1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/moduleparam.h> 20 #include <linux/swap.h> 21 #include <linux/swapops.h> 22 #include <asm/pgtable.h> 23 #include <asm/pgalloc.h> 24 #include <asm/tlb.h> 25 #include <asm/setup.h> 26 #include <asm/hugetlb.h> 27 #include <asm/pte-walk.h> 28 29 30 #ifdef CONFIG_HUGETLB_PAGE 31 32 #define PAGE_SHIFT_64K 16 33 #define PAGE_SHIFT_512K 19 34 #define PAGE_SHIFT_8M 23 35 #define PAGE_SHIFT_16M 24 36 #define PAGE_SHIFT_16G 34 37 38 unsigned int HPAGE_SHIFT; 39 EXPORT_SYMBOL(HPAGE_SHIFT); 40 41 #define hugepd_none(hpd) (hpd_val(hpd) == 0) 42 43 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz) 44 { 45 /* 46 * Only called for hugetlbfs pages, hence can ignore THP and the 47 * irq disabled walk. 48 */ 49 return __find_linux_pte(mm->pgd, addr, NULL, NULL); 50 } 51 52 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 53 unsigned long address, unsigned pdshift, unsigned pshift) 54 { 55 struct kmem_cache *cachep; 56 pte_t *new; 57 int i; 58 int num_hugepd; 59 60 if (pshift >= pdshift) { 61 cachep = hugepte_cache; 62 num_hugepd = 1 << (pshift - pdshift); 63 } else { 64 cachep = PGT_CACHE(pdshift - pshift); 65 num_hugepd = 1; 66 } 67 68 new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL)); 69 70 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 71 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 72 73 if (! new) 74 return -ENOMEM; 75 76 /* 77 * Make sure other cpus find the hugepd set only after a 78 * properly initialized page table is visible to them. 79 * For more details look for comment in __pte_alloc(). 80 */ 81 smp_wmb(); 82 83 spin_lock(&mm->page_table_lock); 84 85 /* 86 * We have multiple higher-level entries that point to the same 87 * actual pte location. Fill in each as we go and backtrack on error. 88 * We need all of these so the DTLB pgtable walk code can find the 89 * right higher-level entry without knowing if it's a hugepage or not. 90 */ 91 for (i = 0; i < num_hugepd; i++, hpdp++) { 92 if (unlikely(!hugepd_none(*hpdp))) 93 break; 94 else { 95 #ifdef CONFIG_PPC_BOOK3S_64 96 *hpdp = __hugepd(__pa(new) | 97 (shift_to_mmu_psize(pshift) << 2)); 98 #elif defined(CONFIG_PPC_8xx) 99 *hpdp = __hugepd(__pa(new) | _PMD_USER | 100 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M : 101 _PMD_PAGE_512K) | _PMD_PRESENT); 102 #else 103 /* We use the old format for PPC_FSL_BOOK3E */ 104 *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift); 105 #endif 106 } 107 } 108 /* If we bailed from the for loop early, an error occurred, clean up */ 109 if (i < num_hugepd) { 110 for (i = i - 1 ; i >= 0; i--, hpdp--) 111 *hpdp = __hugepd(0); 112 kmem_cache_free(cachep, new); 113 } 114 spin_unlock(&mm->page_table_lock); 115 return 0; 116 } 117 118 /* 119 * These macros define how to determine which level of the page table holds 120 * the hpdp. 121 */ 122 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 123 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT 124 #define HUGEPD_PUD_SHIFT PUD_SHIFT 125 #else 126 #define HUGEPD_PGD_SHIFT PUD_SHIFT 127 #define HUGEPD_PUD_SHIFT PMD_SHIFT 128 #endif 129 130 /* 131 * At this point we do the placement change only for BOOK3S 64. This would 132 * possibly work on other subarchs. 133 */ 134 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 135 { 136 pgd_t *pg; 137 pud_t *pu; 138 pmd_t *pm; 139 hugepd_t *hpdp = NULL; 140 unsigned pshift = __ffs(sz); 141 unsigned pdshift = PGDIR_SHIFT; 142 143 addr &= ~(sz-1); 144 pg = pgd_offset(mm, addr); 145 146 #ifdef CONFIG_PPC_BOOK3S_64 147 if (pshift == PGDIR_SHIFT) 148 /* 16GB huge page */ 149 return (pte_t *) pg; 150 else if (pshift > PUD_SHIFT) 151 /* 152 * We need to use hugepd table 153 */ 154 hpdp = (hugepd_t *)pg; 155 else { 156 pdshift = PUD_SHIFT; 157 pu = pud_alloc(mm, pg, addr); 158 if (pshift == PUD_SHIFT) 159 return (pte_t *)pu; 160 else if (pshift > PMD_SHIFT) 161 hpdp = (hugepd_t *)pu; 