xref: /linux/arch/powerpc/mm/hugetlbpage.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/of_fdt.h>
16 #include <linux/memblock.h>
17 #include <linux/bootmem.h>
18 #include <asm/pgtable.h>
19 #include <asm/pgalloc.h>
20 #include <asm/tlb.h>
21 #include <asm/setup.h>
22 
23 #define PAGE_SHIFT_64K	16
24 #define PAGE_SHIFT_16M	24
25 #define PAGE_SHIFT_16G	34
26 
27 unsigned int HPAGE_SHIFT;
28 
29 /*
30  * Tracks gpages after the device tree is scanned and before the
31  * huge_boot_pages list is ready.  On 64-bit implementations, this is
32  * just used to track 16G pages and so is a single array.  32-bit
33  * implementations may have more than one gpage size due to limitations
34  * of the memory allocators, so we need multiple arrays
35  */
36 #ifdef CONFIG_PPC64
37 #define MAX_NUMBER_GPAGES	1024
38 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
39 static unsigned nr_gpages;
40 #else
41 #define MAX_NUMBER_GPAGES	128
42 struct psize_gpages {
43 	u64 gpage_list[MAX_NUMBER_GPAGES];
44 	unsigned int nr_gpages;
45 };
46 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
47 #endif
48 
49 static inline int shift_to_mmu_psize(unsigned int shift)
50 {
51 	int psize;
52 
53 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
54 		if (mmu_psize_defs[psize].shift == shift)
55 			return psize;
56 	return -1;
57 }
58 
59 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
60 {
61 	if (mmu_psize_defs[mmu_psize].shift)
62 		return mmu_psize_defs[mmu_psize].shift;
63 	BUG();
64 }
65 
66 #define hugepd_none(hpd)	((hpd).pd == 0)
67 
68 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
69 {
70 	pgd_t *pg;
71 	pud_t *pu;
72 	pmd_t *pm;
73 	hugepd_t *hpdp = NULL;
74 	unsigned pdshift = PGDIR_SHIFT;
75 
76 	if (shift)
77 		*shift = 0;
78 
79 	pg = pgdir + pgd_index(ea);
80 	if (is_hugepd(pg)) {
81 		hpdp = (hugepd_t *)pg;
82 	} else if (!pgd_none(*pg)) {
83 		pdshift = PUD_SHIFT;
84 		pu = pud_offset(pg, ea);
85 		if (is_hugepd(pu))
86 			hpdp = (hugepd_t *)pu;
87 		else if (!pud_none(*pu)) {
88 			pdshift = PMD_SHIFT;
89 			pm = pmd_offset(pu, ea);
90 			if (is_hugepd(pm))
91 				hpdp = (hugepd_t *)pm;
92 			else if (!pmd_none(*pm)) {
93 				return pte_offset_kernel(pm, ea);
94 			}
95 		}
96 	}
97 
98 	if (!hpdp)
99 		return NULL;
100 
101 	if (shift)
102 		*shift = hugepd_shift(*hpdp);
103 	return hugepte_offset(hpdp, ea, pdshift);
104 }
105 
106 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
107 {
108 	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
109 }
110 
111 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
112 			   unsigned long address, unsigned pdshift, unsigned pshift)
113 {
114 	struct kmem_cache *cachep;
115 	pte_t *new;
116 
117 #ifdef CONFIG_PPC64
118 	cachep = PGT_CACHE(pdshift - pshift);
119 #else
120 	int i;
121 	int num_hugepd = 1 << (pshift - pdshift);
122 	cachep = hugepte_cache;
123 #endif
124 
125 	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
126 
127 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
128 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
129 
130 	if (! new)
131 		return -ENOMEM;
132 
133 	spin_lock(&mm->page_table_lock);
134 #ifdef CONFIG_PPC64
135 	if (!hugepd_none(*hpdp))
136 		kmem_cache_free(cachep, new);
137 	else
138 		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
139 #else
140 	/*
141 	 * We have multiple higher-level entries that point to the same
142 	 * actual pte location.  Fill in each as we go and backtrack on error.
143 	 * We need all of these so the DTLB pgtable walk code can find the
144 	 * right higher-level entry without knowing if it's a hugepage or not.
