xref: /linux/arch/powerpc/mm/init_64.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
7  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
8  *    Copyright (C) 1996 Paul Mackerras
9  *
10  *  Derived from "arch/i386/mm/init.c"
11  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
12  *
13  *  Dave Engebretsen <engebret@us.ibm.com>
14  *      Rework for PPC64 port.
15  */
16 
17 #undef DEBUG
18 
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/stddef.h>
29 #include <linux/vmalloc.h>
30 #include <linux/init.h>
31 #include <linux/delay.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/nodemask.h>
35 #include <linux/module.h>
36 #include <linux/poison.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 #include <linux/slab.h>
40 #include <linux/of_fdt.h>
41 #include <linux/libfdt.h>
42 #include <linux/memremap.h>
43 
44 #include <asm/pgalloc.h>
45 #include <asm/page.h>
46 #include <asm/prom.h>
47 #include <asm/rtas.h>
48 #include <asm/io.h>
49 #include <asm/mmu_context.h>
50 #include <asm/mmu.h>
51 #include <linux/uaccess.h>
52 #include <asm/smp.h>
53 #include <asm/machdep.h>
54 #include <asm/tlb.h>
55 #include <asm/eeh.h>
56 #include <asm/processor.h>
57 #include <asm/mmzone.h>
58 #include <asm/cputable.h>
59 #include <asm/sections.h>
60 #include <asm/iommu.h>
61 #include <asm/vdso.h>
62 
63 #include <mm/mmu_decl.h>
64 
65 #ifdef CONFIG_SPARSEMEM_VMEMMAP
66 /*
67  * Given an address within the vmemmap, determine the page that
68  * represents the start of the subsection it is within.  Note that we have to
69  * do this by hand as the proffered address may not be correctly aligned.
70  * Subtraction of non-aligned pointers produces undefined results.
71  */
72 static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
73 {
74 	unsigned long start_pfn;
75 	unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
76 
77 	/* Return the pfn of the start of the section. */
78 	start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
79 	return pfn_to_page(start_pfn);
80 }
81 
82 /*
83  * Since memory is added in sub-section chunks, before creating a new vmemmap
84  * mapping, the kernel should check whether there is an existing memmap mapping
85  * covering the new subsection added. This is needed because kernel can map
86  * vmemmap area using 16MB pages which will cover a memory range of 16G. Such
87  * a range covers multiple subsections (2M)
88  *
89  * If any subsection in the 16G range mapped by vmemmap is valid we consider the
90  * vmemmap populated (There is a page table entry already present). We can't do
91  * a page table lookup here because with the hash translation we don't keep
92  * vmemmap details in linux page table.
93  */
94 static int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
95 {
96 	struct page *start;
97 	unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
98 	start = vmemmap_subsection_start(vmemmap_addr);
99 
100 	for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
101 		/*
102 		 * pfn valid check here is intended to really check
103 		 * whether we have any subsection already initialized
104 		 * in this range.
105 		 */
106 		if (pfn_valid(page_to_pfn(start)))
107 			return 1;
108 
109 	return 0;
110 }
111 
112 /*
113  * vmemmap virtual address space management does not have a traditonal page
114  * table to track which virtual struct pages are backed by physical mapping.
115  * The virtual to physical mappings are tracked in a simple linked list
116  * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
117  * all times where as the 'next' list maintains the available
118  * vmemmap_backing structures which have been deleted from the
119  * 'vmemmap_global' list during system runtime (memory hotplug remove
120  * operation). The freed 'vmemmap_backing' structures are reused later when
121  * new requests come in without allocating fresh memory. This pointer also
122  * tracks the allocated 'vmemmap_backing' structures as we allocate one
123  * full page memory at a time when we dont have any.
124  */
125 struct vmemmap_backing *vmemmap_list;
126 static struct vmemmap_backing *next;
127 
128 /*
129  * The same pointer 'next' tracks individual chunks inside the allocated
130  * full page during the boot time and again tracks the freeed nodes during
131  * runtime. It is racy but it does not happen as they are separated by the
132  * boot process. Will create problem if some how we have memory hotplug
133  * operation during boot !!
