xref: /linux/arch/powerpc/mm/mem.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *  Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9  *  PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
10  *
11  *  Derived from "arch/i386/mm/init.c"
12  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  *
19  */
20 
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/mm.h>
28 #include <linux/stddef.h>
29 #include <linux/init.h>
30 #include <linux/bootmem.h>
31 #include <linux/highmem.h>
32 #include <linux/initrd.h>
33 #include <linux/pagemap.h>
34 
35 #include <asm/pgalloc.h>
36 #include <asm/prom.h>
37 #include <asm/io.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu.h>
41 #include <asm/smp.h>
42 #include <asm/machdep.h>
43 #include <asm/btext.h>
44 #include <asm/tlb.h>
45 #include <asm/prom.h>
46 #include <asm/lmb.h>
47 #include <asm/sections.h>
48 #include <asm/vdso.h>
49 
50 #include "mmu_decl.h"
51 
52 #ifndef CPU_FTR_COHERENT_ICACHE
53 #define CPU_FTR_COHERENT_ICACHE	0	/* XXX for now */
54 #define CPU_FTR_NOEXECUTE	0
55 #endif
56 
57 int init_bootmem_done;
58 int mem_init_done;
59 unsigned long memory_limit;
60 
61 extern void hash_preload(struct mm_struct *mm, unsigned long ea,
62 			 unsigned long access, unsigned long trap);
63 
64 /*
65  * This is called by /dev/mem to know if a given address has to
66  * be mapped non-cacheable or not
67  */
68 int page_is_ram(unsigned long pfn)
69 {
70 	unsigned long paddr = (pfn << PAGE_SHIFT);
71 
72 #ifndef CONFIG_PPC64	/* XXX for now */
73 	return paddr < __pa(high_memory);
74 #else
75 	int i;
76 	for (i=0; i < lmb.memory.cnt; i++) {
77 		unsigned long base;
78 
79 		base = lmb.memory.region[i].base;
80 
81 		if ((paddr >= base) &&
82 			(paddr < (base + lmb.memory.region[i].size))) {
83 			return 1;
84 		}
85 	}
86 
87 	return 0;
88 #endif
89 }
90 EXPORT_SYMBOL(page_is_ram);
91 
92 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
93 			      unsigned long size, pgprot_t vma_prot)
94 {
95 	if (ppc_md.phys_mem_access_prot)
96 		return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
97 
98 	if (!page_is_ram(pfn))
99 		vma_prot = __pgprot(pgprot_val(vma_prot)
100 				    | _PAGE_GUARDED | _PAGE_NO_CACHE);
101 	return vma_prot;
102 }
103 EXPORT_SYMBOL(phys_mem_access_prot);
104 
105 #ifdef CONFIG_MEMORY_HOTPLUG
106 
107 void online_page(struct page *page)
108 {
109 	ClearPageReserved(page);
110 	init_page_count(page);
111 	__free_page(page);
112 	totalram_pages++;
113 	num_physpages++;
114 }
115 
116 #ifdef CONFIG_NUMA
117 int memory_add_physaddr_to_nid(u64 start)
118 {
119 	return hot_add_scn_to_nid(start);
120 }
121 #endif
122 
123 int __devinit arch_add_memory(int nid, u64 start, u64 size)
124 {
125 	struct pglist_data *pgdata;
126 	struct zone *zone;
127 	unsigned long start_pfn = start >> PAGE_SHIFT;
128 	unsigned long nr_pages = size >> PAGE_SHIFT;
129 
130 	pgdata = NODE_DATA(nid);
131 
132 	start = (unsigned long)__va(start);
133 	create_section_mapping(start, start + size);
134 
135 	/* this should work for most non-highmem platforms */
136 	zone = pgdata->node_zones;
137 
138 	return __add_pages(zone, start_pfn, nr_pages);
139 
140 	return 0;
141 }
142 
143 /*
144  * First pass at this code will check to determine if the remove
145  * request is within the RMO.  Do not allow removal within the RMO.
