xref: /linux/arch/powerpc/mm/hugetlbpage.c (revision 1553a1c48281243359a9529a10ddb551f3b967ab)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/swap.h>
20 #include <linux/swapops.h>
21 #include <linux/kmemleak.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/setup.h>
25 #include <asm/hugetlb.h>
26 #include <asm/pte-walk.h>
27 #include <asm/firmware.h>
28 
29 bool hugetlb_disabled = false;
30 
31 #define hugepd_none(hpd)	(hpd_val(hpd) == 0)
32 
33 #define PTE_T_ORDER	(__builtin_ffs(sizeof(pte_basic_t)) - \
34 			 __builtin_ffs(sizeof(void *)))
35 
36 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
37 {
38 	/*
39 	 * Only called for hugetlbfs pages, hence can ignore THP and the
40 	 * irq disabled walk.
41 	 */
42 	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
43 }
44 
45 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
46 			   unsigned long address, unsigned int pdshift,
47 			   unsigned int pshift, spinlock_t *ptl)
48 {
49 	struct kmem_cache *cachep;
50 	pte_t *new;
51 	int i;
52 	int num_hugepd;
53 
54 	if (pshift >= pdshift) {
55 		cachep = PGT_CACHE(PTE_T_ORDER);
56 		num_hugepd = 1 << (pshift - pdshift);
57 	} else {
58 		cachep = PGT_CACHE(pdshift - pshift);
59 		num_hugepd = 1;
60 	}
61 
62 	if (!cachep) {
63 		WARN_ONCE(1, "No page table cache created for hugetlb tables");
64 		return -ENOMEM;
65 	}
66 
67 	new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
68 
69 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
70 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
71 
72 	if (!new)
73 		return -ENOMEM;
74 
75 	/*
76 	 * Make sure other cpus find the hugepd set only after a
77 	 * properly initialized page table is visible to them.
78 	 * For more details look for comment in __pte_alloc().
79 	 */
80 	smp_wmb();
81 
82 	spin_lock(ptl);
83 	/*
84 	 * We have multiple higher-level entries that point to the same
85 	 * actual pte location.  Fill in each as we go and backtrack on error.
86 	 * We need all of these so the DTLB pgtable walk code can find the
87 	 * right higher-level entry without knowing if it's a hugepage or not.
88 	 */
89 	for (i = 0; i < num_hugepd; i++, hpdp++) {
90 		if (unlikely(!hugepd_none(*hpdp)))
91 			break;
92 		hugepd_populate(hpdp, new, pshift);
93 	}
94 	/* If we bailed from the for loop early, an error occurred, clean up */
95 	if (i < num_hugepd) {
96 		for (i = i - 1 ; i >= 0; i--, hpdp--)
97 			*hpdp = __hugepd(0);
98 		kmem_cache_free(cachep, new);
99 	} else {
100 		kmemleak_ignore(new);
101 	}
102 	spin_unlock(ptl);
103 	return 0;
104 }
105 
106 /*
107  * At this point we do the placement change only for BOOK3S 64. This would
108  * possibly work on other subarchs.