145 	 */
146 	for (i = 0; i < num_hugepd; i++, hpdp++) {
147 		if (unlikely(!hugepd_none(*hpdp)))
148 			break;
149 		else
150 			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
151 	}
152 	/* If we bailed from the for loop early, an error occurred, clean up */
153 	if (i < num_hugepd) {
154 		for (i = i - 1 ; i >= 0; i--, hpdp--)
155 			hpdp->pd = 0;
156 		kmem_cache_free(cachep, new);
157 	}
158 #endif
159 	spin_unlock(&mm->page_table_lock);
160 	return 0;
161 }
162 
163 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
164 {
165 	pgd_t *pg;
166 	pud_t *pu;
167 	pmd_t *pm;
168 	hugepd_t *hpdp = NULL;
169 	unsigned pshift = __ffs(sz);
170 	unsigned pdshift = PGDIR_SHIFT;
171 
172 	addr &= ~(sz-1);
173 
174 	pg = pgd_offset(mm, addr);
175 	if (pshift >= PUD_SHIFT) {
176 		hpdp = (hugepd_t *)pg;
177 	} else {
178 		pdshift = PUD_SHIFT;
179 		pu = pud_alloc(mm, pg, addr);
180 		if (pshift >= PMD_SHIFT) {
181 			hpdp = (hugepd_t *)pu;
182 		} else {
183 			pdshift = PMD_SHIFT;
184 			pm = pmd_alloc(mm, pu, addr);
185 			hpdp = (hugepd_t *)pm;
186 		}
187 	}
188 
189 	if (!hpdp)
190 		return NULL;
191 
192 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
193 
194 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
195 		return NULL;
196 
197 	return hugepte_offset(hpdp, addr, pdshift);
198 }
199 
200 #ifdef CONFIG_PPC32
201 /* Build list of addresses of gigantic pages.  This function is used in early
202  * boot before the buddy or bootmem allocator is setup.
203  */
204 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
205 {
206 	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
207 	int i;
208 
209 	if (addr == 0)
210 		return;
211 
212 	gpage_freearray[idx].nr_gpages = number_of_pages;
213 
214 	for (i = 0; i < number_of_pages; i++) {
215 		gpage_freearray[idx].gpage_list[i] = addr;
216 		addr += page_size;
217 	}
218 }
219 
220 /*
221  * Moves the gigantic page addresses from the temporary list to the
222  * huge_boot_pages list.
223  */
224 int alloc_bootmem_huge_page(struct hstate *hstate)
225 {
226 	struct huge_bootmem_page *m;
227 	int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
228 	int nr_gpages = gpage_freearray[idx].nr_gpages;
229 
230 	if (nr_gpages == 0)
231 		return 0;
232 
233 #ifdef CONFIG_HIGHMEM
234 	/*
235 	 * If gpages can be in highmem we can't use the trick of storing the
236 	 * data structure in the page; allocate space for this
237 	 */
238 	m = alloc_bootmem(sizeof(struct huge_bootmem_page));
239 	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
240 #else
241 	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
242 #endif
243 
244 	list_add(&m->list, &huge_boot_pages);
245 	gpage_freearray[idx].nr_gpages = nr_gpages;
246 	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
247 	m->hstate = hstate;
248 
249 	return 1;
250 }
251 /*
252  * Scan the command line hugepagesz= options for gigantic pages; store those in
253  * a list that we use to allocate the memory once all options are parsed.
254  */
255 
256 unsigned long gpage_npages[MMU_PAGE_COUNT];
257 
258 static int __init do_gpage_early_setup(char *param, char *val)
259 {
260 	static phys_addr_t size;
261 	unsigned long npages;
262 
263 	/*
264 	 * The hugepagesz and hugepages cmdline options are interleaved.  We
265 	 * use the size variable to keep track of whether or not this was done
266 	 * properly and skip over instances where it is incorrect.  Other
267 	 * command-line parsing code will issue warnings, so we don't need to.
268 	 *
269 	 */
270 	if ((strcmp(param, "default_hugepagesz") == 0) ||
271 	    (strcmp(param, "hugepagesz") == 0)) {
272 		size = memparse(val, NULL);
273 	} else if (strcmp(param, "hugepages") == 0) {
274 		if (size != 0) {
275 			if (sscanf(val, "%lu", &npages) <= 0)
276 				npages = 0;
277 			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
278 			size = 0;
279 		}
280 	}
281 	return 0;
282 }
283 
284 
285 /*
286  * This function allocates physical space for pages that are larger than the
287  * buddy allocator can handle.  We want to allocate these in highmem because
288  * the amount of lowmem is limited.  This means that this function MUST be
289  * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
290  * allocate to grab highmem.