146  */
147 int __devinit remove_memory(u64 start, u64 size)
148 {
149 	struct zone *zone;
150 	unsigned long start_pfn, end_pfn, nr_pages;
151 
152 	start_pfn = start >> PAGE_SHIFT;
153 	nr_pages = size >> PAGE_SHIFT;
154 	end_pfn = start_pfn + nr_pages;
155 
156 	printk("%s(): Attempting to remove memoy in range "
157 			"%lx to %lx\n", __func__, start, start+size);
158 	/*
159 	 * check for range within RMO
160 	 */
161 	zone = page_zone(pfn_to_page(start_pfn));
162 
163 	printk("%s(): memory will be removed from "
164 			"the %s zone\n", __func__, zone->name);
165 
166 	/*
167 	 * not handling removing memory ranges that
168 	 * overlap multiple zones yet
169 	 */
170 	if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
171 		goto overlap;
172 
173 	/* make sure it is NOT in RMO */
174 	if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
175 		printk("%s(): range to be removed must NOT be in RMO!\n",
176 			__func__);
177 		goto in_rmo;
178 	}
179 
180 	return __remove_pages(zone, start_pfn, nr_pages);
181 
182 overlap:
183 	printk("%s(): memory range to be removed overlaps "
184 		"multiple zones!!!\n", __func__);
185 in_rmo:
186 	return -1;
187 }
188 #endif /* CONFIG_MEMORY_HOTPLUG */
189 
190 void show_mem(void)
191 {
192 	unsigned long total = 0, reserved = 0;
193 	unsigned long shared = 0, cached = 0;
194 	unsigned long highmem = 0;
195 	struct page *page;
196 	pg_data_t *pgdat;
197 	unsigned long i;
198 
199 	printk("Mem-info:\n");
200 	show_free_areas();
201 	printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
202 	for_each_online_pgdat(pgdat) {
203 		unsigned long flags;
204 		pgdat_resize_lock(pgdat, &flags);
205 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
206 			if (!pfn_valid(pgdat->node_start_pfn + i))
207 				continue;
208 			page = pgdat_page_nr(pgdat, i);
209 			total++;
210 			if (PageHighMem(page))
211 				highmem++;
212 			if (PageReserved(page))
213 				reserved++;
214 			else if (PageSwapCache(page))
215 				cached++;
216 			else if (page_count(page))
217 				shared += page_count(page) - 1;
218 		}
219 		pgdat_resize_unlock(pgdat, &flags);
220 	}
221 	printk("%ld pages of RAM\n", total);
222 #ifdef CONFIG_HIGHMEM
223 	printk("%ld pages of HIGHMEM\n", highmem);
224 #endif
225 	printk("%ld reserved pages\n", reserved);
226 	printk("%ld pages shared\n", shared);
227 	printk("%ld pages swap cached\n", cached);
228 }
229 
230 /*
231  * Initialize the bootmem system and give it all the memory we
232  * have available.  If we are using highmem, we only put the
233  * lowmem into the bootmem system.
234  */
235 #ifndef CONFIG_NEED_MULTIPLE_NODES
236 void __init do_init_bootmem(void)
237 {
238 	unsigned long i;
239 	unsigned long start, bootmap_pages;
240 	unsigned long total_pages;
241 	int boot_mapsize;
242 
243 	max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
244 #ifdef CONFIG_HIGHMEM
245 	total_pages = total_lowmem >> PAGE_SHIFT;
246 #endif
247 
248 	/*
249 	 * Find an area to use for the bootmem bitmap.  Calculate the size of
250 	 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
251 	 * Add 1 additional page in case the address isn't page-aligned.
252 	 */
253 	bootmap_pages = bootmem_bootmap_pages(total_pages);
254 
255 	start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
256 
257 	boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
258 
259 	/* Add all physical memory to the bootmem map, mark each area
260 	 * present.
261 	 */
262 	for (i = 0; i < lmb.memory.cnt; i++) {
263 		unsigned long base = lmb.memory.region[i].base;
264 		unsigned long size = lmb_size_bytes(&lmb.memory, i);
265 #ifdef CONFIG_HIGHMEM
266 		if (base >= total_lowmem)
267 			continue;
268 		if (base + size > total_lowmem)
269 			size = total_lowmem - base;
270 #endif
271 		free_bootmem(base, size);
272 	}
273 
274 	/* reserve the sections we're already using */
275 	for (i = 0; i < lmb.reserved.cnt; i++)
276 		reserve_bootmem(lmb.reserved.region[i].base,
277 				lmb_size_bytes(&lmb.reserved, i));
278 
279 	/* XXX need to clip this if using highmem? */
280 	for (i = 0; i < lmb.memory.cnt; i++)
281 		memory_present(0, lmb_start_pfn(&lmb.memory, i),
282 			       lmb_end_pfn(&lmb.memory, i));
283 	init_bootmem_done = 1;
284 }
285 
286 /*
287  * paging_init() sets up the page tables - in fact we've already done this.
