xref: /linux/arch/powerpc/mm/init_64.c (revision 3fa7187eceee11998f756481e45ce8c4f9d9dc48)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
7  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
8  *    Copyright (C) 1996 Paul Mackerras
9  *
10  *  Derived from "arch/i386/mm/init.c"
11  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
12  *
13  *  Dave Engebretsen <engebret@us.ibm.com>
14  *      Rework for PPC64 port.
15  */
16 
17 #undef DEBUG
18 
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/stddef.h>
29 #include <linux/vmalloc.h>
30 #include <linux/init.h>
31 #include <linux/delay.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/nodemask.h>
35 #include <linux/module.h>
36 #include <linux/poison.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 #include <linux/slab.h>
40 #include <linux/of_fdt.h>
41 #include <linux/libfdt.h>
42 #include <linux/memremap.h>
43 
44 #include <asm/pgalloc.h>
45 #include <asm/page.h>
46 #include <asm/prom.h>
47 #include <asm/rtas.h>
48 #include <asm/io.h>
49 #include <asm/mmu_context.h>
50 #include <asm/mmu.h>
51 #include <linux/uaccess.h>
52 #include <asm/smp.h>
53 #include <asm/machdep.h>
54 #include <asm/tlb.h>
55 #include <asm/eeh.h>
56 #include <asm/processor.h>
57 #include <asm/mmzone.h>
58 #include <asm/cputable.h>
59 #include <asm/sections.h>
60 #include <asm/iommu.h>
61 #include <asm/vdso.h>
62 #include <asm/hugetlb.h>
63 
64 #include <mm/mmu_decl.h>
65 
66 #ifdef CONFIG_SPARSEMEM_VMEMMAP
67 /*
68  * Given an address within the vmemmap, determine the page that
69  * represents the start of the subsection it is within.  Note that we have to
70  * do this by hand as the proffered address may not be correctly aligned.
71  * Subtraction of non-aligned pointers produces undefined results.
72  */
73 static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
74 {
75 	unsigned long start_pfn;
76 	unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
77 
78 	/* Return the pfn of the start of the section. */
79 	start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
80 	return pfn_to_page(start_pfn);
81 }
82 
83 /*
84  * Since memory is added in sub-section chunks, before creating a new vmemmap
85  * mapping, the kernel should check whether there is an existing memmap mapping
86  * covering the new subsection added. This is needed because kernel can map
87  * vmemmap area using 16MB pages which will cover a memory range of 16G. Such
88  * a range covers multiple subsections (2M)
89  *
90  * If any subsection in the 16G range mapped by vmemmap is valid we consider the
91  * vmemmap populated (There is a page table entry already present). We can't do
92  * a page table lookup here because with the hash translation we don't keep
93  * vmemmap details in linux page table.
94  */
95 static int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
96 {
97 	struct page *start;
98 	unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
99 	start = vmemmap_subsection_start(vmemmap_addr);
100 
101 	for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
102 		/*
103 		 * pfn valid check here is intended to really check
104 		 * whether we have any subsection already initialized
105 		 * in this range.
106 		 */
107 		if (pfn_valid(page_to_pfn(start)))
108 			return 1;
109 
110 	return 0;
111 }
112 
113 /*
114  * vmemmap virtual address space management does not have a traditional page
115  * table to track which virtual struct pages are backed by physical mapping.
116  * The virtual to physical mappings are tracked in a simple linked list
117  * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
118  * all times where as the 'next' list maintains the available
119  * vmemmap_backing structures which have been deleted from the
120  * 'vmemmap_global' list during system runtime (memory hotplug remove
121  * operation). The freed 'vmemmap_backing' structures are reused later when
122  * new requests come in without allocating fresh memory. This pointer also
123  * tracks the allocated 'vmemmap_backing' structures as we allocate one
124  * full page memory at a time when we dont have any.
125  */
126 struct vmemmap_backing *vmemmap_list;
127 static struct vmemmap_backing *next;
128 
129 /*
130  * The same pointer 'next' tracks individual chunks inside the allocated
131  * full page during the boot time and again tracks the freed nodes during
132  * runtime. It is racy but it does not happen as they are separated by the
133  * boot process. Will create problem if some how we have memory hotplug
134  * operation during boot !!