291  */
292 void __init reserve_hugetlb_gpages(void)
293 {
294 	static __initdata char cmdline[COMMAND_LINE_SIZE];
295 	phys_addr_t size, base;
296 	int i;
297 
298 	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
299 	parse_args("hugetlb gpages", cmdline, NULL, 0, &do_gpage_early_setup);
300 
301 	/*
302 	 * Walk gpage list in reverse, allocating larger page sizes first.
303 	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
304 	 * When we reach the point in the list where pages are no longer
305 	 * considered gpages, we're done.
306 	 */
307 	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
308 		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
309 			continue;
310 		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
311 			break;
312 
313 		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
314 		base = memblock_alloc_base(size * gpage_npages[i], size,
315 					   MEMBLOCK_ALLOC_ANYWHERE);
316 		add_gpage(base, size, gpage_npages[i]);
317 	}
318 }
319 
320 #else /* PPC64 */
321 
322 /* Build list of addresses of gigantic pages.  This function is used in early
323  * boot before the buddy or bootmem allocator is setup.
324  */
325 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
326 {
327 	if (!addr)
328 		return;
329 	while (number_of_pages > 0) {
330 		gpage_freearray[nr_gpages] = addr;
331 		nr_gpages++;
332 		number_of_pages--;
333 		addr += page_size;
334 	}
335 }
336 
337 /* Moves the gigantic page addresses from the temporary list to the
338  * huge_boot_pages list.
339  */
340 int alloc_bootmem_huge_page(struct hstate *hstate)
341 {
342 	struct huge_bootmem_page *m;
343 	if (nr_gpages == 0)
344 		return 0;
345 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
346 	gpage_freearray[nr_gpages] = 0;
347 	list_add(&m->list, &huge_boot_pages);
348 	m->hstate = hstate;
349 	return 1;
350 }
351 #endif
352 
353 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
354 {
355 	return 0;
356 }
357 
358 #ifdef CONFIG_PPC32
359 #define HUGEPD_FREELIST_SIZE \
360 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
361 
362 struct hugepd_freelist {
363 	struct rcu_head	rcu;
364 	unsigned int index;
365 	void *ptes[0];
366 };
367 
368 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
369 
370 static void hugepd_free_rcu_callback(struct rcu_head *head)
371 {
372 	struct hugepd_freelist *batch =
373 		container_of(head, struct hugepd_freelist, rcu);
374 	unsigned int i;
375 
376 	for (i = 0; i < batch->index; i++)
377 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
378 
379 	free_page((unsigned long)batch);
380 }
381 
382 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
383 {
384 	struct hugepd_freelist **batchp;
385 
386 	batchp = &__get_cpu_var(hugepd_freelist_cur);
387 
388 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
389 	    cpumask_equal(mm_cpumask(tlb->mm),
390 			  cpumask_of(smp_processor_id()))) {
391 		kmem_cache_free(hugepte_cache, hugepte);
392 		return;
393 	}
394 
395 	if (*batchp == NULL) {
396 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
397 		(*batchp)->index = 0;
398 	}
399 
400 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
401 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
402 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
403 		*batchp = NULL;
404 	}
405 }
406 #endif
407 
408 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
409 			      unsigned long start, unsigned long end,
410 			      unsigned long floor, unsigned long ceiling)
411 {
412 	pte_t *hugepte = hugepd_page(*hpdp);
413 	int i;
414 
415 	unsigned long pdmask = ~((1UL << pdshift) - 1);
416 	unsigned int num_hugepd = 1;
417 
418 #ifdef CONFIG_PPC64
419 	unsigned int shift = hugepd_shift(*hpdp);
420 #else
421 	/* Note: On 32-bit the hpdp may be the first of several */
422 	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
423 #endif
424 
425 	start &= pdmask;