288  */
289 void __init paging_init(void)
290 {
291 	unsigned long zones_size[MAX_NR_ZONES];
292 	unsigned long zholes_size[MAX_NR_ZONES];
293 	unsigned long total_ram = lmb_phys_mem_size();
294 	unsigned long top_of_ram = lmb_end_of_DRAM();
295 
296 #ifdef CONFIG_HIGHMEM
297 	map_page(PKMAP_BASE, 0, 0);	/* XXX gross */
298 	pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
299 			(PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
300 	map_page(KMAP_FIX_BEGIN, 0, 0);	/* XXX gross */
301 	kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
302 			(KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
303 	kmap_prot = PAGE_KERNEL;
304 #endif /* CONFIG_HIGHMEM */
305 
306 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
307 	       top_of_ram, total_ram);
308 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
309 	       (top_of_ram - total_ram) >> 20);
310 	/*
311 	 * All pages are DMA-able so we put them all in the DMA zone.
312 	 */
313 	memset(zones_size, 0, sizeof(zones_size));
314 	memset(zholes_size, 0, sizeof(zholes_size));
315 
316 	zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
317 	zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
318 
319 #ifdef CONFIG_HIGHMEM
320 	zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
321 	zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
322 	zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
323 #else
324 	zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
325 	zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
326 #endif /* CONFIG_HIGHMEM */
327 
328 	free_area_init_node(0, NODE_DATA(0), zones_size,
329 			    __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
330 }
331 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
332 
333 void __init mem_init(void)
334 {
335 #ifdef CONFIG_NEED_MULTIPLE_NODES
336 	int nid;
337 #endif
338 	pg_data_t *pgdat;
339 	unsigned long i;
340 	struct page *page;
341 	unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
342 
343 	num_physpages = lmb.memory.size >> PAGE_SHIFT;
344 	high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
345 
346 #ifdef CONFIG_NEED_MULTIPLE_NODES
347         for_each_online_node(nid) {
348 		if (NODE_DATA(nid)->node_spanned_pages != 0) {
349 			printk("freeing bootmem node %d\n", nid);
350 			totalram_pages +=
351 				free_all_bootmem_node(NODE_DATA(nid));
352 		}
353 	}
354 #else
355 	max_mapnr = max_pfn;
356 	totalram_pages += free_all_bootmem();
357 #endif
358 	for_each_online_pgdat(pgdat) {
359 		for (i = 0; i < pgdat->node_spanned_pages; i++) {
360 			if (!pfn_valid(pgdat->node_start_pfn + i))
361 				continue;
362 			page = pgdat_page_nr(pgdat, i);
363 			if (PageReserved(page))
364 				reservedpages++;
365 		}
366 	}
367 
368 	codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
369 	datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
370 	initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
371 	bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
372 
373 #ifdef CONFIG_HIGHMEM
374 	{
375 		unsigned long pfn, highmem_mapnr;
376 
377 		highmem_mapnr = total_lowmem >> PAGE_SHIFT;
378 		for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
379 			struct page *page = pfn_to_page(pfn);
380 
381 			ClearPageReserved(page);
382 			init_page_count(page);
383 			__free_page(page);
384 			totalhigh_pages++;
385 		}
386 		totalram_pages += totalhigh_pages;
387 		printk(KERN_DEBUG "High memory: %luk\n",
388 		       totalhigh_pages << (PAGE_SHIFT-10));
389 	}
390 #endif /* CONFIG_HIGHMEM */
391 
392 	printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
393 	       "%luk reserved, %luk data, %luk bss, %luk init)\n",
394 		(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
395 		num_physpages << (PAGE_SHIFT-10),
396 		codesize >> 10,
397 		reservedpages << (PAGE_SHIFT-10),
398 		datasize >> 10,
399 		bsssize >> 10,
400 		initsize >> 10);
401 
402 	mem_init_done = 1;
403 
404 	/* Initialize the vDSO */
405 	vdso_init();
406 }
407 
408 /*
409  * This is called when a page has been modified by the kernel.
410  * It just marks the page as not i-cache clean.  We do the i-cache
411  * flush later when the page is given to a user process, if necessary.