135  */
136 static int num_left;
137 static int num_freed;
138 
139 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
140 {
141 	struct vmemmap_backing *vmem_back;
142 	/* get from freed entries first */
143 	if (num_freed) {
144 		num_freed--;
145 		vmem_back = next;
146 		next = next->list;
147 
148 		return vmem_back;
149 	}
150 
151 	/* allocate a page when required and hand out chunks */
152 	if (!num_left) {
153 		next = vmemmap_alloc_block(PAGE_SIZE, node);
154 		if (unlikely(!next)) {
155 			WARN_ON(1);
156 			return NULL;
157 		}
158 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
159 	}
160 
161 	num_left--;
162 
163 	return next++;
164 }
165 
166 static __meminit int vmemmap_list_populate(unsigned long phys,
167 					   unsigned long start,
168 					   int node)
169 {
170 	struct vmemmap_backing *vmem_back;
171 
172 	vmem_back = vmemmap_list_alloc(node);
173 	if (unlikely(!vmem_back)) {
174 		pr_debug("vmemap list allocation failed\n");
175 		return -ENOMEM;
176 	}
177 
178 	vmem_back->phys = phys;
179 	vmem_back->virt_addr = start;
180 	vmem_back->list = vmemmap_list;
181 
182 	vmemmap_list = vmem_back;
183 	return 0;
184 }
185 
186 static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
187 				unsigned long page_size)
188 {
189 	unsigned long nr_pfn = page_size / sizeof(struct page);
190 	unsigned long start_pfn = page_to_pfn((struct page *)start);
191 
192 	if ((start_pfn + nr_pfn - 1) > altmap->end_pfn)
193 		return true;
194 
195 	if (start_pfn < altmap->base_pfn)
196 		return true;
197 
198 	return false;
199 }
200 
201 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
202 		struct vmem_altmap *altmap)
203 {
204 	bool altmap_alloc;
205 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
206 
207 	/* Align to the page size of the linear mapping. */
208 	start = ALIGN_DOWN(start, page_size);
209 
210 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
211 
212 	for (; start < end; start += page_size) {
213 		void *p = NULL;
214 		int rc;
215 
216 		/*
217 		 * This vmemmap range is backing different subsections. If any
218 		 * of that subsection is marked valid, that means we already
219 		 * have initialized a page table covering this range and hence
220 		 * the vmemmap range is populated.
221 		 */
222 		if (vmemmap_populated(start, page_size))
223 			continue;
224 
225 		/*
226 		 * Allocate from the altmap first if we have one. This may
227 		 * fail due to alignment issues when using 16MB hugepages, so
228 		 * fall back to system memory if the altmap allocation fail.
229 		 */
230 		if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
231 			p = vmemmap_alloc_block_buf(page_size, node, altmap);
232 			if (!p)
233 				pr_debug("altmap block allocation failed, falling back to system memory");
234 			else
235 				altmap_alloc = true;
236 		}
237 		if (!p) {
238 			p = vmemmap_alloc_block_buf(page_size, node, NULL);
239 			altmap_alloc = false;
240 		}
241 		if (!p)
242 			return -ENOMEM;
243 
244 		if (vmemmap_list_populate(__pa(p), start, node)) {
245 			/*
246 			 * If we don't populate vmemap list, we don't have
247 			 * the ability to free the allocated vmemmap
248 			 * pages in section_deactivate. Hence free them
249 			 * here.