426 	if (start < floor)
427 		return;
428 	if (ceiling) {
429 		ceiling &= pdmask;
430 		if (! ceiling)
431 			return;
432 	}
433 	if (end - 1 > ceiling - 1)
434 		return;
435 
436 	for (i = 0; i < num_hugepd; i++, hpdp++)
437 		hpdp->pd = 0;
438 
439 	tlb->need_flush = 1;
440 #ifdef CONFIG_PPC64
441 	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
442 #else
443 	hugepd_free(tlb, hugepte);
444 #endif
445 }
446 
447 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
448 				   unsigned long addr, unsigned long end,
449 				   unsigned long floor, unsigned long ceiling)
450 {
451 	pmd_t *pmd;
452 	unsigned long next;
453 	unsigned long start;
454 
455 	start = addr;
456 	pmd = pmd_offset(pud, addr);
457 	do {
458 		next = pmd_addr_end(addr, end);
459 		if (pmd_none(*pmd))
460 			continue;
461 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
462 				  addr, next, floor, ceiling);
463 	} while (pmd++, addr = next, addr != end);
464 
465 	start &= PUD_MASK;
466 	if (start < floor)
467 		return;
468 	if (ceiling) {
469 		ceiling &= PUD_MASK;
470 		if (!ceiling)
471 			return;
472 	}
473 	if (end - 1 > ceiling - 1)
474 		return;
475 
476 	pmd = pmd_offset(pud, start);
477 	pud_clear(pud);
478 	pmd_free_tlb(tlb, pmd, start);
479 }
480 
481 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
482 				   unsigned long addr, unsigned long end,
483 				   unsigned long floor, unsigned long ceiling)
484 {
485 	pud_t *pud;
486 	unsigned long next;
487 	unsigned long start;
488 
489 	start = addr;
490 	pud = pud_offset(pgd, addr);
491 	do {
492 		next = pud_addr_end(addr, end);
493 		if (!is_hugepd(pud)) {
494 			if (pud_none_or_clear_bad(pud))
495 				continue;
496 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
497 					       ceiling);
498 		} else {
499 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
500 					  addr, next, floor, ceiling);
501 		}
502 	} while (pud++, addr = next, addr != end);
503 
504 	start &= PGDIR_MASK;
505 	if (start < floor)
506 		return;
507 	if (ceiling) {
508 		ceiling &= PGDIR_MASK;
509 		if (!ceiling)
510 			return;
511 	}
512 	if (end - 1 > ceiling - 1)
513 		return;
514 
515 	pud = pud_offset(pgd, start);
516 	pgd_clear(pgd);
517 	pud_free_tlb(tlb, pud, start);
518 }
519 
520 /*
521  * This function frees user-level page tables of a process.
522  *
523  * Must be called with pagetable lock held.
524  */
525 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
526 			    unsigned long addr, unsigned long end,
527 			    unsigned long floor, unsigned long ceiling)
528 {
529 	pgd_t *pgd;
530 	unsigned long next;
531 
532 	/*
533 	 * Because there are a number of different possible pagetable
534 	 * layouts for hugepage ranges, we limit knowledge of how
535 	 * things should be laid out to the allocation path
536 	 * (huge_pte_alloc(), above).  Everything else works out the
537 	 * structure as it goes from information in the hugepd
538 	 * pointers.  That means that we can't here use the
539 	 * optimization used in the normal page free_pgd_range(), of
540 	 * checking whether we're actually covering a large enough
541 	 * range to have to do anything at the top level of the walk
542 	 * instead of at the bottom.
543 	 *
544 	 * To make sense of this, you should probably go read the big
545 	 * block comment at the top of the normal free_pgd_range(),
546 	 * too.
547 	 */
548 
549 	do {
550 		next = pgd_addr_end(addr, end);
551 		pgd = pgd_offset(tlb->mm, addr);
552 		if (!is_hugepd(pgd)) {
553 			if (pgd_none_or_clear_bad(pgd))
554 				continue;
555 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
556 		} else {
557 #ifdef CONFIG_PPC32
558 			/*
559 			 * Increment next by the size of the huge mapping since
560 			 * on 32-bit there may be more than one entry at the pgd
561 			 * level for a single hugepage, but all of them point to
562 			 * the same kmem cache that holds the hugepte.
