xref: /linux/arch/powerpc/mm/init_64.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
7  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
8  *    Copyright (C) 1996 Paul Mackerras
9  *
10  *  Derived from "arch/i386/mm/init.c"
11  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
12  *
13  *  Dave Engebretsen <engebret@us.ibm.com>
14  *      Rework for PPC64 port.
15  */
16 
17 #undef DEBUG
18 
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/stddef.h>
29 #include <linux/vmalloc.h>
30 #include <linux/init.h>
31 #include <linux/delay.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/nodemask.h>
35 #include <linux/module.h>
36 #include <linux/poison.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 #include <linux/slab.h>
40 #include <linux/of_fdt.h>
41 #include <linux/libfdt.h>
42 #include <linux/memremap.h>
43 #include <linux/memory.h>
44 
45 #include <asm/pgalloc.h>
46 #include <asm/page.h>
47 #include <asm/prom.h>
48 #include <asm/rtas.h>
49 #include <asm/io.h>
50 #include <asm/mmu_context.h>
51 #include <asm/mmu.h>
52 #include <linux/uaccess.h>
53 #include <asm/smp.h>
54 #include <asm/machdep.h>
55 #include <asm/tlb.h>
56 #include <asm/eeh.h>
57 #include <asm/processor.h>
58 #include <asm/mmzone.h>
59 #include <asm/cputable.h>
60 #include <asm/sections.h>
61 #include <asm/iommu.h>
62 #include <asm/vdso.h>
63 #include <asm/hugetlb.h>
64 
65 #include <mm/mmu_decl.h>
66 
67 #ifdef CONFIG_SPARSEMEM_VMEMMAP
68 /*
69  * Given an address within the vmemmap, determine the page that
70  * represents the start of the subsection it is within.  Note that we have to
71  * do this by hand as the proffered address may not be correctly aligned.
72  * Subtraction of non-aligned pointers produces undefined results.
73  */
74 static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
75 {
76 	unsigned long start_pfn;
77 	unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
78 
79 	/* Return the pfn of the start of the section. */
80 	start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
81 	return pfn_to_page(start_pfn);
82 }
83 
84 /*
85  * Since memory is added in sub-section chunks, before creating a new vmemmap
86  * mapping, the kernel should check whether there is an existing memmap mapping
87  * covering the new subsection added. This is needed because kernel can map
88  * vmemmap area using 16MB pages which will cover a memory range of 16G. Such
89  * a range covers multiple subsections (2M)
90  *
91  * If any subsection in the 16G range mapped by vmemmap is valid we consider the
92  * vmemmap populated (There is a page table entry already present). We can't do
93  * a page table lookup here because with the hash translation we don't keep
94  * vmemmap details in linux page table.
95  */
96 int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
97 {
98 	struct page *start;
99 	unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
100 	start = vmemmap_subsection_start(vmemmap_addr);
101 
102 	for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
103 		/*
104 		 * pfn valid check here is intended to really check
105 		 * whether we have any subsection already initialized
106 		 * in this range.
107 		 */
108 		if (pfn_valid(page_to_pfn(start)))
109 			return 1;
110 
111 	return 0;
112 }
113 
114 /*
115  * vmemmap virtual address space management does not have a traditional page
116  * table to track which virtual struct pages are backed by physical mapping.
117  * The virtual to physical mappings are tracked in a simple linked list
118  * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
119  * all times where as the 'next' list maintains the available
120  * vmemmap_backing structures which have been deleted from the
121  * 'vmemmap_global' list during system runtime (memory hotplug remove
122  * operation). The freed 'vmemmap_backing' structures are reused later when
123  * new requests come in without allocating fresh memory. This pointer also
124  * tracks the allocated 'vmemmap_backing' structures as we allocate one
125  * full page memory at a time when we dont have any.
126  */
127 struct vmemmap_backing *vmemmap_list;
128 static struct vmemmap_backing *next;
129 
130 /*
131  * The same pointer 'next' tracks individual chunks inside the allocated
132  * full page during the boot time and again tracks the freed nodes during
133  * runtime. It is racy but it does not happen as they are separated by the
134  * boot process. Will create problem if some how we have memory hotplug
135  * operation during boot !!
