mark each area 257 * present. 258 */ 259 #ifdef CONFIG_HIGHMEM 260 free_bootmem_with_active_regions(0, total_lowmem >> PAGE_SHIFT); 261 #else 262 free_bootmem_with_active_regions(0, max_pfn); 263 #endif 264 265 /* reserve the sections we're already using */ 266 for (i = 0; i < lmb.reserved.cnt; i++) 267 reserve_bootmem(lmb.reserved.region[i].base, 268 lmb_size_bytes(&lmb.reserved, i)); 269 270 /* XXX need to clip this if using highmem? */ 271 sparse_memory_present_with_active_regions(0); 272 273 init_bootmem_done = 1; 274 } 275 276 /* mark pages that don't exist as nosave */ 277 static int __init mark_nonram_nosave(void) 278 { 279 unsigned long lmb_next_region_start_pfn, 280 lmb_region_max_pfn; 281 int i; 282 283 for (i = 0; i < lmb.memory.cnt - 1; i++) { 284 lmb_region_max_pfn = 285 (lmb.memory.region[i].base >> PAGE_SHIFT) + 286 (lmb.memory.region[i].size >> PAGE_SHIFT); 287 lmb_next_region_start_pfn = 288 lmb.memory.region[i+1].base >> PAGE_SHIFT; 289 290 if (lmb_region_max_pfn < lmb_next_region_start_pfn) 291 register_nosave_region(lmb_region_max_pfn, 292 lmb_next_region_start_pfn); 293 } 294 295 return 0; 296 } 297 298 /* 299 * paging_init() sets up the page tables - in fact we've already done this. 300 */ 301 void __init paging_init(void) 302 { 303 unsigned long total_ram = lmb_phys_mem_size(); 304 unsigned long top_of_ram = lmb_end_of_DRAM(); 305 unsigned long max_zone_pfns[MAX_NR_ZONES]; 306 307 #ifdef CONFIG_HIGHMEM 308 map_page(PKMAP_BASE, 0, 0); /* XXX gross */ 309 pkmap_page_table = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k 310 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE), PKMAP_BASE); 311 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */ 312 kmap_pte = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k 313 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), 314 KMAP_FIX_BEGIN); 315 kmap_prot = PAGE_KERNEL; 316 #endif /* CONFIG_HIGHMEM */ 317 318 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 319 top_of_ram, total_ram); 320 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 321 (top_of_ram - total_ram) >> 20); 322 memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); 323 #ifdef CONFIG_HIGHMEM 324 max_zone_pfns[ZONE_DMA] = total_lowmem >> PAGE_SHIFT; 325 max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT; 326 #else 327 max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT; 328 #endif 329 free_area_init_nodes(max_zone_pfns); 330 331 mark_nonram_nosave(); 332 } 333 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */ 334 335 void __init mem_init(void) 336 { 337 #ifdef CONFIG_NEED_MULTIPLE_NODES 338 int nid; 339 #endif 340 pg_data_t *pgdat; 341 unsigned long i; 342 struct page *page; 343 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize; 344 345 num_physpages = lmb.memory.size >> PAGE_SHIFT; 346 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); 347 348 #ifdef CONFIG_NEED_MULTIPLE_NODES 349 for_each_online_node(nid) { 350 if (NODE_DATA(nid)->node_spanned_pages != 0) { 351 printk("freeing bootmem node %d\n", nid); 352 totalram_pages += 353 free_all_bootmem_node(NODE_DATA(nid)); 354 } 355 } 356 #else 357 max_mapnr = max_pfn; 358 totalram_pages += free_all_bootmem(); 359 #endif 360 for_each_online_pgdat(pgdat) { 361 for (i = 0; i < pgdat->node_spanned_pages; i++) { 362 if (!pfn_valid(pgdat->node_start_pfn + i)) 363 continue; 364 page = pgdat_page_nr(pgdat, i); 365 if (PageReserved(page)) 366 reservedpages++; 367 } 368 } 369 370 codesize = (unsigned long)&_sdata - (unsigned long)&_stext; 371 datasize = (unsigned long)&_edata - (unsigned long)&_sdata; 372 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin; 373 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start; 374 375 #ifdef CONFIG_HIGHMEM 376 { 377 unsigned long pfn, highmem_mapnr; 378 379 highmem_mapnr = total_lowmem >> PAGE_SHIFT; 380 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) { 381 struct page *page = pfn_to_page(pfn); 382 383 ClearPageReserved(page); 384 init_page_count(page); 385 __free_page(page); 386 totalhigh_pages++; 387 } 388 totalram_pages += totalhigh_pages; 389 printk(KERN_DEBUG "High memory: %luk\n", 390 totalhigh_pages << (PAGE_SHIFT-10)); 391 } 392 #endif /* CONFIG_HIGHMEM */ 393 394 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, " 395 "%luk reserved, %luk data, %luk bss, %luk init)\n", 396 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10), 397 num_physpages << (PAGE_SHIFT-10), 398 codesize >> 10, 399 reservedpages << (PAGE_SHIFT-10), 400 datasize >> 10, 401 bsssize >> 10, 402 initsize >> 10); 403 404 mem_init_done = 1; 405 } 406 407 /* 408 * This is called when a page has been modified by the kernel. 