162 else { 163 pdshift = PMD_SHIFT; 164 pm = pmd_alloc(mm, pu, addr); 165 if (pshift == PMD_SHIFT) 166 /* 16MB hugepage */ 167 return (pte_t *)pm; 168 else 169 hpdp = (hugepd_t *)pm; 170 } 171 } 172 #else 173 if (pshift >= HUGEPD_PGD_SHIFT) { 174 hpdp = (hugepd_t *)pg; 175 } else { 176 pdshift = PUD_SHIFT; 177 pu = pud_alloc(mm, pg, addr); 178 if (pshift >= HUGEPD_PUD_SHIFT) { 179 hpdp = (hugepd_t *)pu; 180 } else { 181 pdshift = PMD_SHIFT; 182 pm = pmd_alloc(mm, pu, addr); 183 hpdp = (hugepd_t *)pm; 184 } 185 } 186 #endif 187 if (!hpdp) 188 return NULL; 189 190 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 191 192 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 193 return NULL; 194 195 return hugepte_offset(*hpdp, addr, pdshift); 196 } 197 198 #ifdef CONFIG_PPC_BOOK3S_64 199 /* 200 * Tracks gpages after the device tree is scanned and before the 201 * huge_boot_pages list is ready on pseries. 202 */ 203 #define MAX_NUMBER_GPAGES 1024 204 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 205 __initdata static unsigned nr_gpages; 206 207 /* 208 * Build list of addresses of gigantic pages. This function is used in early 209 * boot before the buddy allocator is setup. 210 */ 211 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 212 { 213 if (!addr) 214 return; 215 while (number_of_pages > 0) { 216 gpage_freearray[nr_gpages] = addr; 217 nr_gpages++; 218 number_of_pages--; 219 addr += page_size; 220 } 221 } 222 223 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate) 224 { 225 struct huge_bootmem_page *m; 226 if (nr_gpages == 0) 227 return 0; 228 m = phys_to_virt(gpage_freearray[--nr_gpages]); 229 gpage_freearray[nr_gpages] = 0; 230 list_add(&m->list, &huge_boot_pages); 231 m->hstate = hstate; 232 return 1; 233 } 234 #endif 235 236 237 int __init alloc_bootmem_huge_page(struct hstate *h) 238 { 239 240 #ifdef CONFIG_PPC_BOOK3S_64 241 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled()) 242 return pseries_alloc_bootmem_huge_page(h); 243 #endif 244 return __alloc_bootmem_huge_page(h); 245 } 246 247 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 248 #define HUGEPD_FREELIST_SIZE \ 249 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 250 251 struct hugepd_freelist { 252 struct rcu_head rcu; 253 unsigned int index; 254 void *ptes[0]; 255 }; 256 257 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 258 259 static void hugepd_free_rcu_callback(struct rcu_head *head) 260 { 261 struct hugepd_freelist *batch = 262 container_of(head, struct hugepd_freelist, rcu); 263 unsigned int i; 264 265 for (i = 0; i < batch->index; i++) 266 kmem_cache_free(hugepte_cache, batch->ptes[i]); 267 268 free_page((unsigned long)batch); 269 } 270 271 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 272 { 273 struct hugepd_freelist **batchp; 274 275 batchp = &get_cpu_var(hugepd_freelist_cur); 276 277 if (atomic_read(&tlb->mm->mm_users) < 2 || 278 mm_is_thread_local(tlb->mm)) { 279 kmem_cache_free(hugepte_cache, hugepte); 280 put_cpu_var(hugepd_freelist_cur); 281 return; 282 } 283 284 if (*batchp == NULL) { 285 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 286 (*batchp)->index = 0; 287 } 288 289 (*batchp)->ptes[(*batchp)->index++] = hugepte; 290 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 291 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); 292 *batchp = NULL; 293 } 294 put_cpu_var(hugepd_freelist_cur); 295 } 296 #else 297 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {} 298 #endif 299 300 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 301 unsigned long start, unsigned long end, 302 unsigned long floor, unsigned long ceiling) 303 { 304 pte_t *hugepte = hugepd_page(*hpdp); 305 int i; 306 307 unsigned long pdmask = ~((1UL << pdshift) - 1); 308 unsigned int num_hugepd = 1; 309 unsigned int shift = hugepd_shift(*hpdp); 310 311 /* Note: On fsl the hpdp may be the first of several */ 312 if (shift > pdshift) 313 num_hugepd = 1 << (shift - pdshift); 314 315 start &= pdmask; 316 if (start < floor) 317 return; 318 if (ceiling) { 319 ceiling &= pdmask; 320 if (! ceiling) 321 return; 322 } 323 if (end - 1 > ceiling - 1) 324 return; 325 326 for (i = 0; i < num_hugepd; i++, hpdp++) 327 *hpdp = __hugepd(0); 328 329 if (shift >= pdshift) 330 hugepd_free(tlb, hugepte); 331 else 332 pgtable_free_tlb(tlb, hugepte, pdshift - shift); 333 } 334 335 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 336 unsigned long addr, unsigned long end, 337 unsigned long floor, unsigned long ceiling) 338 { 339 pmd_t *pmd; 340 unsigned long next; 341 unsigned long start; 342 343 start = addr; 344 do { 345 unsigned long more; 346 347 pmd = pmd_offset(pud, addr); 348 next = pmd_addr_end(addr, end); 349 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { 350 /* 351 * if it is not hugepd pointer, we should already find 352 * it cleared. 353 */ 354 WARN_ON(!pmd_none_or_clear_bad(pmd)); 355 continue; 356 } 357 /* 358 * Increment next by the size of the huge mapping since 359 * there may be more than one entry at this level for a 360 * single hugepage, but all of them point to 361 * the same kmem cache that holds the hugepte. 362 */ 363 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 364 if (more > next) 365 next = more; 366 367 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 368 addr, next, floor, ceiling); 369 } while (addr = next, addr != end); 370 371 start &= PUD_MASK; 372 if (start < floor) 373 return; 374 if (ceiling) { 375 ceiling &= PUD_MASK; 376 if (!ceiling) 377 return; 378 } 379 if (end - 1 > ceiling - 1) 380 return; 381 382 pmd = pmd_offset(pud, start); 383 pud_clear(pud); 384 pmd_free_tlb(tlb, pmd, start); 385 mm_dec_nr_pmds(tlb->mm); 386 } 387 388 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 389 unsigned long addr, unsigned long end, 390 unsigned long floor, unsigned long ceiling) 391 { 392 pud_t *pud; 393 unsigned long next; 394 unsigned long start; 395 396 start = addr; 397 do { 398 pud = pud_offset(pgd, addr); 399 next = pud_addr_end(addr, end); 400 if (!is_hugepd(__hugepd(pud_val(*pud)))) { 401 if (pud_none_or_clear_bad(pud)) 402 continue; 403 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 404 ceiling); 405 } else { 406 unsigned long more; 407 /* 408 * Increment next by the size of the huge mapping since 409 * there may be more than one entry at this level for a 410 * single hugepage, but all of them point to 411 * the same kmem cache that holds the hugepte. 412 */ 413 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 414 if (more > next) 415 next = more; 416 417 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 418 addr, next, floor, ceiling); 419 } 420 } while (addr = next, addr != end); 421 422 start &= PGDIR_MASK; 423 if (start < floor) 424 return; 425 if (ceiling) { 426 ceiling &= PGDIR_MASK; 427 if (!ceiling) 428 return; 429 } 430 if (end - 1 > ceiling - 1) 431 return; 432 433 pud = pud_offset(pgd, start); 434 pgd_clear(pgd); 435 pud_free_tlb(tlb, pud, start); 436 mm_dec_nr_puds(tlb->mm); 437 } 438 439 /* 440 * This function frees user-level page tables of a process. 441 */ 442 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 443 unsigned long addr, unsigned long end, 444 unsigned long floor, unsigned long ceiling) 445 { 446 pgd_t *pgd; 447 unsigned long next; 448 449 /* 450 * Because there are a number of different possible pagetable 451 * layouts for hugepage ranges, we limit knowledge of how 452 * things should be laid out to the allocation path 453 * (huge_pte_alloc(), above). Everything else works out the 454 * structure as it goes from information in the hugepd 455 * pointers. That means that we can't here use the 456 * optimization used in the normal page free_pgd_range(), of 457 * checking whether we're actually covering a large enough 458 * range to have to do anything at the top level of the walk 459 * instead of at the bottom. 