136  */
137 static int num_left;
138 static int num_freed;
139 
140 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
141 {
142 	struct vmemmap_backing *vmem_back;
143 	/* get from freed entries first */
144 	if (num_freed) {
145 		num_freed--;
146 		vmem_back = next;
147 		next = next->list;
148 
149 		return vmem_back;
150 	}
151 
152 	/* allocate a page when required and hand out chunks */
153 	if (!num_left) {
154 		next = vmemmap_alloc_block(PAGE_SIZE, node);
155 		if (unlikely(!next)) {
156 			WARN_ON(1);
157 			return NULL;
158 		}
159 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
160 	}
161 
162 	num_left--;
163 
164 	return next++;
165 }
166 
167 static __meminit int vmemmap_list_populate(unsigned long phys,
168 					   unsigned long start,
169 					   int node)
170 {
171 	struct vmemmap_backing *vmem_back;
172 
173 	vmem_back = vmemmap_list_alloc(node);
174 	if (unlikely(!vmem_back)) {
175 		pr_debug("vmemap list allocation failed\n");
176 		return -ENOMEM;
177 	}
178 
179 	vmem_back->phys = phys;
180 	vmem_back->virt_addr = start;
181 	vmem_back->list = vmemmap_list;
182 
183 	vmemmap_list = vmem_back;
184 	return 0;
185 }
186 
187 bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
188 			   unsigned long page_size)
189 {
190 	unsigned long nr_pfn = page_size / sizeof(struct page);
191 	unsigned long start_pfn = page_to_pfn((struct page *)start);
192 
193 	if ((start_pfn + nr_pfn - 1) > altmap->end_pfn)
194 		return true;
195 
196 	if (start_pfn < altmap->base_pfn)
197 		return true;
198 
199 	return false;
200 }
201 
202 static int __meminit __vmemmap_populate(unsigned long start, unsigned long end, int node,
203 					struct vmem_altmap *altmap)
204 {
205 	bool altmap_alloc;
206 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
207 
208 	/* Align to the page size of the linear mapping. */
209 	start = ALIGN_DOWN(start, page_size);
210 
211 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
212 
213 	for (; start < end; start += page_size) {
214 		void *p = NULL;
215 		int rc;
216 
217 		/*
218 		 * This vmemmap range is backing different subsections. If any
219 		 * of that subsection is marked valid, that means we already
220 		 * have initialized a page table covering this range and hence
221 		 * the vmemmap range is populated.
222 		 */
223 		if (vmemmap_populated(start, page_size))
224 			continue;
225 
226 		/*
227 		 * Allocate from the altmap first if we have one. This may
228 		 * fail due to alignment issues when using 16MB hugepages, so
229 		 * fall back to system memory if the altmap allocation fail.
230 		 */
231 		if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
232 			p = vmemmap_alloc_block_buf(page_size, node, altmap);
233 			if (!p)
234 				pr_debug("altmap block allocation failed, falling back to system memory");
235 			else
236 				altmap_alloc = true;
237 		}
238 		if (!p) {
239 			p = vmemmap_alloc_block_buf(page_size, node, NULL);
240 			altmap_alloc = false;
241 		}
242 		if (!p)
243 			return -ENOMEM;
244 
245 		if (vmemmap_list_populate(__pa(p), start, node)) {
246 			/*
247 			 * If we don't populate vmemap list, we don't have
248 			 * the ability to free the allocated vmemmap
249 			 * pages in section_deactivate. Hence free them
250 			 * here.