409 * It just marks the page as not i-cache clean. We do the i-cache 410 * flush later when the page is given to a user process, if necessary. 411 */ 412 void flush_dcache_page(struct page *page) 413 { 414 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) 415 return; 416 /* avoid an atomic op if possible */ 417 if (test_bit(PG_arch_1, &page->flags)) 418 clear_bit(PG_arch_1, &page->flags); 419 } 420 EXPORT_SYMBOL(flush_dcache_page); 421 422 void flush_dcache_icache_page(struct page *page) 423 { 424 #ifdef CONFIG_BOOKE 425 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE); 426 __flush_dcache_icache(start); 427 kunmap_atomic(start, KM_PPC_SYNC_ICACHE); 428 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64) 429 /* On 8xx there is no need to kmap since highmem is not supported */ 430 __flush_dcache_icache(page_address(page)); 431 #else 432 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT); 433 #endif 434 435 } 436 void clear_user_page(void *page, unsigned long vaddr, struct page *pg) 437 { 438 clear_page(page); 439 440 /* 441 * We shouldnt have to do this, but some versions of glibc 442 * require it (ld.so assumes zero filled pages are icache clean) 443 * - Anton 444 */ 445 flush_dcache_page(pg); 446 } 447 EXPORT_SYMBOL(clear_user_page); 448 449 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, 450 struct page *pg) 451 { 452 copy_page(vto, vfrom); 453 454 /* 455 * We should be able to use the following optimisation, however 456 * there are two problems. 457 * Firstly a bug in some versions of binutils meant PLT sections 458 * were not marked executable. 459 * Secondly the first word in the GOT section is blrl, used 460 * to establish the GOT address. Until recently the GOT was 461 * not marked executable. 462 * - Anton 463 */ 464 #if 0 465 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0)) 466 return; 467 #endif 468 469 flush_dcache_page(pg); 470 } 471 472 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, 473 unsigned long addr, int len) 474 { 475 unsigned long maddr; 476 477 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK); 478 flush_icache_range(maddr, maddr + len); 479 kunmap(page); 480 } 481 EXPORT_SYMBOL(flush_icache_user_range); 482 483 /* 484 * This is called at the end of handling a user page fault, when the 485 * fault has been handled by updating a PTE in the linux page tables. 486 * We use it to preload an HPTE into the hash table corresponding to 487 * the updated linux PTE. 488 * 489 * This must always be called with the pte lock held. 490 */ 491 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, 492 pte_t pte) 493 { 494 #ifdef CONFIG_PPC_STD_MMU 495 unsigned long access = 0, trap; 496 #endif 497 unsigned long pfn = pte_pfn(pte); 498 499 /* handle i-cache coherency */ 500 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) && 501 !cpu_has_feature(CPU_FTR_NOEXECUTE) && 502 pfn_valid(pfn)) { 503 struct page *page = pfn_to_page(pfn); 504 #ifdef CONFIG_8xx 505 /* On 8xx, cache control instructions (particularly 506 * "dcbst" from flush_dcache_icache) fault as write 507 * operation if there is an unpopulated TLB entry 508 * for the address in question. To workaround that, 509 * we invalidate the TLB here, thus avoiding dcbst 510 * misbehaviour. 511 */ 512 _tlbie(address); 513 #endif 514 if (!PageReserved(page) 515 && !test_bit(PG_arch_1, &page->flags)) { 516 if (vma->vm_mm == current->active_mm) { 517 __flush_dcache_icache((void *) address); 518 } else 519 flush_dcache_icache_page(page); 520 set_bit(PG_arch_1, &page->flags); 521 } 522 } 523 524 #ifdef CONFIG_PPC_STD_MMU 525 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ 526 if (!pte_young(pte) || address >= TASK_SIZE) 527 return; 528 529 /* We try to figure out if we are coming from an instruction 530 * access fault and pass that down to __hash_page so we avoid 531 * double-faulting on execution of fresh text. We have to test 532 * for regs NULL since init will get here first thing at boot 533 * 534 * We also avoid filling the hash if not coming from a fault 535 */ 536 if (current->thread.regs == NULL) 537 return; 538 trap = TRAP(current->thread.regs); 539 if (trap == 0x400) 540 access |= _PAGE_EXEC; 541 else if (trap != 0x300) 542 return; 543 hash_preload(vma->vm_mm, address, access, trap); 544 #endif /* CONFIG_PPC_STD_MMU */ 545 } 546