460 * 461 * To make sense of this, you should probably go read the big 462 * block comment at the top of the normal free_pgd_range(), 463 * too. 464 */ 465 466 do { 467 next = pgd_addr_end(addr, end); 468 pgd = pgd_offset(tlb->mm, addr); 469 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { 470 if (pgd_none_or_clear_bad(pgd)) 471 continue; 472 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); 473 } else { 474 unsigned long more; 475 /* 476 * Increment next by the size of the huge mapping since 477 * there may be more than one entry at the pgd level 478 * for a single hugepage, but all of them point to the 479 * same kmem cache that holds the hugepte. 480 */ 481 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 482 if (more > next) 483 next = more; 484 485 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, 486 addr, next, floor, ceiling); 487 } 488 } while (addr = next, addr != end); 489 } 490 491 struct page *follow_huge_pd(struct vm_area_struct *vma, 492 unsigned long address, hugepd_t hpd, 493 int flags, int pdshift) 494 { 495 pte_t *ptep; 496 spinlock_t *ptl; 497 struct page *page = NULL; 498 unsigned long mask; 499 int shift = hugepd_shift(hpd); 500 struct mm_struct *mm = vma->vm_mm; 501 502 retry: 503 ptl = &mm->page_table_lock; 504 spin_lock(ptl); 505 506 ptep = hugepte_offset(hpd, address, pdshift); 507 if (pte_present(*ptep)) { 508 mask = (1UL << shift) - 1; 509 page = pte_page(*ptep); 510 page += ((address & mask) >> PAGE_SHIFT); 511 if (flags & FOLL_GET) 512 get_page(page); 513 } else { 514 if (is_hugetlb_entry_migration(*ptep)) { 515 spin_unlock(ptl); 516 __migration_entry_wait(mm, ptep, ptl); 517 goto retry; 518 } 519 } 520 spin_unlock(ptl); 521 return page; 522 } 523 524 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 525 unsigned long sz) 526 { 527 unsigned long __boundary = (addr + sz) & ~(sz-1); 528 return (__boundary - 1 < end - 1) ? __boundary : end; 529 } 530 531 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift, 532 unsigned long end, int write, struct page **pages, int *nr) 533 { 534 pte_t *ptep; 535 unsigned long sz = 1UL << hugepd_shift(hugepd); 536 unsigned long next; 537 538 ptep = hugepte_offset(hugepd, addr, pdshift); 539 do { 540 next = hugepte_addr_end(addr, end, sz); 541 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) 542 return 0; 543 } while (ptep++, addr = next, addr != end); 544 545 return 1; 546 } 547 548 #ifdef CONFIG_PPC_MM_SLICES 549 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 550 unsigned long len, unsigned long pgoff, 551 unsigned long flags) 552 { 553 struct hstate *hstate = hstate_file(file); 554 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 555 556 #ifdef CONFIG_PPC_RADIX_MMU 557 if (radix_enabled()) 558 return radix__hugetlb_get_unmapped_area(file, addr, len, 559 pgoff, flags); 560 #endif 561 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 562 } 563 #endif 564 565 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 566 { 567 #ifdef CONFIG_PPC_MM_SLICES 568 /* With radix we don't use slice, so derive it from vma*/ 569 if (!radix_enabled()) { 570 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 571 572 return 1UL << mmu_psize_to_shift(psize); 573 } 574 #endif 575 if (!is_vm_hugetlb_page(vma)) 576 return PAGE_SIZE; 577 578 return huge_page_size(hstate_vma(vma)); 579 } 580 581 static inline bool is_power_of_4(unsigned long x) 582 { 583 if (is_power_of_2(x)) 584 return (__ilog2(x) % 2) ? false : true; 585 return false; 586 } 587 588 static int __init add_huge_page_size(unsigned long long size) 589 { 590 int shift = __ffs(size); 591 int mmu_psize; 592 593 /* Check that it is a page size supported by the hardware and 594 * that it fits within pagetable and slice limits. */ 595 if (size <= PAGE_SIZE) 596 return -EINVAL; 597 #if defined(CONFIG_PPC_FSL_BOOK3E) 598 if (!is_power_of_4(size)) 599 return -EINVAL; 600 #elif !defined(CONFIG_PPC_8xx) 601 if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT)) 602 return -EINVAL; 603 #endif 604 605 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) 606 return -EINVAL; 607 608 #ifdef CONFIG_PPC_BOOK3S_64 609 /* 610 * We need to make sure that for different page sizes reported by 611 * firmware we only add hugetlb support for page sizes that can be 612 * supported by linux page table layout. 