563 			 */
564 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
565 #endif
566 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
567 					  addr, next, floor, ceiling);
568 		}
569 	} while (addr = next, addr != end);
570 }
571 
572 struct page *
573 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
574 {
575 	pte_t *ptep;
576 	struct page *page;
577 	unsigned shift;
578 	unsigned long mask;
579 
580 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
581 
582 	/* Verify it is a huge page else bail. */
583 	if (!ptep || !shift)
584 		return ERR_PTR(-EINVAL);
585 
586 	mask = (1UL << shift) - 1;
587 	page = pte_page(*ptep);
588 	if (page)
589 		page += (address & mask) / PAGE_SIZE;
590 
591 	return page;
592 }
593 
594 int pmd_huge(pmd_t pmd)
595 {
596 	return 0;
597 }
598 
599 int pud_huge(pud_t pud)
600 {
601 	return 0;
602 }
603 
604 struct page *
605 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
606 		pmd_t *pmd, int write)
607 {
608 	BUG();
609 	return NULL;
610 }
611 
612 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
613 		       unsigned long end, int write, struct page **pages, int *nr)
614 {
615 	unsigned long mask;
616 	unsigned long pte_end;
617 	struct page *head, *page, *tail;
618 	pte_t pte;
619 	int refs;
620 
621 	pte_end = (addr + sz) & ~(sz-1);
622 	if (pte_end < end)
623 		end = pte_end;
624 
625 	pte = *ptep;
626 	mask = _PAGE_PRESENT | _PAGE_USER;
627 	if (write)
628 		mask |= _PAGE_RW;
629 
630 	if ((pte_val(pte) & mask) != mask)
631 		return 0;
632 
633 	/* hugepages are never "special" */
634 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
635 
636 	refs = 0;
637 	head = pte_page(pte);
638 
639 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
640 	tail = page;
641 	do {
642 		VM_BUG_ON(compound_head(page) != head);
643 		pages[*nr] = page;
644 		(*nr)++;
645 		page++;
646 		refs++;
647 	} while (addr += PAGE_SIZE, addr != end);
648 
649 	if (!page_cache_add_speculative(head, refs)) {
650 		*nr -= refs;
651 		return 0;
652 	}
653 
654 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
655 		/* Could be optimized better */
656 		*nr -= refs;
657 		while (refs--)
658 			put_page(head);
659 		return 0;
660 	}
661 
662 	/*
663 	 * Any tail page need their mapcount reference taken before we
664 	 * return.
665 	 */
666 	while (refs--) {
667 		if (PageTail(tail))
668 			get_huge_page_tail(tail);
669 		tail++;
670 	}
671 
672 	return 1;
673 }
674 
675 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
676 				      unsigned long sz)
677 {
678 	unsigned long __boundary = (addr + sz) & ~(sz-1);
679 	return (__boundary - 1 < end - 1) ? __boundary : end;
680 }
681 
682 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
683 	       unsigned long addr, unsigned long end,
684 	       int write, struct page **pages, int *nr)
685 {
686 	pte_t *ptep;
687 	unsigned long sz = 1UL << hugepd_shift(*hugepd);
688 	unsigned long next;
689 
690 	ptep = hugepte_offset(hugepd, addr, pdshift);
691 	do {
692 		next = hugepte_addr_end(addr, end, sz);
693 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
694 			return 0;
695 	} while (ptep++, addr = next, addr != end);
696 
697 	return 1;
698 }
699 
700 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
701 					unsigned long len, unsigned long pgoff,
702 					unsigned long flags)
703 {
704 #ifdef CONFIG_PPC_MM_SLICES
705 	struct hstate *hstate = hstate_file(file);
706 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
707 
708 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
709 #else
710 	return get_unmapped_area(file, addr, len, pgoff, flags);
711 #endif
712 }
713 
714 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
715 {
716 #ifdef CONFIG_PPC_MM_SLICES
717 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
718 
719 	return 1UL << mmu_psize_to_shift(psize);
720 #else
721 	if (!is_vm_hugetlb_page(vma))
722 		return PAGE_SIZE;
723 
724 	return huge_page_size(hstate_vma(vma));
725 #endif
726 }
727 
728 static inline bool is_power_of_4(unsigned long x)
729 {
730 	if (is_power_of_2(x))
731 		return (__ilog2(x) % 2) ? false : true;
732 	return false;
733 }
734 
735 static int __init add_huge_page_size(unsigned long long size)
736 {
737 	int shift = __ffs(size);
738 	int mmu_psize;
739 
740 	/* Check that it is a page size supported by the hardware and
741 	 * that it fits within pagetable and slice limits. */
742 #ifdef CONFIG_PPC_FSL_BOOK3E
743 	if ((size < PAGE_SIZE) || !is_power_of_4(size))
744 		return -EINVAL;
745 #else
746 	if (!is_power_of_2(size)
747 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
748 		return -EINVAL;
749 #endif
750 
751 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
752 		return -EINVAL;
753 
754 #ifdef CONFIG_SPU_FS_64K_LS
755 	/* Disable support for 64K huge pages when 64K SPU local store
756 	 * support is enabled as the current implementation conflicts.