109  */
110 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
111 		      unsigned long addr, unsigned long sz)
112 {
113 	pgd_t *pg;
114 	p4d_t *p4;
115 	pud_t *pu;
116 	pmd_t *pm;
117 	hugepd_t *hpdp = NULL;
118 	unsigned pshift = __ffs(sz);
119 	unsigned pdshift = PGDIR_SHIFT;
120 	spinlock_t *ptl;
121 
122 	addr &= ~(sz-1);
123 	pg = pgd_offset(mm, addr);
124 	p4 = p4d_offset(pg, addr);
125 
126 #ifdef CONFIG_PPC_BOOK3S_64
127 	if (pshift == PGDIR_SHIFT)
128 		/* 16GB huge page */
129 		return (pte_t *) p4;
130 	else if (pshift > PUD_SHIFT) {
131 		/*
132 		 * We need to use hugepd table
133 		 */
134 		ptl = &mm->page_table_lock;
135 		hpdp = (hugepd_t *)p4;
136 	} else {
137 		pdshift = PUD_SHIFT;
138 		pu = pud_alloc(mm, p4, addr);
139 		if (!pu)
140 			return NULL;
141 		if (pshift == PUD_SHIFT)
142 			return (pte_t *)pu;
143 		else if (pshift > PMD_SHIFT) {
144 			ptl = pud_lockptr(mm, pu);
145 			hpdp = (hugepd_t *)pu;
146 		} else {
147 			pdshift = PMD_SHIFT;
148 			pm = pmd_alloc(mm, pu, addr);
149 			if (!pm)
150 				return NULL;
151 			if (pshift == PMD_SHIFT)
152 				/* 16MB hugepage */
153 				return (pte_t *)pm;
154 			else {
155 				ptl = pmd_lockptr(mm, pm);
156 				hpdp = (hugepd_t *)pm;
157 			}
158 		}
159 	}
160 #else
161 	if (pshift >= PGDIR_SHIFT) {
162 		ptl = &mm->page_table_lock;
163 		hpdp = (hugepd_t *)p4;
164 	} else {
165 		pdshift = PUD_SHIFT;
166 		pu = pud_alloc(mm, p4, addr);
167 		if (!pu)
168 			return NULL;
169 		if (pshift >= PUD_SHIFT) {
170 			ptl = pud_lockptr(mm, pu);
171 			hpdp = (hugepd_t *)pu;
172 		} else {
173 			pdshift = PMD_SHIFT;
174 			pm = pmd_alloc(mm, pu, addr);
175 			if (!pm)
176 				return NULL;
177 			ptl = pmd_lockptr(mm, pm);
178 			hpdp = (hugepd_t *)pm;
179 		}
180 	}
181 #endif
182 	if (!hpdp)
183 		return NULL;
184 
185 	if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT)
186 		return pte_alloc_huge(mm, (pmd_t *)hpdp, addr);
187 
188 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
189 
190 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
191 						  pdshift, pshift, ptl))
192 		return NULL;
193 
194 	return hugepte_offset(*hpdp, addr, pdshift);
195 }
196 
197 #ifdef CONFIG_PPC_BOOK3S_64
198 /*
199  * Tracks gpages after the device tree is scanned and before the
200  * huge_boot_pages list is ready on pseries.
201  */
202 #define MAX_NUMBER_GPAGES	1024
203 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
204 __initdata static unsigned nr_gpages;
205 
206 /*
207  * Build list of addresses of gigantic pages.  This function is used in early
208  * boot before the buddy allocator is setup.