613 * For now we have 614 * Radix: 2M 615 * Hash: 16M and 16G 616 */ 617 if (radix_enabled()) { 618 if (mmu_psize != MMU_PAGE_2M) { 619 if (cpu_has_feature(CPU_FTR_POWER9_DD1) || 620 (mmu_psize != MMU_PAGE_1G)) 621 return -EINVAL; 622 } 623 } else { 624 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G) 625 return -EINVAL; 626 } 627 #endif 628 629 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 630 631 /* Return if huge page size has already been setup */ 632 if (size_to_hstate(size)) 633 return 0; 634 635 hugetlb_add_hstate(shift - PAGE_SHIFT); 636 637 return 0; 638 } 639 640 static int __init hugepage_setup_sz(char *str) 641 { 642 unsigned long long size; 643 644 size = memparse(str, &str); 645 646 if (add_huge_page_size(size) != 0) { 647 hugetlb_bad_size(); 648 pr_err("Invalid huge page size specified(%llu)\n", size); 649 } 650 651 return 1; 652 } 653 __setup("hugepagesz=", hugepage_setup_sz); 654 655 struct kmem_cache *hugepte_cache; 656 static int __init hugetlbpage_init(void) 657 { 658 int psize; 659 660 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx) 661 if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE)) 662 return -ENODEV; 663 #endif 664 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 665 unsigned shift; 666 unsigned pdshift; 667 668 if (!mmu_psize_defs[psize].shift) 669 continue; 670 671 shift = mmu_psize_to_shift(psize); 672 673 if (add_huge_page_size(1ULL << shift) < 0) 674 continue; 675 676 if (shift < HUGEPD_PUD_SHIFT) 677 pdshift = PMD_SHIFT; 678 else if (shift < HUGEPD_PGD_SHIFT) 679 pdshift = PUD_SHIFT; 680 else 681 pdshift = PGDIR_SHIFT; 682 /* 683 * if we have pdshift and shift value same, we don't 684 * use pgt cache for hugepd. 685 */ 686 if (pdshift > shift) 687 pgtable_cache_add(pdshift - shift, NULL); 688 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 689 else if (!hugepte_cache) { 690 /* 691 * Create a kmem cache for hugeptes. The bottom bits in 692 * the pte have size information encoded in them, so 693 * align them to allow this 694 */ 695 hugepte_cache = kmem_cache_create("hugepte-cache", 696 sizeof(pte_t), 697 HUGEPD_SHIFT_MASK + 1, 698 0, NULL); 699 if (hugepte_cache == NULL) 700 panic("%s: Unable to create kmem cache " 701 "for hugeptes\n", __func__); 702 703 } 704 #endif 705 } 706 707 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx) 708 /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */ 709 if (mmu_psize_defs[MMU_PAGE_4M].shift) 710 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; 711 else if (mmu_psize_defs[MMU_PAGE_512K].shift) 712 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift; 713 #else 714 /* Set default large page size. Currently, we pick 16M or 1M 715 * depending on what is available 716 */ 717 if (mmu_psize_defs[MMU_PAGE_16M].shift) 718 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; 719 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 720 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; 721 else if (mmu_psize_defs[MMU_PAGE_2M].shift) 722 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift; 723 #endif 724 return 0; 725 } 726 727 arch_initcall(hugetlbpage_init); 728 729 void flush_dcache_icache_hugepage(struct page *page) 730 { 731 int i; 732 void *start; 733 734 BUG_ON(!PageCompound(page)); 735 736 for (i = 0; i < (1UL << compound_order(page)); i++) { 737 if (!PageHighMem(page)) { 738 __flush_dcache_icache(page_address(page+i)); 739 } else { 740 start = kmap_atomic(page+i); 741 __flush_dcache_icache(start); 