xref: /linux/arch/powerpc/mm/init_64.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6  *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
7  *    Copyright (C) 1996 Paul Mackerras
8  *
9  *  Derived from "arch/i386/mm/init.c"
10  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
11  *
12  *  Dave Engebretsen <engebret@us.ibm.com>
13  *      Rework for PPC64 port.
14  *
15  *  This program is free software; you can redistribute it and/or
16  *  modify it under the terms of the GNU General Public License
17  *  as published by the Free Software Foundation; either version
18  *  2 of the License, or (at your option) any later version.
19  *
20  */
21 
22 #undef DEBUG
23 
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
45 
46 #include <asm/pgalloc.h>
47 #include <asm/page.h>
48 #include <asm/prom.h>
49 #include <asm/rtas.h>
50 #include <asm/io.h>
51 #include <asm/mmu_context.h>
52 #include <asm/pgtable.h>
53 #include <asm/mmu.h>
54 #include <asm/uaccess.h>
55 #include <asm/smp.h>
56 #include <asm/machdep.h>
57 #include <asm/tlb.h>
58 #include <asm/eeh.h>
59 #include <asm/processor.h>
60 #include <asm/mmzone.h>
61 #include <asm/cputable.h>
62 #include <asm/sections.h>
63 #include <asm/iommu.h>
64 #include <asm/vdso.h>
65 
66 #include "mmu_decl.h"
67 
68 #ifdef CONFIG_PPC_STD_MMU_64
69 #if PGTABLE_RANGE > USER_VSID_RANGE
70 #warning Limited user VSID range means pagetable space is wasted
71 #endif
72 
73 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
74 #warning TASK_SIZE is smaller than it needs to be.
75 #endif
76 #endif /* CONFIG_PPC_STD_MMU_64 */
77 
78 phys_addr_t memstart_addr = ~0;
79 EXPORT_SYMBOL_GPL(memstart_addr);
80 phys_addr_t kernstart_addr;
81 EXPORT_SYMBOL_GPL(kernstart_addr);
82 
83 static void pgd_ctor(void *addr)
84 {
85 	memset(addr, 0, PGD_TABLE_SIZE);
86 }
87 
88 static void pmd_ctor(void *addr)
89 {
90 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
91 	memset(addr, 0, PMD_TABLE_SIZE * 2);
92 #else
93 	memset(addr, 0, PMD_TABLE_SIZE);
94 #endif
95 }
96 
97 struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
98 
99 /*
100  * Create a kmem_cache() for pagetables.  This is not used for PTE
101  * pages - they're linked to struct page, come from the normal free
102  * pages pool and have a different entry size (see real_pte_t) to
103  * everything else.  Caches created by this function are used for all
104  * the higher level pagetables, and for hugepage pagetables.
105  */
106 void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
107 {
108 	char *name;
109 	unsigned long table_size = sizeof(void *) << shift;
110 	unsigned long align = table_size;
111 
112 	/* When batching pgtable pointers for RCU freeing, we store
113 	 * the index size in the low bits.  Table alignment must be
114 	 * big enough to fit it.
115 	 *
116 	 * Likewise, hugeapge pagetable pointers contain a (different)
117 	 * shift value in the low bits.  All tables must be aligned so
118 	 * as to leave enough 0 bits in the address to contain it. */
119 	unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
120 				     HUGEPD_SHIFT_MASK + 1);
121 	struct kmem_cache *new;
122 
123 	/* It would be nice if this was a BUILD_BUG_ON(), but at the
124 	 * moment, gcc doesn't seem to recognize is_power_of_2 as a
125 	 * constant expression, so so much for that. */
126 	BUG_ON(!is_power_of_2(minalign));
127 	BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
128 
129 	if (PGT_CACHE(shift))
130 		return; /* Already have a cache of this size */
131 
132 	align = max_t(unsigned long, align, minalign);
133 	name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
134 	new = kmem_cache_create(name, table_size, align, 0, ctor);
135 	kfree(name);
136 	pgtable_cache[shift - 1] = new;
137 	pr_debug("Allocated pgtable cache for order %d\n", shift);
138 }
139 
140 
141 void pgtable_cache_init(void)
142 {
143 	pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
144 	pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
145 	if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
146 		panic("Couldn't allocate pgtable caches");
147 	/* In all current configs, when the PUD index exists it's the
148 	 * same size as either the pgd or pmd index.  Verify that the
149 	 * initialization above has also created a PUD cache.  This
150 	 * will need re-examiniation if we add new possibilities for
151 	 * the pagetable layout. */
152 	BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE));
153 }
154 
155 #ifdef CONFIG_SPARSEMEM_VMEMMAP
156 /*
157  * Given an address within the vmemmap, determine the pfn of the page that
158  * represents the start of the section it is within.  Note that we have to
159  * do this by hand as the proffered address may not be correctly aligned.
