xref: /linux/arch/powerpc/mm/mem.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
9  *
10  *  Derived from "arch/i386/mm/init.c"
11  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
12  *
13  *  This program is free software; you can redistribute it and/or
14  *  modify it under the terms of the GNU General Public License
15  *  as published by the Free Software Foundation; either version
16  *  2 of the License, or (at your option) any later version.
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/errno.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/stddef.h>
28 #include <linux/init.h>
29 #include <linux/bootmem.h>
30 #include <linux/highmem.h>
31 #include <linux/initrd.h>
32 #include <linux/pagemap.h>
33 #include <linux/suspend.h>
34 
35 #include <asm/pgalloc.h>
36 #include <asm/prom.h>
37 #include <asm/io.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/smp.h>
42 #include <asm/machdep.h>
43 #include <asm/btext.h>
44 #include <asm/tlb.h>
45 #include <asm/lmb.h>
46 #include <asm/sections.h>
47 #include <asm/vdso.h>
48 
49 #include "mmu_decl.h"
50 
51 #ifndef CPU_FTR_COHERENT_ICACHE
52 #define CPU_FTR_COHERENT_ICACHE	0	/* XXX for now */
53 #define CPU_FTR_NOEXECUTE	0
54 #endif
55 
56 int init_bootmem_done;
57 int mem_init_done;
58 unsigned long memory_limit;
59 
60 int page_is_ram(unsigned long pfn)
61 {
62 	unsigned long paddr = (pfn << PAGE_SHIFT);
63 
64 #ifndef CONFIG_PPC64	/* XXX for now */
65 	return paddr < __pa(high_memory);
66 #else
67 	int i;
68 	for (i=0; i < lmb.memory.cnt; i++) {
69 		unsigned long base;
70 
71 		base = lmb.memory.region[i].base;
72 
73 		if ((paddr >= base) &&
74 			(paddr < (base + lmb.memory.region[i].size))) {
75 			return 1;
76 		}
77 	}
78 
79 	return 0;
80 #endif
81 }
82 
83 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
84 			      unsigned long size, pgprot_t vma_prot)
85 {
86 	if (ppc_md.phys_mem_access_prot)
87 		return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
88 
89 	if (!page_is_ram(pfn))
90 		vma_prot = __pgprot(pgprot_val(vma_prot)
91 				    | _PAGE_GUARDED | _PAGE_NO_CACHE);
92 	return vma_prot;
93 }
94 EXPORT_SYMBOL(phys_mem_access_prot);
95 
96 #ifdef CONFIG_MEMORY_HOTPLUG
97 
98 void online_page(struct page *page)
99 {
100 	ClearPageReserved(page);
101 	init_page_count(page);
102 	__free_page(page);
103 	totalram_pages++;
104 	num_physpages++;
105 }
106 
107 #ifdef CONFIG_NUMA
108 int memory_add_physaddr_to_nid(u64 start)
109 {
110 	return hot_add_scn_to_nid(start);
111 }
112 #endif
113 
114 int __devinit arch_add_memory(int nid, u64 start, u64 size)
115 {
116 	struct pglist_data *pgdata;
117 	struct zone *zone;
118 	unsigned long start_pfn = start >> PAGE_SHIFT;
119 	unsigned long nr_pages = size >> PAGE_SHIFT;
120 
121 	pgdata = NODE_DATA(nid);
122 
123 	start = (unsigned long)__va(start);
124 	create_section_mapping(start, start + size);
125 
126 	/* this should work for most non-highmem platforms */
127 	zone = pgdata->node_zones;
128 
129 	return __add_pages(zone, start_pfn, nr_pages);
130 }
131 
132 /*
133  * First pass at this code will check to determine if the remove
134  * request is within the RMO.  Do not allow removal within the RMO.