209  */
210 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
211 {
212 	if (!addr)
213 		return;
214 	while (number_of_pages > 0) {
215 		gpage_freearray[nr_gpages] = addr;
216 		nr_gpages++;
217 		number_of_pages--;
218 		addr += page_size;
219 	}
220 }
221 
222 static int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
223 {
224 	struct huge_bootmem_page *m;
225 	if (nr_gpages == 0)
226 		return 0;
227 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
228 	gpage_freearray[nr_gpages] = 0;
229 	list_add(&m->list, &huge_boot_pages[0]);
230 	m->hstate = hstate;
231 	return 1;
232 }
233 
234 bool __init hugetlb_node_alloc_supported(void)
235 {
236 	return false;
237 }
238 #endif
239 
240 
241 int __init alloc_bootmem_huge_page(struct hstate *h, int nid)
242 {
243 
244 #ifdef CONFIG_PPC_BOOK3S_64
245 	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
246 		return pseries_alloc_bootmem_huge_page(h);
247 #endif
248 	return __alloc_bootmem_huge_page(h, nid);
249 }
250 
251 #ifndef CONFIG_PPC_BOOK3S_64
252 #define HUGEPD_FREELIST_SIZE \
253 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
254 
255 struct hugepd_freelist {
256 	struct rcu_head	rcu;
257 	unsigned int index;
258 	void *ptes[];
259 };
260 
261 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
262 
263 static void hugepd_free_rcu_callback(struct rcu_head *head)
264 {
265 	struct hugepd_freelist *batch =
266 		container_of(head, struct hugepd_freelist, rcu);
267 	unsigned int i;
268 
269 	for (i = 0; i < batch->index; i++)
270 		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
271 
272 	free_page((unsigned long)batch);
273 }
274 
275 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
276 {
277 	struct hugepd_freelist **batchp;
278 
279 	batchp = &get_cpu_var(hugepd_freelist_cur);
280 
281 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
282 	    mm_is_thread_local(tlb->mm)) {
283 		kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
284 		put_cpu_var(hugepd_freelist_cur);
285 		return;
286 	}
287 
288 	if (*batchp == NULL) {
289 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
290 		(*batchp)->index = 0;
291 	}
292 
293 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
294 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
295 		call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
296 		*batchp = NULL;
297 	}
298 	put_cpu_var(hugepd_freelist_cur);
299 }
300 #else
301 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
302 #endif
303 
304 /* Return true when the entry to be freed maps more than the area being freed */
305 static bool range_is_outside_limits(unsigned long start, unsigned long end,
306 				    unsigned long floor, unsigned long ceiling,
307 				    unsigned long mask)
308 {
309 	if ((start & mask) < floor)
310 		return true;
311 	if (ceiling) {
312 		ceiling &= mask;
313 		if (!ceiling)
314 			return true;
315 	}
316 	return end - 1 > ceiling - 1;
317 }
318 
319 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
320 			      unsigned long start, unsigned long end,
321 			      unsigned long floor, unsigned long ceiling)
322 {
323 	pte_t *hugepte = hugepd_page(*hpdp);
324 	int i;
325 
326 	unsigned long pdmask = ~((1UL << pdshift) - 1);
327 	unsigned int num_hugepd = 1;
328 	unsigned int shift = hugepd_shift(*hpdp);
329 
330 	/* Note: On fsl the hpdp may be the first of several */
331 	if (shift > pdshift)
332 		num_hugepd = 1 << (shift - pdshift);
333 
334 	if (range_is_outside_limits(start, end, floor, ceiling, pdmask))
335 		return;
336 
337 	for (i = 0; i < num_hugepd; i++, hpdp++)
338 		*hpdp = __hugepd(0);
339 
340 	if (shift >= pdshift)
341 		hugepd_free(tlb, hugepte);
342 	else
343 		pgtable_free_tlb(tlb, hugepte,
344 				 get_hugepd_cache_index(pdshift - shift));
345 }
346 
347 static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
348 				   unsigned long addr, unsigned long end,
349 				   unsigned long floor, unsigned long ceiling)
350 {
351 	pgtable_t token = pmd_pgtable(*pmd);
352 
353 	if (range_is_outside_limits(addr, end, floor, ceiling, PMD_MASK))
354 		return;
355 
356 	pmd_clear(pmd);
357 	pte_free_tlb(tlb, token, addr);
358 	mm_dec_nr_ptes(tlb->mm);
359 }
360 
361 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
362 				   unsigned long addr, unsigned long end,
363 				   unsigned long floor, unsigned long ceiling)
364 {
365 	pmd_t *pmd;
366 	unsigned long next;
367 	unsigned long start;
368 
369 	start = addr;
370 	do {
371 		unsigned long more;
372 
373 		pmd = pmd_offset(pud, addr);
374 		next = pmd_addr_end(addr, end);
375 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
376 			if (pmd_none_or_clear_bad(pmd))
377 				continue;
378 
379 			/*
380 			 * if it is not hugepd pointer, we should already find
381 			 * it cleared.