250 			 */
251 			int nr_pfns = page_size >> PAGE_SHIFT;
252 			unsigned long page_order = get_order(page_size);
253 
254 			if (altmap_alloc)
255 				vmem_altmap_free(altmap, nr_pfns);
256 			else
257 				free_pages((unsigned long)p, page_order);
258 			return -ENOMEM;
259 		}
260 
261 		pr_debug("      * %016lx..%016lx allocated at %p\n",
262 			 start, start + page_size, p);
263 
264 		rc = vmemmap_create_mapping(start, page_size, __pa(p));
265 		if (rc < 0) {
266 			pr_warn("%s: Unable to create vmemmap mapping: %d\n",
267 				__func__, rc);
268 			return -EFAULT;
269 		}
270 	}
271 
272 	return 0;
273 }
274 
275 #ifdef CONFIG_MEMORY_HOTPLUG
276 static unsigned long vmemmap_list_free(unsigned long start)
277 {
278 	struct vmemmap_backing *vmem_back, *vmem_back_prev;
279 
280 	vmem_back_prev = vmem_back = vmemmap_list;
281 
282 	/* look for it with prev pointer recorded */
283 	for (; vmem_back; vmem_back = vmem_back->list) {
284 		if (vmem_back->virt_addr == start)
285 			break;
286 		vmem_back_prev = vmem_back;
287 	}
288 
289 	if (unlikely(!vmem_back))
290 		return 0;
291 
292 	/* remove it from vmemmap_list */
293 	if (vmem_back == vmemmap_list) /* remove head */
294 		vmemmap_list = vmem_back->list;
295 	else
296 		vmem_back_prev->list = vmem_back->list;
297 
298 	/* next point to this freed entry */
299 	vmem_back->list = next;
300 	next = vmem_back;
301 	num_freed++;
302 
303 	return vmem_back->phys;
304 }
305 
306 void __ref vmemmap_free(unsigned long start, unsigned long end,
307 		struct vmem_altmap *altmap)
308 {
309 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
310 	unsigned long page_order = get_order(page_size);
311 	unsigned long alt_start = ~0, alt_end = ~0;
312 	unsigned long base_pfn;
313 
314 	start = ALIGN_DOWN(start, page_size);
315 	if (altmap) {
316 		alt_start = altmap->base_pfn;
317 		alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
318 	}
319 
320 	pr_debug("vmemmap_free %lx...%lx\n", start, end);
321 
322 	for (; start < end; start += page_size) {
323 		unsigned long nr_pages, addr;
324 		struct page *page;
325 
326 		/*
327 		 * We have already marked the subsection we are trying to remove
328 		 * invalid. So if we want to remove the vmemmap range, we
329 		 * need to make sure there is no subsection marked valid
330 		 * in this range.
331 		 */
332 		if (vmemmap_populated(start, page_size))
333 			continue;
334 
335 		addr = vmemmap_list_free(start);
336 		if (!addr)
337 			continue;
338 
339 		page = pfn_to_page(addr >> PAGE_SHIFT);
340 		nr_pages = 1 << page_order;
341 		base_pfn = PHYS_PFN(addr);
342 
343 		if (base_pfn >= alt_start && base_pfn < alt_end) {
344 			vmem_altmap_free(altmap, nr_pages);
345 		} else if (PageReserved(page)) {
346 			/* allocated from bootmem */
347 			if (page_size < PAGE_SIZE) {
348 				/*
349 				 * this shouldn't happen, but if it is
350 				 * the case, leave the memory there
351 				 */
352 				WARN_ON_ONCE(1);
353 			} else {
354 				while (nr_pages--)
355 					free_reserved_page(page++);
356 			}
357 		} else {
358 			free_pages((unsigned long)(__va(addr)), page_order);
359 		}
360 
361 		vmemmap_remove_mapping(start, page_size);
362 	}
363 }
364 #endif
365 void register_page_bootmem_memmap(unsigned long section_nr,
366 				  struct page *start_page, unsigned long size)
367 {
368 }
369 
370 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
371 
372 #ifdef CONFIG_PPC_BOOK3S_64
373 unsigned int mmu_lpid_bits;
374 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
375 EXPORT_SYMBOL_GPL(mmu_lpid_bits);
376 #endif
377 unsigned int mmu_pid_bits;
378 
379 static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
380 
381 static int __init parse_disable_radix(char *p)
382 {
383 	bool val;
384 
385 	if (!p)
386 		val = true;
387 	else if (kstrtobool(p, &val))
388 		return -EINVAL;
389 
390 	disable_radix = val;
391 
392 	return 0;
393 }
394 early_param("disable_radix", parse_disable_radix);
395 
396 /*
397  * If we're running under a hypervisor, we need to check the contents of
398  * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
399  * radix.  If not, we clear the radix feature bit so we fall back to hash.