160  * Subtraction of non-aligned pointers produces undefined results.
161  */
162 static unsigned long __meminit vmemmap_section_start(unsigned long page)
163 {
164 	unsigned long offset = page - ((unsigned long)(vmemmap));
165 
166 	/* Return the pfn of the start of the section. */
167 	return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
168 }
169 
170 /*
171  * Check if this vmemmap page is already initialised.  If any section
172  * which overlaps this vmemmap page is initialised then this page is
173  * initialised already.
174  */
175 static int __meminit vmemmap_populated(unsigned long start, int page_size)
176 {
177 	unsigned long end = start + page_size;
178 	start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
179 
180 	for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
181 		if (pfn_valid(page_to_pfn((struct page *)start)))
182 			return 1;
183 
184 	return 0;
185 }
186 
187 /* On hash-based CPUs, the vmemmap is bolted in the hash table.
188  *
189  * On Book3E CPUs, the vmemmap is currently mapped in the top half of
190  * the vmalloc space using normal page tables, though the size of
191  * pages encoded in the PTEs can be different
192  */
193 
194 #ifdef CONFIG_PPC_BOOK3E
195 static void __meminit vmemmap_create_mapping(unsigned long start,
196 					     unsigned long page_size,
197 					     unsigned long phys)
198 {
199 	/* Create a PTE encoding without page size */
200 	unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
201 		_PAGE_KERNEL_RW;
202 
203 	/* PTEs only contain page size encodings up to 32M */
204 	BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
205 
206 	/* Encode the size in the PTE */
207 	flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
208 
209 	/* For each PTE for that area, map things. Note that we don't
210 	 * increment phys because all PTEs are of the large size and
211 	 * thus must have the low bits clear
212 	 */
213 	for (i = 0; i < page_size; i += PAGE_SIZE)
214 		BUG_ON(map_kernel_page(start + i, phys, flags));
215 }
216 
217 #ifdef CONFIG_MEMORY_HOTPLUG
218 static void vmemmap_remove_mapping(unsigned long start,
219 				   unsigned long page_size)
220 {
221 }
222 #endif
223 #else /* CONFIG_PPC_BOOK3E */
224 static void __meminit vmemmap_create_mapping(unsigned long start,
225 					     unsigned long page_size,
226 					     unsigned long phys)
227 {
228 	int  mapped = htab_bolt_mapping(start, start + page_size, phys,
229 					pgprot_val(PAGE_KERNEL),
230 					mmu_vmemmap_psize,
231 					mmu_kernel_ssize);
232 	BUG_ON(mapped < 0);
233 }
234 
235 #ifdef CONFIG_MEMORY_HOTPLUG
236 static void vmemmap_remove_mapping(unsigned long start,
237 				   unsigned long page_size)
238 {
239 	int mapped = htab_remove_mapping(start, start + page_size,
240 					 mmu_vmemmap_psize,
241 					 mmu_kernel_ssize);
242 	BUG_ON(mapped < 0);
243 }
244 #endif
245 
246 #endif /* CONFIG_PPC_BOOK3E */
247 
248 struct vmemmap_backing *vmemmap_list;
249 static struct vmemmap_backing *next;
250 static int num_left;
251 static int num_freed;
252 
253 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
254 {
255 	struct vmemmap_backing *vmem_back;
256 	/* get from freed entries first */
257 	if (num_freed) {
258 		num_freed--;
259 		vmem_back = next;
260 		next = next->list;
261 
262 		return vmem_back;
263 	}
264 
265 	/* allocate a page when required and hand out chunks */
266 	if (!num_left) {
267 		next = vmemmap_alloc_block(PAGE_SIZE, node);
268 		if (unlikely(!next)) {
269 			WARN_ON(1);
270 			return NULL;
271 		}
272 		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
273 	}
274 
275 	num_left--;
276 
277 	return next++;
278 }
279 
280 static __meminit void vmemmap_list_populate(unsigned long phys,
281 					    unsigned long start,
282 					    int node)
283 {
284 	struct vmemmap_backing *vmem_back;
285 
286 	vmem_back = vmemmap_list_alloc(node);
287 	if (unlikely(!vmem_back)) {
288 		WARN_ON(1);
289 		return;
290 	}
291 
292 	vmem_back->phys = phys;
293 	vmem_back->virt_addr = start;
294 	vmem_back->list = vmemmap_list;
295 
296 	vmemmap_list = vmem_back;
297 }
298 
299 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
300 {
301 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
302 
303 	/* Align to the page size of the linear mapping. */
304 	start = _ALIGN_DOWN(start, page_size);
305 
306 	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
307 
308 	for (; start < end; start += page_size) {
309 		void *p;
310 
311 		if (vmemmap_populated(start, page_size))