382 			 */
383 			WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
384 
385 			hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling);
386 
387 			continue;
388 		}
389 		/*
390 		 * Increment next by the size of the huge mapping since
391 		 * there may be more than one entry at this level for a
392 		 * single hugepage, but all of them point to
393 		 * the same kmem cache that holds the hugepte.
394 		 */
395 		more = addr + (1UL << hugepd_shift(*(hugepd_t *)pmd));
396 		if (more > next)
397 			next = more;
398 
399 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
400 				  addr, next, floor, ceiling);
401 	} while (addr = next, addr != end);
402 
403 	if (range_is_outside_limits(start, end, floor, ceiling, PUD_MASK))
404 		return;
405 
406 	pmd = pmd_offset(pud, start & PUD_MASK);
407 	pud_clear(pud);
408 	pmd_free_tlb(tlb, pmd, start & PUD_MASK);
409 	mm_dec_nr_pmds(tlb->mm);
410 }
411 
412 static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
413 				   unsigned long addr, unsigned long end,
414 				   unsigned long floor, unsigned long ceiling)
415 {
416 	pud_t *pud;
417 	unsigned long next;
418 	unsigned long start;
419 
420 	start = addr;
421 	do {
422 		pud = pud_offset(p4d, addr);
423 		next = pud_addr_end(addr, end);
424 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
425 			if (pud_none_or_clear_bad(pud))
426 				continue;
427 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
428 					       ceiling);
429 		} else {
430 			unsigned long more;
431 			/*
432 			 * Increment next by the size of the huge mapping since
433 			 * there may be more than one entry at this level for a
434 			 * single hugepage, but all of them point to
435 			 * the same kmem cache that holds the hugepte.
436 			 */
437 			more = addr + (1UL << hugepd_shift(*(hugepd_t *)pud));
438 			if (more > next)
439 				next = more;
440 
441 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
442 					  addr, next, floor, ceiling);
443 		}
444 	} while (addr = next, addr != end);
445 
446 	if (range_is_outside_limits(start, end, floor, ceiling, PGDIR_MASK))
447 		return;
448 
449 	pud = pud_offset(p4d, start & PGDIR_MASK);
450 	p4d_clear(p4d);
451 	pud_free_tlb(tlb, pud, start & PGDIR_MASK);
452 	mm_dec_nr_puds(tlb->mm);
453 }
454 
455 /*
456  * This function frees user-level page tables of a process.
457  */
458 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
459 			    unsigned long addr, unsigned long end,
460 			    unsigned long floor, unsigned long ceiling)
461 {
462 	pgd_t *pgd;
463 	p4d_t *p4d;
464 	unsigned long next;
465 
466 	/*
467 	 * Because there are a number of different possible pagetable
468 	 * layouts for hugepage ranges, we limit knowledge of how
469 	 * things should be laid out to the allocation path
470 	 * (huge_pte_alloc(), above).  Everything else works out the
471 	 * structure as it goes from information in the hugepd
472 	 * pointers.  That means that we can't here use the
473 	 * optimization used in the normal page free_pgd_range(), of
474 	 * checking whether we're actually covering a large enough
475 	 * range to have to do anything at the top level of the walk
476 	 * instead of at the bottom.
477 	 *
478 	 * To make sense of this, you should probably go read the big
479 	 * block comment at the top of the normal free_pgd_range(),
480 	 * too.
481 	 */
482 
483 	do {
484 		next = pgd_addr_end(addr, end);
485 		pgd = pgd_offset(tlb->mm, addr);
486 		p4d = p4d_offset(pgd, addr);
487 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
488 			if (p4d_none_or_clear_bad(p4d))
489 				continue;
490 			hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
491 		} else {
492 			unsigned long more;
493 			/*
494 			 * Increment next by the size of the huge mapping since
495 			 * there may be more than one entry at the pgd level
496 			 * for a single hugepage, but all of them point to the
497 			 * same kmem cache that holds the hugepte.