135  */
136 int __devinit remove_memory(u64 start, u64 size)
137 {
138 	struct zone *zone;
139 	unsigned long start_pfn, end_pfn, nr_pages;
140 
141 	start_pfn = start >> PAGE_SHIFT;
142 	nr_pages = size >> PAGE_SHIFT;
143 	end_pfn = start_pfn + nr_pages;
144 
145 	printk("%s(): Attempting to remove memoy in range "
146 			"%lx to %lx\n", __func__, start, start+size);
147 	/*
148 	 * check for range within RMO
149 	 */
150 	zone = page_zone(pfn_to_page(start_pfn));
151 
152 	printk("%s(): memory will be removed from "
153 			"the %s zone\n", __func__, zone->name);
154 
155 	/*
156 	 * not handling removing memory ranges that
157 	 * overlap multiple zones yet
158 	 */
159 	if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
160 		goto overlap;
161 
162 	/* make sure it is NOT in RMO */
163 	if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
164 		printk("%s(): range to be removed must NOT be in RMO!\n",
165 			__func__);
166 		goto in_rmo;
167 	}
168 
169 	return __remove_pages(zone, start_pfn, nr_pages);
170 
171 overlap:
172 	printk("%s(): memory range to be removed overlaps "
173 		"multiple zones!!!\n", __func__);
174 in_rmo:
175 	return -1;
176 }
177 #endif /* CONFIG_MEMORY_HOTPLUG */
178 
179 void show_mem(void)
180 {
181 	unsigned long total = 0, reserved = 0;
182 	unsigned long shared = 0, cached = 0;
183 	unsigned long highmem = 0;
184 	struct page *page;
185 	pg_data_t *pgdat;
186 	unsigned long i;
187 
188 	printk("Mem-info:\n");
189 	show_free_areas();
190 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
191 	for_each_online_pgdat(pgdat) {
192 		unsigned long flags;
193 		pgdat_resize_lock(pgdat, &flags);
194 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
195 			if (!pfn_valid(pgdat->node_start_pfn + i))
196 				continue;
197 			page = pgdat_page_nr(pgdat, i);
198 			total++;
199 			if (PageHighMem(page))
200 				highmem++;
201 			if (PageReserved(page))
202 				reserved++;
203 			else if (PageSwapCache(page))
204 				cached++;
205 			else if (page_count(page))
206 				shared += page_count(page) - 1;
207 		}
208 		pgdat_resize_unlock(pgdat, &flags);
209 	}
210 	printk("%ld pages of RAM\n", total);
211 #ifdef CONFIG_HIGHMEM
212 	printk("%ld pages of HIGHMEM\n", highmem);
213 #endif
214 	printk("%ld reserved pages\n", reserved);
215 	printk("%ld pages shared\n", shared);
216 	printk("%ld pages swap cached\n", cached);
217 }
218 
219 /*
220  * Initialize the bootmem system and give it all the memory we
221  * have available.  If we are using highmem, we only put the
222  * lowmem into the bootmem system.
223  */
224 #ifndef CONFIG_NEED_MULTIPLE_NODES
225 void __init do_init_bootmem(void)
226 {
227 	unsigned long i;
228 	unsigned long start, bootmap_pages;
229 	unsigned long total_pages;
230 	int boot_mapsize;
231 
232 	max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
233 #ifdef CONFIG_HIGHMEM
234 	total_pages = total_lowmem >> PAGE_SHIFT;
235 #endif
236 
237 	/*
238 	 * Find an area to use for the bootmem bitmap.  Calculate the size of
239 	 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
240 	 * Add 1 additional page in case the address isn't page-aligned.
241 	 */
242 	bootmap_pages = bootmem_bootmap_pages(total_pages);
243 
244 	start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
245 
246 	boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
247 
248 	/* Add active regions with valid PFNs */
249 	for (i = 0; i < lmb.memory.cnt; i++) {
250 		unsigned long start_pfn, end_pfn;
251 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
252 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
253 		add_active_range(0, start_pfn, end_pfn);
254 	}
255 
256 	/* Add all physical memory to the bootmem map, mark each area
257 	 * present.
258 	 */
259 #ifdef CONFIG_HIGHMEM
260 	free_bootmem_with_active_regions(0, total_lowmem >> PAGE_SHIFT);
261 #else
262 	free_bootmem_with_active_regions(0, max_pfn);
263 #endif
264 
265 	/* reserve the sections we're already using */
266 	for (i = 0; i < lmb.reserved.cnt; i++)
267 		reserve_bootmem(lmb.reserved.region[i].base,
268 				lmb_size_bytes(&lmb.reserved, i));
269 
270 	/* XXX need to clip this if using highmem? */
271 	sparse_memory_present_with_active_regions(0);
272 
273 	init_bootmem_done = 1;
274 }
275 
276 /* mark pages that don't exist as nosave */
277 static int __init mark_nonram_nosave(void)
278 {
279 	unsigned long lmb_next_region_start_pfn,
280 		      lmb_region_max_pfn;
281 	int i;
282 
283 	for (i = 0; i < lmb.memory.cnt - 1; i++) {
284 		lmb_region_max_pfn =
285 			(lmb.memory.region[i].base >> PAGE_SHIFT) +
286 			(lmb.memory.region[i].size >> PAGE_SHIFT);
287 		lmb_next_region_start_pfn =
288 			lmb.memory.region[i+1].base >> PAGE_SHIFT;
289 
290 		if (lmb_region_max_pfn < lmb_next_region_start_pfn)
291 			register_nosave_region(lmb_region_max_pfn,
292 					       lmb_next_region_start_pfn);
293 	}
294 
295 	return 0;
296 }
297 
298 /*
299  * paging_init() sets up the page tables - in fact we've already done this.