134  */
135 static int num_left;
136 static int num_freed;
137 
138 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
139 {
140 	struct vmemmap_backing *vmem_back;
141 	/* get from freed entries first */
142 	if (num_freed) {
143 		num_freed--;
144 		vmem_back = next;
145 		next = next->list;
146 
147 		return vmem_back;
148 	}
149 
150 	/* allocate a page when required and hand out chunks */
151 	if (!num_left) {
152 		next = vmemmap_alloc_block(PAGE_SIZE, node);
153 		if (unlikely(!next)) {
154 			WARN_ON(1);
155 			return NULL;
156 		}
157 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
158 	}
159 
160 	num_left--;
161 
162 	return next++;
163 }
164 
165 static __meminit int vmemmap_list_populate(unsigned long phys,
166 					   unsigned long start,
167 					   int node)
168 {
169 	struct vmemmap_backing *vmem_back;
170 
171 	vmem_back = vmemmap_list_alloc(node);
172 	if (unlikely(!vmem_back)) {
173 		pr_debug("vmemap list allocation failed\n");
174 		return -ENOMEM;
175 	}
176 
177 	vmem_back->phys = phys;
178 	vmem_back->virt_addr = start;
179 	vmem_back->list = vmemmap_list;
180 
181 	vmemmap_list = vmem_back;
182 	return 0;
183 }
184 
185 static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
186 				unsigned long page_size)
187 {
188 	unsigned long nr_pfn = page_size / sizeof(struct page);
189 	unsigned long start_pfn = page_to_pfn((struct page *)start);
190 
191 	if ((start_pfn + nr_pfn) > altmap->end_pfn)
192 		return true;
193 
194 	if (start_pfn < altmap->base_pfn)
195 		return true;
196 
197 	return false;
198 }
199 
200 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
201 		struct vmem_altmap *altmap)
202 {
203 	bool altmap_alloc;
204 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
205 
206 	/* Align to the page size of the linear mapping. */
207 	start = ALIGN_DOWN(start, page_size);
208 
209 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
210 
211 	for (; start < end; start += page_size) {
212 		void *p = NULL;
213 		int rc;
214 
215 		/*
216 		 * This vmemmap range is backing different subsections. If any
217 		 * of that subsection is marked valid, that means we already
218 		 * have initialized a page table covering this range and hence
219 		 * the vmemmap range is populated.
220 		 */
221 		if (vmemmap_populated(start, page_size))
222 			continue;
223 
224 		/*
225 		 * Allocate from the altmap first if we have one. This may
226 		 * fail due to alignment issues when using 16MB hugepages, so
227 		 * fall back to system memory if the altmap allocation fail.
228 		 */
229 		if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
230 			p = vmemmap_alloc_block_buf(page_size, node, altmap);
231 			if (!p)
232 				pr_debug("altmap block allocation failed, falling back to system memory");
233 			else
234 				altmap_alloc = true;
235 		}
236 		if (!p) {
237 			p = vmemmap_alloc_block_buf(page_size, node, NULL);
238 			altmap_alloc = false;
239 		}
240 		if (!p)
241 			return -ENOMEM;
242 
243 		if (vmemmap_list_populate(__pa(p), start, node)) {
244 			/*
245 			 * If we don't populate vmemap list, we don't have
246 			 * the ability to free the allocated vmemmap
247 			 * pages in section_deactivate. Hence free them
248 			 * here.