757 	 */
758 	if (shift == PAGE_SHIFT_64K)
759 		return -EINVAL;
760 #endif /* CONFIG_SPU_FS_64K_LS */
761 
762 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
763 
764 	/* Return if huge page size has already been setup */
765 	if (size_to_hstate(size))
766 		return 0;
767 
768 	hugetlb_add_hstate(shift - PAGE_SHIFT);
769 
770 	return 0;
771 }
772 
773 static int __init hugepage_setup_sz(char *str)
774 {
775 	unsigned long long size;
776 
777 	size = memparse(str, &str);
778 
779 	if (add_huge_page_size(size) != 0)
780 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
781 
782 	return 1;
783 }
784 __setup("hugepagesz=", hugepage_setup_sz);
785 
786 #ifdef CONFIG_FSL_BOOKE
787 struct kmem_cache *hugepte_cache;
788 static int __init hugetlbpage_init(void)
789 {
790 	int psize;
791 
792 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
793 		unsigned shift;
794 
795 		if (!mmu_psize_defs[psize].shift)
796 			continue;
797 
798 		shift = mmu_psize_to_shift(psize);
799 
800 		/* Don't treat normal page sizes as huge... */
801 		if (shift != PAGE_SHIFT)
802 			if (add_huge_page_size(1ULL << shift) < 0)
803 				continue;
804 	}
805 
806 	/*
807 	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
808 	 * size information encoded in them, so align them to allow this
809 	 */
810 	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
811 					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
812 	if (hugepte_cache == NULL)
813 		panic("%s: Unable to create kmem cache for hugeptes\n",
814 		      __func__);
815 
816 	/* Default hpage size = 4M */
817 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
818 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
819 	else
820 		panic("%s: Unable to set default huge page size\n", __func__);
821 
822 
823 	return 0;
824 }
825 #else
826 static int __init hugetlbpage_init(void)
827 {
828 	int psize;
829 
830 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
831 		return -ENODEV;
832 
833 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
834 		unsigned shift;
835 		unsigned pdshift;
836 
837 		if (!mmu_psize_defs[psize].shift)
838 			continue;
839 
840 		shift = mmu_psize_to_shift(psize);
841 
842 		if (add_huge_page_size(1ULL << shift) < 0)
843 			continue;
844 
845 		if (shift < PMD_SHIFT)
846 			pdshift = PMD_SHIFT;
847 		else if (shift < PUD_SHIFT)
848 			pdshift = PUD_SHIFT;
849 		else
850 			pdshift = PGDIR_SHIFT;
851 
852 		pgtable_cache_add(pdshift - shift, NULL);
853 		if (!PGT_CACHE(pdshift - shift))
854 			panic("hugetlbpage_init(): could not create "
855 			      "pgtable cache for %d bit pagesize\n", shift);
856 	}
857 
858 	/* Set default large page size. Currently, we pick 16M or 1M
859 	 * depending on what is available
860 	 */
861 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
862 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
863 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
864 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
865 
866 	return 0;
867 }
868 #endif
869 module_init(hugetlbpage_init);
870 
871 void flush_dcache_icache_hugepage(struct page *page)
872 {
873 	int i;
874 	void *start;
875 
876 	BUG_ON(!PageCompound(page));
877 
878 	for (i = 0; i < (1UL << compound_order(page)); i++) {
879 		if (!PageHighMem(page)) {
880 			__flush_dcache_icache(page_address(page+i));
881 		} else {
882 			start = kmap_atomic(page+i, KM_PPC_SYNC_ICACHE);
883 			__flush_dcache_icache(start);
884 			kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
885 		}
886 	}
887 }
888