251 			 */
252 			int nr_pfns = page_size >> PAGE_SHIFT;
253 			unsigned long page_order = get_order(page_size);
254 
255 			if (altmap_alloc)
256 				vmem_altmap_free(altmap, nr_pfns);
257 			else
258 				free_pages((unsigned long)p, page_order);
259 			return -ENOMEM;
260 		}
261 
262 		pr_debug("      * %016lx..%016lx allocated at %p\n",
263 			 start, start + page_size, p);
264 
265 		rc = vmemmap_create_mapping(start, page_size, __pa(p));
266 		if (rc < 0) {
267 			pr_warn("%s: Unable to create vmemmap mapping: %d\n",
268 				__func__, rc);
269 			return -EFAULT;
270 		}
271 	}
272 
273 	return 0;
274 }
275 
276 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
277 			       struct vmem_altmap *altmap)
278 {
279 
280 #ifdef CONFIG_PPC_BOOK3S_64
281 	if (radix_enabled())
282 		return radix__vmemmap_populate(start, end, node, altmap);
283 #endif
284 
285 	return __vmemmap_populate(start, end, node, altmap);
286 }
287 
288 #ifdef CONFIG_MEMORY_HOTPLUG
289 static unsigned long vmemmap_list_free(unsigned long start)
290 {
291 	struct vmemmap_backing *vmem_back, *vmem_back_prev;
292 
293 	vmem_back_prev = vmem_back = vmemmap_list;
294 
295 	/* look for it with prev pointer recorded */
296 	for (; vmem_back; vmem_back = vmem_back->list) {
297 		if (vmem_back->virt_addr == start)
298 			break;
299 		vmem_back_prev = vmem_back;
300 	}
301 
302 	if (unlikely(!vmem_back))
303 		return 0;
304 
305 	/* remove it from vmemmap_list */
306 	if (vmem_back == vmemmap_list) /* remove head */
307 		vmemmap_list = vmem_back->list;
308 	else
309 		vmem_back_prev->list = vmem_back->list;
310 
311 	/* next point to this freed entry */
312 	vmem_back->list = next;
313 	next = vmem_back;
314 	num_freed++;
315 
316 	return vmem_back->phys;
317 }
318 
319 static void __ref __vmemmap_free(unsigned long start, unsigned long end,
320 				 struct vmem_altmap *altmap)
321 {
322 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
323 	unsigned long page_order = get_order(page_size);
324 	unsigned long alt_start = ~0, alt_end = ~0;
325 	unsigned long base_pfn;
326 
327 	start = ALIGN_DOWN(start, page_size);
328 	if (altmap) {
329 		alt_start = altmap->base_pfn;
330 		alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
331 	}
332 
333 	pr_debug("vmemmap_free %lx...%lx\n", start, end);
334 
335 	for (; start < end; start += page_size) {
336 		unsigned long nr_pages, addr;
337 		struct page *page;
338 
339 		/*
340 		 * We have already marked the subsection we are trying to remove
341 		 * invalid. So if we want to remove the vmemmap range, we
342 		 * need to make sure there is no subsection marked valid
343 		 * in this range.
344 		 */
345 		if (vmemmap_populated(start, page_size))
346 			continue;
347 
348 		addr = vmemmap_list_free(start);
349 		if (!addr)
350 			continue;
351 
352 		page = pfn_to_page(addr >> PAGE_SHIFT);
353 		nr_pages = 1 << page_order;
354 		base_pfn = PHYS_PFN(addr);
355 
356 		if (base_pfn >= alt_start && base_pfn < alt_end) {
357 			vmem_altmap_free(altmap, nr_pages);
358 		} else if (PageReserved(page)) {
359 			/* allocated from bootmem */
360 			if (page_size < PAGE_SIZE) {
361 				/*
362 				 * this shouldn't happen, but if it is
363 				 * the case, leave the memory there
364 				 */
365 				WARN_ON_ONCE(1);
366 			} else {
367 				while (nr_pages--)
368 					free_reserved_page(page++);
369 			}
370 		} else {
371 			free_pages((unsigned long)(__va(addr)), page_order);
372 		}
373 
374 		vmemmap_remove_mapping(start, page_size);
375 	}
376 }
377 
378 void __ref vmemmap_free(unsigned long start, unsigned long end,
379 			struct vmem_altmap *altmap)
380 {
381 #ifdef CONFIG_PPC_BOOK3S_64
382 	if (radix_enabled())
383 		return radix__vmemmap_free(start, end, altmap);
384 #endif
385 	return __vmemmap_free(start, end, altmap);
386 }
387 
388 #endif
389 void register_page_bootmem_memmap(unsigned long section_nr,
390 				  struct page *start_page, unsigned long size)
391 {
392 }
393 
394 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
395 
396 #ifdef CONFIG_PPC_BOOK3S_64
397 unsigned int mmu_lpid_bits;
398 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
399 EXPORT_SYMBOL_GPL(mmu_lpid_bits);
400 #endif
401 unsigned int mmu_pid_bits;
402 
403 static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
404 
405 static int __init parse_disable_radix(char *p)
406 {
407 	bool val;
408 
409 	if (!p)
410 		val = true;
411 	else if (kstrtobool(p, &val))
412 		return -EINVAL;
413 
414 	disable_radix = val;
415 
416 	return 0;
417 }
418 early_param("disable_radix", parse_disable_radix);
419 
420 /*
421  * If we're running under a hypervisor, we need to check the contents of
422  * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
423  * radix.  If not, we clear the radix feature bit so we fall back to hash.