249 			 */
250 			int nr_pfns = page_size >> PAGE_SHIFT;
251 			unsigned long page_order = get_order(page_size);
252 
253 			if (altmap_alloc)
254 				vmem_altmap_free(altmap, nr_pfns);
255 			else
256 				free_pages((unsigned long)p, page_order);
257 			return -ENOMEM;
258 		}
259 
260 		pr_debug("      * %016lx..%016lx allocated at %p\n",
261 			 start, start + page_size, p);
262 
263 		rc = vmemmap_create_mapping(start, page_size, __pa(p));
264 		if (rc < 0) {
265 			pr_warn("%s: Unable to create vmemmap mapping: %d\n",
266 				__func__, rc);
267 			return -EFAULT;
268 		}
269 	}
270 
271 	return 0;
272 }
273 
274 #ifdef CONFIG_MEMORY_HOTPLUG
275 static unsigned long vmemmap_list_free(unsigned long start)
276 {
277 	struct vmemmap_backing *vmem_back, *vmem_back_prev;
278 
279 	vmem_back_prev = vmem_back = vmemmap_list;
280 
281 	/* look for it with prev pointer recorded */
282 	for (; vmem_back; vmem_back = vmem_back->list) {
283 		if (vmem_back->virt_addr == start)
284 			break;
285 		vmem_back_prev = vmem_back;
286 	}
287 
288 	if (unlikely(!vmem_back))
289 		return 0;
290 
291 	/* remove it from vmemmap_list */
292 	if (vmem_back == vmemmap_list) /* remove head */
293 		vmemmap_list = vmem_back->list;
294 	else
295 		vmem_back_prev->list = vmem_back->list;
296 
297 	/* next point to this freed entry */
298 	vmem_back->list = next;
299 	next = vmem_back;
300 	num_freed++;
301 
302 	return vmem_back->phys;
303 }
304 
305 void __ref vmemmap_free(unsigned long start, unsigned long end,
306 		struct vmem_altmap *altmap)
307 {
308 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
309 	unsigned long page_order = get_order(page_size);
310 	unsigned long alt_start = ~0, alt_end = ~0;
311 	unsigned long base_pfn;
312 
313 	start = ALIGN_DOWN(start, page_size);
314 	if (altmap) {
315 		alt_start = altmap->base_pfn;
316 		alt_end = altmap->base_pfn + altmap->reserve +
317 			  altmap->free + altmap->alloc + altmap->align;
318 	}
319 
320 	pr_debug("vmemmap_free %lx...%lx\n", start, end);
321 
322 	for (; start < end; start += page_size) {
323 		unsigned long nr_pages, addr;
324 		struct page *page;
325 
326 		/*
327 		 * We have already marked the subsection we are trying to remove
328 		 * invalid. So if we want to remove the vmemmap range, we
329 		 * need to make sure there is no subsection marked valid
330 		 * in this range.
331 		 */
332 		if (vmemmap_populated(start, page_size))
333 			continue;
334 
335 		addr = vmemmap_list_free(start);
336 		if (!addr)
337 			continue;
338 
339 		page = pfn_to_page(addr >> PAGE_SHIFT);
340 		nr_pages = 1 << page_order;
341 		base_pfn = PHYS_PFN(addr);
342 
343 		if (base_pfn >= alt_start && base_pfn < alt_end) {
344 			vmem_altmap_free(altmap, nr_pages);
345 		} else if (PageReserved(page)) {
346 			/* allocated from bootmem */
347 			if (page_size < PAGE_SIZE) {
348 				/*
349 				 * this shouldn't happen, but if it is
350 				 * the case, leave the memory there
351 				 */
352 				WARN_ON_ONCE(1);
353 			} else {
354 				while (nr_pages--)
355 					free_reserved_page(page++);
356 			}
357 		} else {
358 			free_pages((unsigned long)(__va(addr)), page_order);
359 		}
360 
361 		vmemmap_remove_mapping(start, page_size);
362 	}
363 }
364 #endif
365 void register_page_bootmem_memmap(unsigned long section_nr,
366 				  struct page *start_page, unsigned long size)
367 {
368 }
369 
370 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
371 
372 #ifdef CONFIG_PPC_BOOK3S_64
373 unsigned int mmu_lpid_bits;
374 unsigned int mmu_pid_bits;
375 
376 static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
377 
378 static int __init parse_disable_radix(char *p)
379 {
380 	bool val;
381 
382 	if (!p)
383 		val = true;
384 	else if (kstrtobool(p, &val))
385 		return -EINVAL;
386 
387 	disable_radix = val;
388 
389 	return 0;
390 }
391 early_param("disable_radix", parse_disable_radix);
392 
393 /*
394  * If we're running under a hypervisor, we need to check the contents of
395  * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
396  * radix.  If not, we clear the radix feature bit so we fall back to hash.