300  */
301 void __init paging_init(void)
302 {
303 	unsigned long total_ram = lmb_phys_mem_size();
304 	unsigned long top_of_ram = lmb_end_of_DRAM();
305 	unsigned long max_zone_pfns[MAX_NR_ZONES];
306 
307 #ifdef CONFIG_HIGHMEM
308 	map_page(PKMAP_BASE, 0, 0);	/* XXX gross */
309 	pkmap_page_table = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
310 			(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
311 	map_page(KMAP_FIX_BEGIN, 0, 0);	/* XXX gross */
312 	kmap_pte = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k
313 			(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN),
314 			 KMAP_FIX_BEGIN);
315 	kmap_prot = PAGE_KERNEL;
316 #endif /* CONFIG_HIGHMEM */
317 
318 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
319 	       top_of_ram, total_ram);
320 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
321 	       (top_of_ram - total_ram) >> 20);
322 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
323 #ifdef CONFIG_HIGHMEM
324 	max_zone_pfns[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
325 	max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT;
326 #else
327 	max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
328 #endif
329 	free_area_init_nodes(max_zone_pfns);
330 
331 	mark_nonram_nosave();
332 }
333 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
334 
335 void __init mem_init(void)
336 {
337 #ifdef CONFIG_NEED_MULTIPLE_NODES
338 	int nid;
339 #endif
340 	pg_data_t *pgdat;
341 	unsigned long i;
342 	struct page *page;
343 	unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
344 
345 	num_physpages = lmb.memory.size >> PAGE_SHIFT;
346 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
347 
348 #ifdef CONFIG_NEED_MULTIPLE_NODES
349         for_each_online_node(nid) {
350 		if (NODE_DATA(nid)->node_spanned_pages != 0) {
351 			printk("freeing bootmem node %d\n", nid);
352 			totalram_pages +=
353 				free_all_bootmem_node(NODE_DATA(nid));
354 		}
355 	}
356 #else
357 	max_mapnr = max_pfn;
358 	totalram_pages += free_all_bootmem();
359 #endif
360 	for_each_online_pgdat(pgdat) {
361 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
362 			if (!pfn_valid(pgdat->node_start_pfn + i))
363 				continue;
364 			page = pgdat_page_nr(pgdat, i);
365 			if (PageReserved(page))
366 				reservedpages++;
367 		}
368 	}
369 
370 	codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
371 	datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
372 	initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
373 	bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
374 
375 #ifdef CONFIG_HIGHMEM
376 	{
377 		unsigned long pfn, highmem_mapnr;
378 
379 		highmem_mapnr = total_lowmem >> PAGE_SHIFT;
380 		for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
381 			struct page *page = pfn_to_page(pfn);
382 
383 			ClearPageReserved(page);
384 			init_page_count(page);
385 			__free_page(page);
386 			totalhigh_pages++;
387 		}
388 		totalram_pages += totalhigh_pages;
389 		printk(KERN_DEBUG "High memory: %luk\n",
390 		       totalhigh_pages << (PAGE_SHIFT-10));
391 	}
392 #endif /* CONFIG_HIGHMEM */
393 
394 	printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
395 	       "%luk reserved, %luk data, %luk bss, %luk init)\n",
396 		(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
397 		num_physpages << (PAGE_SHIFT-10),
398 		codesize >> 10,
399 		reservedpages << (PAGE_SHIFT-10),
400 		datasize >> 10,
401 		bsssize >> 10,
402 		initsize >> 10);
403 
404 	mem_init_done = 1;
405 }
406 
407 /*
408  * This is called when a page has been modified by the kernel.
409  * It just marks the page as not i-cache clean.  We do the i-cache
410  * flush later when the page is given to a user process, if necessary.