312 			continue;
313 
314 		p = vmemmap_alloc_block(page_size, node);
315 		if (!p)
316 			return -ENOMEM;
317 
318 		vmemmap_list_populate(__pa(p), start, node);
319 
320 		pr_debug("      * %016lx..%016lx allocated at %p\n",
321 			 start, start + page_size, p);
322 
323 		vmemmap_create_mapping(start, page_size, __pa(p));
324 	}
325 
326 	return 0;
327 }
328 
329 #ifdef CONFIG_MEMORY_HOTPLUG
330 static unsigned long vmemmap_list_free(unsigned long start)
331 {
332 	struct vmemmap_backing *vmem_back, *vmem_back_prev;
333 
334 	vmem_back_prev = vmem_back = vmemmap_list;
335 
336 	/* look for it with prev pointer recorded */
337 	for (; vmem_back; vmem_back = vmem_back->list) {
338 		if (vmem_back->virt_addr == start)
339 			break;
340 		vmem_back_prev = vmem_back;
341 	}
342 
343 	if (unlikely(!vmem_back)) {
344 		WARN_ON(1);
345 		return 0;
346 	}
347 
348 	/* remove it from vmemmap_list */
349 	if (vmem_back == vmemmap_list) /* remove head */
350 		vmemmap_list = vmem_back->list;
351 	else
352 		vmem_back_prev->list = vmem_back->list;
353 
354 	/* next point to this freed entry */
355 	vmem_back->list = next;
356 	next = vmem_back;
357 	num_freed++;
358 
359 	return vmem_back->phys;
360 }
361 
362 void __ref vmemmap_free(unsigned long start, unsigned long end)
363 {
364 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
365 
366 	start = _ALIGN_DOWN(start, page_size);
367 
368 	pr_debug("vmemmap_free %lx...%lx\n", start, end);
369 
370 	for (; start < end; start += page_size) {
371 		unsigned long addr;
372 
373 		/*
374 		 * the section has already be marked as invalid, so
375 		 * vmemmap_populated() true means some other sections still
376 		 * in this page, so skip it.
377 		 */
378 		if (vmemmap_populated(start, page_size))
379 			continue;
380 
381 		addr = vmemmap_list_free(start);
382 		if (addr) {
383 			struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
384 
385 			if (PageReserved(page)) {
386 				/* allocated from bootmem */
387 				if (page_size < PAGE_SIZE) {
388 					/*
389 					 * this shouldn't happen, but if it is
390 					 * the case, leave the memory there
391 					 */
392 					WARN_ON_ONCE(1);
393 				} else {
394 					unsigned int nr_pages =
395 						1 << get_order(page_size);
396 					while (nr_pages--)
397 						free_reserved_page(page++);
398 				}
399 			} else
400 				free_pages((unsigned long)(__va(addr)),
401 							get_order(page_size));
402 
403 			vmemmap_remove_mapping(start, page_size);
404 		}
405 	}
406 }
407 #endif
408 void register_page_bootmem_memmap(unsigned long section_nr,
409 				  struct page *start_page, unsigned long size)
410 {
411 }
412 
413 /*
414  * We do not have access to the sparsemem vmemmap, so we fallback to
415  * walking the list of sparsemem blocks which we already maintain for
416  * the sake of crashdump. In the long run, we might want to maintain
417  * a tree if performance of that linear walk becomes a problem.
418  *
419  * realmode_pfn_to_page functions can fail due to:
420  * 1) As real sparsemem blocks do not lay in RAM continously (they
421  * are in virtual address space which is not available in the real mode),
422  * the requested page struct can be split between blocks so get_page/put_page
423  * may fail.
424  * 2) When huge pages are used, the get_page/put_page API will fail
425  * in real mode as the linked addresses in the page struct are virtual
426  * too.
427  */
428 struct page *realmode_pfn_to_page(unsigned long pfn)
429 {
430 	struct vmemmap_backing *vmem_back;
431 	struct page *page;
432 	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
433 	unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
434 
435 	for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
436 		if (pg_va < vmem_back->virt_addr)
437 			continue;
438 
439 		/* After vmemmap_list entry free is possible, need check all */
440 		if ((pg_va + sizeof(struct page)) <=
441 				(vmem_back->virt_addr + page_size)) {
442 			page = (struct page *) (vmem_back->phys + pg_va -
443 				vmem_back->virt_addr);
444 			return page;
445 		}
446 	}
447 
448 	/* Probably that page struct is split between real pages */
449 	return NULL;
450 }
451 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
452 
453 #elif defined(CONFIG_FLATMEM)
454 
455 struct page *realmode_pfn_to_page(unsigned long pfn)
456 {
457 	struct page *page = pfn_to_page(pfn);
458 	return page;
459 }
460 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
461 
462 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
463