742 kunmap_atomic(start); 743 } 744 } 745 } 746 747 #endif /* CONFIG_HUGETLB_PAGE */ 748 749 /* 750 * We have 4 cases for pgds and pmds: 751 * (1) invalid (all zeroes) 752 * (2) pointer to next table, as normal; bottom 6 bits == 0 753 * (3) leaf pte for huge page _PAGE_PTE set 754 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table 755 * 756 * So long as we atomically load page table pointers we are safe against teardown, 757 * we can follow the address down to the the page and take a ref on it. 758 * This function need to be called with interrupts disabled. We use this variant 759 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED 760 */ 761 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea, 762 bool *is_thp, unsigned *hpage_shift) 763 { 764 pgd_t pgd, *pgdp; 765 pud_t pud, *pudp; 766 pmd_t pmd, *pmdp; 767 pte_t *ret_pte; 768 hugepd_t *hpdp = NULL; 769 unsigned pdshift = PGDIR_SHIFT; 770 771 if (hpage_shift) 772 *hpage_shift = 0; 773 774 if (is_thp) 775 *is_thp = false; 776 777 pgdp = pgdir + pgd_index(ea); 778 pgd = READ_ONCE(*pgdp); 779 /* 780 * Always operate on the local stack value. This make sure the 781 * value don't get updated by a parallel THP split/collapse, 782 * page fault or a page unmap. The return pte_t * is still not 783 * stable. So should be checked there for above conditions. 784 */ 785 if (pgd_none(pgd)) 786 return NULL; 787 else if (pgd_huge(pgd)) { 788 ret_pte = (pte_t *) pgdp; 789 goto out; 790 } else if (is_hugepd(__hugepd(pgd_val(pgd)))) 791 hpdp = (hugepd_t *)&pgd; 792 else { 793 /* 794 * Even if we end up with an unmap, the pgtable will not 795 * be freed, because we do an rcu free and here we are 796 * irq disabled 797 */ 798 pdshift = PUD_SHIFT; 799 pudp = pud_offset(&pgd, ea); 800 pud = READ_ONCE(*pudp); 801 802 if (pud_none(pud)) 803 return NULL; 804 else if (pud_huge(pud)) { 805 ret_pte = (pte_t *) pudp; 806 goto out; 807 } else if (is_hugepd(__hugepd(pud_val(pud)))) 808 hpdp = (hugepd_t *)&pud; 809 else { 810 pdshift = PMD_SHIFT; 811 pmdp = pmd_offset(&pud, ea); 812 pmd = READ_ONCE(*pmdp); 813 /* 814 * A hugepage collapse is captured by pmd_none, because 815 * it mark the pmd none and do a hpte invalidate. 816 */ 817 if (pmd_none(pmd)) 818 return NULL; 819 820 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) { 821 if (is_thp) 822 *is_thp = true; 823 ret_pte = (pte_t *) pmdp; 824 goto out; 825 } 826 827 if (pmd_huge(pmd)) { 828 ret_pte = (pte_t *) pmdp; 829 goto out; 830 } else if (is_hugepd(__hugepd(pmd_val(pmd)))) 831 hpdp = (hugepd_t *)&pmd; 832 else 833 return pte_offset_kernel(&pmd, ea); 834 } 835 } 836 if (!hpdp) 837 return NULL; 838 839 ret_pte = hugepte_offset(*hpdp, ea, pdshift); 840 pdshift = hugepd_shift(*hpdp); 841 out: 842 if (hpage_shift) 843 *hpage_shift = pdshift; 844 return ret_pte; 845 } 846 EXPORT_SYMBOL_GPL(__find_linux_pte); 847 848 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 849 unsigned long end, int write, struct page **pages, int *nr) 850 { 851 unsigned long pte_end; 852 struct page *head, *page; 853 pte_t pte; 854 int refs; 855 856 pte_end = (addr + sz) & ~(sz-1); 857 if (pte_end < end) 858 end = pte_end; 859 860 pte = READ_ONCE(*ptep); 861 862 if (!pte_access_permitted(pte, write)) 863 return 0; 864 865 /* hugepages are never "special" */ 866 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 867 868 refs = 0; 869 head = pte_page(pte); 870 871 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 872 do { 873 VM_BUG_ON(compound_head(page) != head); 874 pages[*nr] = page; 875 (*nr)++; 876 page++; 877 refs++; 878 } while (addr += PAGE_SIZE, addr != end); 879 880 if (!page_cache_add_speculative(head, refs)) { 881 *nr -= refs; 882 return 0; 883 } 884 885 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 886 /* Could be optimized better */ 887 *nr -= refs; 888 while (refs--) 889 put_page(head); 890 return 0; 891 } 892 893 return 1; 894 } 895