424  */
425 static void __init early_check_vec5(void)
426 {
427 	unsigned long root, chosen;
428 	int size;
429 	const u8 *vec5;
430 	u8 mmu_supported;
431 
432 	root = of_get_flat_dt_root();
433 	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
434 	if (chosen == -FDT_ERR_NOTFOUND) {
435 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
436 		return;
437 	}
438 	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
439 	if (!vec5) {
440 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
441 		return;
442 	}
443 	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
444 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
445 		return;
446 	}
447 
448 	/* Check for supported configuration */
449 	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
450 			OV5_FEAT(OV5_MMU_SUPPORT);
451 	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
452 		/* Hypervisor only supports radix - check enabled && GTSE */
453 		if (!early_radix_enabled()) {
454 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
455 		}
456 		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
457 						OV5_FEAT(OV5_RADIX_GTSE))) {
458 			cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
459 		} else
460 			cur_cpu_spec->mmu_features |= MMU_FTR_GTSE;
461 		/* Do radix anyway - the hypervisor said we had to */
462 		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
463 	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
464 		/* Hypervisor only supports hash - disable radix */
465 		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
466 		cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
467 	}
468 }
469 
470 static int __init dt_scan_mmu_pid_width(unsigned long node,
471 					   const char *uname, int depth,
472 					   void *data)
473 {
474 	int size = 0;
475 	const __be32 *prop;
476 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
477 
478 	/* We are scanning "cpu" nodes only */
479 	if (type == NULL || strcmp(type, "cpu") != 0)
480 		return 0;
481 
482 	/* Find MMU LPID, PID register size */
483 	prop = of_get_flat_dt_prop(node, "ibm,mmu-lpid-bits", &size);
484 	if (prop && size == 4)
485 		mmu_lpid_bits = be32_to_cpup(prop);
486 
487 	prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
488 	if (prop && size == 4)
489 		mmu_pid_bits = be32_to_cpup(prop);
490 
491 	if (!mmu_pid_bits && !mmu_lpid_bits)
492 		return 0;
493 
494 	return 1;
495 }
496 
497 /*
498  * Outside hotplug the kernel uses this value to map the kernel direct map
499  * with radix. To be compatible with older kernels, let's keep this value
500  * as 16M which is also SECTION_SIZE with SPARSEMEM. We can ideally map
501  * things with 1GB size in the case where we don't support hotplug.
502  */
503 #ifndef CONFIG_MEMORY_HOTPLUG
504 #define DEFAULT_MEMORY_BLOCK_SIZE	SZ_16M
505 #else
506 #define DEFAULT_MEMORY_BLOCK_SIZE	MIN_MEMORY_BLOCK_SIZE
507 #endif
508 
509 static void update_memory_block_size(unsigned long *block_size, unsigned long mem_size)
510 {
511 	unsigned long min_memory_block_size = DEFAULT_MEMORY_BLOCK_SIZE;
512 
513 	for (; *block_size > min_memory_block_size; *block_size >>= 2) {
514 		if ((mem_size & *block_size) == 0)
515 			break;
516 	}
517 }
518 
519 static int __init probe_memory_block_size(unsigned long node, const char *uname, int
520 					  depth, void *data)
521 {
522 	const char *type;
523 	unsigned long *block_size = (unsigned long *)data;
524 	const __be32 *reg, *endp;
525 	int l;
526 
527 	if (depth != 1)
528 		return 0;
529 	/*
530 	 * If we have dynamic-reconfiguration-memory node, use the
531 	 * lmb value.
532 	 */
533 	if (strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) {
534 
535 		const __be32 *prop;
536 
537 		prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
538 
539 		if (!prop || l < dt_root_size_cells * sizeof(__be32))
540 			/*
541 			 * Nothing in the device tree
542 			 */
543 			*block_size = DEFAULT_MEMORY_BLOCK_SIZE;
544 		else
545 			*block_size = of_read_number(prop, dt_root_size_cells);
546 		/*
547 		 * We have found the final value. Don't probe further.
548 		 */
549 		return 1;
550 	}
551 	/*
552 	 * Find all the device tree nodes of memory type and make sure
553 	 * the area can be mapped using the memory block size value
554 	 * we end up using. We start with 1G value and keep reducing
555 	 * it such that we can map the entire area using memory_block_size.