400  */
401 static void __init early_check_vec5(void)
402 {
403 	unsigned long root, chosen;
404 	int size;
405 	const u8 *vec5;
406 	u8 mmu_supported;
407 
408 	root = of_get_flat_dt_root();
409 	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
410 	if (chosen == -FDT_ERR_NOTFOUND) {
411 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
412 		return;
413 	}
414 	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
415 	if (!vec5) {
416 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
417 		return;
418 	}
419 	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
420 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
421 		return;
422 	}
423 
424 	/* Check for supported configuration */
425 	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
426 			OV5_FEAT(OV5_MMU_SUPPORT);
427 	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
428 		/* Hypervisor only supports radix - check enabled && GTSE */
429 		if (!early_radix_enabled()) {
430 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
431 		}
432 		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
433 						OV5_FEAT(OV5_RADIX_GTSE))) {
434 			cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
435 		} else
436 			cur_cpu_spec->mmu_features |= MMU_FTR_GTSE;
437 		/* Do radix anyway - the hypervisor said we had to */
438 		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
439 	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
440 		/* Hypervisor only supports hash - disable radix */
441 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
442 		cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
443 	}
444 }
445 
446 static int __init dt_scan_mmu_pid_width(unsigned long node,
447 					   const char *uname, int depth,
448 					   void *data)
449 {
450 	int size = 0;
451 	const __be32 *prop;
452 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
453 
454 	/* We are scanning "cpu" nodes only */
455 	if (type == NULL || strcmp(type, "cpu") != 0)
456 		return 0;
457 
458 	/* Find MMU LPID, PID register size */
459 	prop = of_get_flat_dt_prop(node, "ibm,mmu-lpid-bits", &size);
460 	if (prop && size == 4)
461 		mmu_lpid_bits = be32_to_cpup(prop);
462 
463 	prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
464 	if (prop && size == 4)
465 		mmu_pid_bits = be32_to_cpup(prop);
466 
467 	if (!mmu_pid_bits && !mmu_lpid_bits)
468 		return 0;
469 
470 	return 1;
471 }
472 
473 void __init mmu_early_init_devtree(void)
474 {
475 	bool hvmode = !!(mfmsr() & MSR_HV);
476 
477 	/* Disable radix mode based on kernel command line. */
478 	if (disable_radix) {
479 		if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU))
480 			cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
481 		else
482 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
483 	}
484 
485 	of_scan_flat_dt(dt_scan_mmu_pid_width, NULL);
486 	if (hvmode && !mmu_lpid_bits) {
487 		if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
488 			mmu_lpid_bits = 12; /* POWER8-10 */
489 		else
490 			mmu_lpid_bits = 10; /* POWER7 */
491 	}
492 	if (!mmu_pid_bits) {
493 		if (early_cpu_has_feature(CPU_FTR_ARCH_300))
494 			mmu_pid_bits = 20; /* POWER9-10 */
495 	}
496 
497 	/*
498 	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
499 	 * When running bare-metal, we can use radix if we like
500 	 * even though the ibm,architecture-vec-5 property created by
501 	 * skiboot doesn't have the necessary bits set.
502 	 */
503 	if (!hvmode)
504 		early_check_vec5();
505 
506 	if (early_radix_enabled()) {
507 		radix__early_init_devtree();
508 
509 		/*
510 		 * We have finalized the translation we are going to use by now.
511 		 * Radix mode is not limited by RMA / VRMA addressing.
512 		 * Hence don't limit memblock allocations.
513 		 */
514 		ppc64_rma_size = ULONG_MAX;
515 		memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
516 	} else
517 		hash__early_init_devtree();
518 
519 	if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
520 		hugetlbpage_init_defaultsize();
521 
522 	if (!(cur_cpu_spec->mmu_features & MMU_FTR_HPTE_TABLE) &&
523 	    !(cur_cpu_spec->mmu_features & MMU_FTR_TYPE_RADIX))
524 		panic("kernel does not support any MMU type offered by platform");
525 }
526 #endif /* CONFIG_PPC_BOOK3S_64 */
527