397  */
398 static void __init early_check_vec5(void)
399 {
400 	unsigned long root, chosen;
401 	int size;
402 	const u8 *vec5;
403 	u8 mmu_supported;
404 
405 	root = of_get_flat_dt_root();
406 	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
407 	if (chosen == -FDT_ERR_NOTFOUND) {
408 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
409 		return;
410 	}
411 	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
412 	if (!vec5) {
413 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
414 		return;
415 	}
416 	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
417 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
418 		return;
419 	}
420 
421 	/* Check for supported configuration */
422 	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
423 			OV5_FEAT(OV5_MMU_SUPPORT);
424 	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
425 		/* Hypervisor only supports radix - check enabled && GTSE */
426 		if (!early_radix_enabled()) {
427 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
428 		}
429 		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
430 						OV5_FEAT(OV5_RADIX_GTSE))) {
431 			cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
432 		} else
433 			cur_cpu_spec->mmu_features |= MMU_FTR_GTSE;
434 		/* Do radix anyway - the hypervisor said we had to */
435 		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
436 	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
437 		/* Hypervisor only supports hash - disable radix */
438 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
439 		cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
440 	}
441 }
442 
443 static int __init dt_scan_mmu_pid_width(unsigned long node,
444 					   const char *uname, int depth,
445 					   void *data)
446 {
447 	int size = 0;
448 	const __be32 *prop;
449 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
450 
451 	/* We are scanning "cpu" nodes only */
452 	if (type == NULL || strcmp(type, "cpu") != 0)
453 		return 0;
454 
455 	/* Find MMU LPID, PID register size */
456 	prop = of_get_flat_dt_prop(node, "ibm,mmu-lpid-bits", &size);
457 	if (prop && size == 4)
458 		mmu_lpid_bits = be32_to_cpup(prop);
459 
460 	prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
461 	if (prop && size == 4)
462 		mmu_pid_bits = be32_to_cpup(prop);
463 
464 	if (!mmu_pid_bits && !mmu_lpid_bits)
465 		return 0;
466 
467 	return 1;
468 }
469 
470 void __init mmu_early_init_devtree(void)
471 {
472 	bool hvmode = !!(mfmsr() & MSR_HV);
473 
474 	/* Disable radix mode based on kernel command line. */
475 	if (disable_radix) {
476 		if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU))
477 			cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
478 		else
479 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
480 	}
481 
482 	of_scan_flat_dt(dt_scan_mmu_pid_width, NULL);
483 	if (hvmode && !mmu_lpid_bits) {
484 		if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
485 			mmu_lpid_bits = 12; /* POWER8-10 */
486 		else
487 			mmu_lpid_bits = 10; /* POWER7 */
488 	}
489 	if (!mmu_pid_bits) {
490 		if (early_cpu_has_feature(CPU_FTR_ARCH_300))
491 			mmu_pid_bits = 20; /* POWER9-10 */
492 	}
493 
494 	/*
495 	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
496 	 * When running bare-metal, we can use radix if we like
497 	 * even though the ibm,architecture-vec-5 property created by
498 	 * skiboot doesn't have the necessary bits set.
499 	 */
500 	if (!hvmode)
501 		early_check_vec5();
502 
503 	if (early_radix_enabled()) {
504 		radix__early_init_devtree();
505 
506 		/*
507 		 * We have finalized the translation we are going to use by now.
508 		 * Radix mode is not limited by RMA / VRMA addressing.
509 		 * Hence don't limit memblock allocations.
510 		 */
511 		ppc64_rma_size = ULONG_MAX;
512 		memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
513 	} else
514 		hash__early_init_devtree();
515 
516 	if (!(cur_cpu_spec->mmu_features & MMU_FTR_HPTE_TABLE) &&
517 	    !(cur_cpu_spec->mmu_features & MMU_FTR_TYPE_RADIX))
518 		panic("kernel does not support any MMU type offered by platform");
519 }
520 #endif /* CONFIG_PPC_BOOK3S_64 */
521