498 			 */
499 			more = addr + (1UL << hugepd_shift(*(hugepd_t *)pgd));
500 			if (more > next)
501 				next = more;
502 
503 			free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
504 					  addr, next, floor, ceiling);
505 		}
506 	} while (addr = next, addr != end);
507 }
508 
509 bool __init arch_hugetlb_valid_size(unsigned long size)
510 {
511 	int shift = __ffs(size);
512 	int mmu_psize;
513 
514 	/* Check that it is a page size supported by the hardware and
515 	 * that it fits within pagetable and slice limits. */
516 	if (size <= PAGE_SIZE || !is_power_of_2(size))
517 		return false;
518 
519 	mmu_psize = check_and_get_huge_psize(shift);
520 	if (mmu_psize < 0)
521 		return false;
522 
523 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
524 
525 	return true;
526 }
527 
528 static int __init add_huge_page_size(unsigned long long size)
529 {
530 	int shift = __ffs(size);
531 
532 	if (!arch_hugetlb_valid_size((unsigned long)size))
533 		return -EINVAL;
534 
535 	hugetlb_add_hstate(shift - PAGE_SHIFT);
536 	return 0;
537 }
538 
539 static int __init hugetlbpage_init(void)
540 {
541 	bool configured = false;
542 	int psize;
543 
544 	if (hugetlb_disabled) {
545 		pr_info("HugeTLB support is disabled!\n");
546 		return 0;
547 	}
548 
549 	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
550 	    !mmu_has_feature(MMU_FTR_16M_PAGE))
551 		return -ENODEV;
552 
553 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
554 		unsigned shift;
555 		unsigned pdshift;
556 
557 		if (!mmu_psize_defs[psize].shift)
558 			continue;
559 
560 		shift = mmu_psize_to_shift(psize);
561 
562 #ifdef CONFIG_PPC_BOOK3S_64
563 		if (shift > PGDIR_SHIFT)
564 			continue;
565 		else if (shift > PUD_SHIFT)
566 			pdshift = PGDIR_SHIFT;
567 		else if (shift > PMD_SHIFT)
568 			pdshift = PUD_SHIFT;
569 		else
570 			pdshift = PMD_SHIFT;
571 #else
572 		if (shift < PUD_SHIFT)
573 			pdshift = PMD_SHIFT;
574 		else if (shift < PGDIR_SHIFT)
575 			pdshift = PUD_SHIFT;
576 		else
577 			pdshift = PGDIR_SHIFT;
578 #endif
579 
580 		if (add_huge_page_size(1ULL << shift) < 0)
581 			continue;
582 		/*
583 		 * if we have pdshift and shift value same, we don't
584 		 * use pgt cache for hugepd.
585 		 */
586 		if (pdshift > shift) {
587 			if (!IS_ENABLED(CONFIG_PPC_8xx))
588 				pgtable_cache_add(pdshift - shift);
589 		} else if (IS_ENABLED(CONFIG_PPC_E500) ||
590 			   IS_ENABLED(CONFIG_PPC_8xx)) {
591 			pgtable_cache_add(PTE_T_ORDER);
592 		}
593 
594 		configured = true;
595 	}
596 
597 	if (!configured)
598 		pr_info("Failed to initialize. Disabling HugeTLB");
599 
600 	return 0;
601 }
602 
603 arch_initcall(hugetlbpage_init);
604 
605 void __init gigantic_hugetlb_cma_reserve(void)
606 {
607 	unsigned long order = 0;
608 
609 	if (radix_enabled())
610 		order = PUD_SHIFT - PAGE_SHIFT;
611 	else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
612 		/*
613 		 * For pseries we do use ibm,expected#pages for reserving 16G pages.
614 		 */
615 		order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
616 
617 	if (order)
618 		hugetlb_cma_reserve(order);
619 }
620