556 	 * This will be used on powernv and older pseries that don't
557 	 * have ibm,lmb-size node.
558 	 * For ex: with P5 we can end up with
559 	 * memory@0 -> 128MB
560 	 * memory@128M -> 64M
561 	 * This will end up using 64MB  memory block size value.
562 	 */
563 	type = of_get_flat_dt_prop(node, "device_type", NULL);
564 	if (type == NULL || strcmp(type, "memory") != 0)
565 		return 0;
566 
567 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
568 	if (!reg)
569 		reg = of_get_flat_dt_prop(node, "reg", &l);
570 	if (!reg)
571 		return 0;
572 
573 	endp = reg + (l / sizeof(__be32));
574 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
575 		const char *compatible;
576 		u64 size;
577 
578 		dt_mem_next_cell(dt_root_addr_cells, &reg);
579 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
580 
581 		if (size) {
582 			update_memory_block_size(block_size, size);
583 			continue;
584 		}
585 		/*
586 		 * ibm,coherent-device-memory with linux,usable-memory = 0
587 		 * Force 256MiB block size. Work around for GPUs on P9 PowerNV
588 		 * linux,usable-memory == 0 implies driver managed memory and
589 		 * we can't use large memory block size due to hotplug/unplug
590 		 * limitations.
591 		 */
592 		compatible = of_get_flat_dt_prop(node, "compatible", NULL);
593 		if (compatible && !strcmp(compatible, "ibm,coherent-device-memory")) {
594 			if (*block_size > SZ_256M)
595 				*block_size = SZ_256M;
596 			/*
597 			 * We keep 256M as the upper limit with GPU present.
598 			 */
599 			return 0;
600 		}
601 	}
602 	/* continue looking for other memory device types */
603 	return 0;
604 }
605 
606 /*
607  * start with 1G memory block size. Early init will
608  * fix this with correct value.
609  */
610 unsigned long memory_block_size __ro_after_init = 1UL << 30;
611 static void __init early_init_memory_block_size(void)
612 {
613 	/*
614 	 * We need to do memory_block_size probe early so that
615 	 * radix__early_init_mmu() can use this as limit for
616 	 * mapping page size.
617 	 */
618 	of_scan_flat_dt(probe_memory_block_size, &memory_block_size);
619 }
620 
621 void __init mmu_early_init_devtree(void)
622 {
623 	bool hvmode = !!(mfmsr() & MSR_HV);
624 
625 	/* Disable radix mode based on kernel command line. */
626 	if (disable_radix) {
627 		if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU))
628 			cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
629 		else
630 			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
631 	}
632 
633 	of_scan_flat_dt(dt_scan_mmu_pid_width, NULL);
634 	if (hvmode && !mmu_lpid_bits) {
635 		if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
636 			mmu_lpid_bits = 12; /* POWER8-10 */
637 		else
638 			mmu_lpid_bits = 10; /* POWER7 */
639 	}
640 	if (!mmu_pid_bits) {
641 		if (early_cpu_has_feature(CPU_FTR_ARCH_300))
642 			mmu_pid_bits = 20; /* POWER9-10 */
643 	}
644 
645 	/*
646 	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
647 	 * When running bare-metal, we can use radix if we like
648 	 * even though the ibm,architecture-vec-5 property created by
649 	 * skiboot doesn't have the necessary bits set.
650 	 */
651 	if (!hvmode)
652 		early_check_vec5();
653 
654 	early_init_memory_block_size();
655 
656 	if (early_radix_enabled()) {
657 		radix__early_init_devtree();
658 
659 		/*
660 		 * We have finalized the translation we are going to use by now.
661 		 * Radix mode is not limited by RMA / VRMA addressing.
662 		 * Hence don't limit memblock allocations.
663 		 */
664 		ppc64_rma_size = ULONG_MAX;
665 		memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
666 	} else
667 		hash__early_init_devtree();
668 
669 	if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
670 		hugetlbpage_init_defaultsize();
671 
672 	if (!(cur_cpu_spec->mmu_features & MMU_FTR_HPTE_TABLE) &&
673 	    !(cur_cpu_spec->mmu_features & MMU_FTR_TYPE_RADIX))
674 		panic("kernel does not support any MMU type offered by platform");
675 }
676 #endif /* CONFIG_PPC_BOOK3S_64 */
677