411  */
412 void flush_dcache_page(struct page *page)
413 {
414 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
415 		return;
416 	/* avoid an atomic op if possible */
417 	if (test_bit(PG_arch_1, &page->flags))
418 		clear_bit(PG_arch_1, &page->flags);
419 }
420 EXPORT_SYMBOL(flush_dcache_page);
421 
422 void flush_dcache_icache_page(struct page *page)
423 {
424 #ifdef CONFIG_BOOKE
425 	void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
426 	__flush_dcache_icache(start);
427 	kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
428 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
429 	/* On 8xx there is no need to kmap since highmem is not supported */
430 	__flush_dcache_icache(page_address(page));
431 #else
432 	__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
433 #endif
434 
435 }
436 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
437 {
438 	clear_page(page);
439 
440 	/*
441 	 * We shouldnt have to do this, but some versions of glibc
442 	 * require it (ld.so assumes zero filled pages are icache clean)
443 	 * - Anton
444 	 */
445 	flush_dcache_page(pg);
446 }
447 EXPORT_SYMBOL(clear_user_page);
448 
449 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
450 		    struct page *pg)
451 {
452 	copy_page(vto, vfrom);
453 
454 	/*
455 	 * We should be able to use the following optimisation, however
456 	 * there are two problems.
457 	 * Firstly a bug in some versions of binutils meant PLT sections
458 	 * were not marked executable.
459 	 * Secondly the first word in the GOT section is blrl, used
460 	 * to establish the GOT address. Until recently the GOT was
461 	 * not marked executable.
462 	 * - Anton
463 	 */
464 #if 0
465 	if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
466 		return;
467 #endif
468 
469 	flush_dcache_page(pg);
470 }
471 
472 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
473 			     unsigned long addr, int len)
474 {
475 	unsigned long maddr;
476 
477 	maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
478 	flush_icache_range(maddr, maddr + len);
479 	kunmap(page);
480 }
481 EXPORT_SYMBOL(flush_icache_user_range);
482 
483 /*
484  * This is called at the end of handling a user page fault, when the
485  * fault has been handled by updating a PTE in the linux page tables.
486  * We use it to preload an HPTE into the hash table corresponding to
487  * the updated linux PTE.
488  *
489  * This must always be called with the pte lock held.
490  */
491 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
492 		      pte_t pte)
493 {
494 #ifdef CONFIG_PPC_STD_MMU
495 	unsigned long access = 0, trap;
496 #endif
497 	unsigned long pfn = pte_pfn(pte);
498 
499 	/* handle i-cache coherency */
500 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
501 	    !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
502 	    pfn_valid(pfn)) {
503 		struct page *page = pfn_to_page(pfn);
504 #ifdef CONFIG_8xx
505 		/* On 8xx, cache control instructions (particularly
506 		 * "dcbst" from flush_dcache_icache) fault as write
507 		 * operation if there is an unpopulated TLB entry
508 		 * for the address in question. To workaround that,
509 		 * we invalidate the TLB here, thus avoiding dcbst
510 		 * misbehaviour.
511 		 */
512 		_tlbie(address);
513 #endif
514 		if (!PageReserved(page)
515 		    && !test_bit(PG_arch_1, &page->flags)) {
516 			if (vma->vm_mm == current->active_mm) {
517 				__flush_dcache_icache((void *) address);
518 			} else
519 				flush_dcache_icache_page(page);
520 			set_bit(PG_arch_1, &page->flags);
521 		}
522 	}
523 
524 #ifdef CONFIG_PPC_STD_MMU
525 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
526 	if (!pte_young(pte) || address >= TASK_SIZE)
527 		return;
528 
529 	/* We try to figure out if we are coming from an instruction
530 	 * access fault and pass that down to __hash_page so we avoid
531 	 * double-faulting on execution of fresh text. We have to test
532 	 * for regs NULL since init will get here first thing at boot
533 	 *
534 	 * We also avoid filling the hash if not coming from a fault
535 	 */
536 	if (current->thread.regs == NULL)
537 		return;
538 	trap = TRAP(current->thread.regs);
539 	if (trap == 0x400)
540 		access |= _PAGE_EXEC;
541 	else if (trap != 0x300)
542 		return;
543 	hash_preload(vma->vm_mm, address, access, trap);
544 #endif /* CONFIG_PPC_STD_MMU */
545 }
546