412  */
413 void flush_dcache_page(struct page *page)
414 {
415 	if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
416 		return;
417 	/* avoid an atomic op if possible */
418 	if (test_bit(PG_arch_1, &page->flags))
419 		clear_bit(PG_arch_1, &page->flags);
420 }
421 EXPORT_SYMBOL(flush_dcache_page);
422 
423 void flush_dcache_icache_page(struct page *page)
424 {
425 #ifdef CONFIG_BOOKE
426 	void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
427 	__flush_dcache_icache(start);
428 	kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
429 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
430 	/* On 8xx there is no need to kmap since highmem is not supported */
431 	__flush_dcache_icache(page_address(page));
432 #else
433 	__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
434 #endif
435 
436 }
437 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
438 {
439 	clear_page(page);
440 
441 	/*
442 	 * We shouldnt have to do this, but some versions of glibc
443 	 * require it (ld.so assumes zero filled pages are icache clean)
444 	 * - Anton
445 	 */
446 	flush_dcache_page(pg);
447 }
448 EXPORT_SYMBOL(clear_user_page);
449 
450 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
451 		    struct page *pg)
452 {
453 	copy_page(vto, vfrom);
454 
455 	/*
456 	 * We should be able to use the following optimisation, however
457 	 * there are two problems.
458 	 * Firstly a bug in some versions of binutils meant PLT sections
459 	 * were not marked executable.
460 	 * Secondly the first word in the GOT section is blrl, used
461 	 * to establish the GOT address. Until recently the GOT was
462 	 * not marked executable.
463 	 * - Anton
464 	 */
465 #if 0
466 	if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
467 		return;
468 #endif
469 
470 	flush_dcache_page(pg);
471 }
472 
473 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
474 			     unsigned long addr, int len)
475 {
476 	unsigned long maddr;
477 
478 	maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
479 	flush_icache_range(maddr, maddr + len);
480 	kunmap(page);
481 }
482 EXPORT_SYMBOL(flush_icache_user_range);
483 
484 /*
485  * This is called at the end of handling a user page fault, when the
486  * fault has been handled by updating a PTE in the linux page tables.
487  * We use it to preload an HPTE into the hash table corresponding to
488  * the updated linux PTE.
489  *
490  * This must always be called with the pte lock held.
491  */
492 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
493 		      pte_t pte)
494 {
495 #ifdef CONFIG_PPC_STD_MMU
496 	unsigned long access = 0, trap;
497 #endif
498 	unsigned long pfn = pte_pfn(pte);
499 
500 	/* handle i-cache coherency */
501 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
502 	    !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
503 	    pfn_valid(pfn)) {
504 		struct page *page = pfn_to_page(pfn);
505 		if (!PageReserved(page)
506 		    && !test_bit(PG_arch_1, &page->flags)) {
507 			if (vma->vm_mm == current->active_mm) {
508 #ifdef CONFIG_8xx
509 			/* On 8xx, cache control instructions (particularly
510 		 	 * "dcbst" from flush_dcache_icache) fault as write
511 			 * operation if there is an unpopulated TLB entry
512 			 * for the address in question. To workaround that,
513 			 * we invalidate the TLB here, thus avoiding dcbst
514 			 * misbehaviour.
515 			 */
516 				_tlbie(address);
517 #endif
518 				__flush_dcache_icache((void *) address);
519 			} else
520 				flush_dcache_icache_page(page);
521 			set_bit(PG_arch_1, &page->flags);
522 		}
523 	}
524 
525 #ifdef CONFIG_PPC_STD_MMU
526 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
527 	if (!pte_young(pte) || address >= TASK_SIZE)
528 		return;
529 
530 	/* We try to figure out if we are coming from an instruction
531 	 * access fault and pass that down to __hash_page so we avoid
532 	 * double-faulting on execution of fresh text. We have to test
533 	 * for regs NULL since init will get here first thing at boot
534 	 *
535 	 * We also avoid filling the hash if not coming from a fault
536 	 */
537 	if (current->thread.regs == NULL)
538 		return;
539 	trap = TRAP(current->thread.regs);
540 	if (trap == 0x400)
541 		access |= _PAGE_EXEC;
542 	else if (trap != 0x300)
543 		return;
544 	hash_preload(vma->vm_mm, address, access, trap);
545 #endif /* CONFIG_PPC_STD_MMU */
546 }
547