1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/moduleparam.h> 20 #include <asm/pgtable.h> 21 #include <asm/pgalloc.h> 22 #include <asm/tlb.h> 23 #include <asm/setup.h> 24 #include <asm/hugetlb.h> 25 26 #ifdef CONFIG_HUGETLB_PAGE 27 28 #define PAGE_SHIFT_64K 16 29 #define PAGE_SHIFT_16M 24 30 #define PAGE_SHIFT_16G 34 31 32 unsigned int HPAGE_SHIFT; 33 34 /* 35 * Tracks gpages after the device tree is scanned and before the 36 * huge_boot_pages list is ready. On non-Freescale implementations, this is 37 * just used to track 16G pages and so is a single array. FSL-based 38 * implementations may have more than one gpage size, so we need multiple 39 * arrays 40 */ 41 #ifdef CONFIG_PPC_FSL_BOOK3E 42 #define MAX_NUMBER_GPAGES 128 43 struct psize_gpages { 44 u64 gpage_list[MAX_NUMBER_GPAGES]; 45 unsigned int nr_gpages; 46 }; 47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT]; 48 #else 49 #define MAX_NUMBER_GPAGES 1024 50 static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 51 static unsigned nr_gpages; 52 #endif 53 54 #define hugepd_none(hpd) ((hpd).pd == 0) 55 56 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 57 { 58 /* Only called for hugetlbfs pages, hence can ignore THP */ 59 return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL); 60 } 61 62 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 63 unsigned long address, unsigned pdshift, unsigned pshift) 64 { 65 struct kmem_cache *cachep; 66 pte_t *new; 67 68 #ifdef CONFIG_PPC_FSL_BOOK3E 69 int i; 70 int num_hugepd = 1 << (pshift - pdshift); 71 cachep = hugepte_cache; 72 #else 73 cachep = PGT_CACHE(pdshift - pshift); 74 #endif 75 76 new = kmem_cache_zalloc(cachep, GFP_KERNEL); 77 78 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 79 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 80 81 if (! new) 82 return -ENOMEM; 83 84 /* 85 * Make sure other cpus find the hugepd set only after a 86 * properly initialized page table is visible to them. 87 * For more details look for comment in __pte_alloc(). 88 */ 89 smp_wmb(); 90 91 spin_lock(&mm->page_table_lock); 92 #ifdef CONFIG_PPC_FSL_BOOK3E 93 /* 94 * We have multiple higher-level entries that point to the same 95 * actual pte location. Fill in each as we go and backtrack on error. 96 * We need all of these so the DTLB pgtable walk code can find the 97 * right higher-level entry without knowing if it's a hugepage or not. 98 */ 99 for (i = 0; i < num_hugepd; i++, hpdp++) { 100 if (unlikely(!hugepd_none(*hpdp))) 101 break; 102 else 103 /* We use the old format for PPC_FSL_BOOK3E */ 104 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; 105 } 106 /* If we bailed from the for loop early, an error occurred, clean up */ 107 if (i < num_hugepd) { 108 for (i = i - 1 ; i >= 0; i--, hpdp--) 109 hpdp->pd = 0; 110 kmem_cache_free(cachep, new); 111 } 112 #else 113 if (!hugepd_none(*hpdp)) 114 kmem_cache_free(cachep, new); 115 else { 116 #ifdef CONFIG_PPC_BOOK3S_64 117 hpdp->pd = __pa(new) | (shift_to_mmu_psize(pshift) << 2); 118 #else 119 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; 120 #endif 121 } 122 #endif 123 spin_unlock(&mm->page_table_lock); 124 return 0; 125 } 126 127 /* 128 * These macros define how to determine which level of the page table holds 129 * the hpdp. 130 */ 131 #ifdef CONFIG_PPC_FSL_BOOK3E 132 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT 133 #define HUGEPD_PUD_SHIFT PUD_SHIFT 134 #else 135 #define HUGEPD_PGD_SHIFT PUD_SHIFT 136 #define HUGEPD_PUD_SHIFT PMD_SHIFT 137 #endif 138 139 #ifdef CONFIG_PPC_BOOK3S_64 140 /* 141 * At this point we do the placement change only for BOOK3S 64. This would 142 * possibly work on other subarchs. 143 */ 144 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 145 { 146 pgd_t *pg; 147 pud_t *pu; 148 pmd_t *pm; 149 hugepd_t *hpdp = NULL; 150 unsigned pshift = __ffs(sz); 151 unsigned pdshift = PGDIR_SHIFT; 152 153 addr &= ~(sz-1); 154 pg = pgd_offset(mm, addr); 155 156 if (pshift == PGDIR_SHIFT) 157 /* 16GB huge page */ 158 return (pte_t *) pg; 159 else if (pshift > PUD_SHIFT) 160 /* 161 * We need to use hugepd table 162 */ 163 hpdp = (hugepd_t *)pg; 164 else { 165 pdshift = PUD_SHIFT; 166 pu = pud_alloc(mm, pg, addr); 167 if (pshift == PUD_SHIFT) 168 return (pte_t *)pu; 169 else if (pshift > PMD_SHIFT) 170 hpdp = (hugepd_t *)pu; 171 else { 172 pdshift = PMD_SHIFT; 173 pm = pmd_alloc(mm, pu, addr); 174 if (pshift == PMD_SHIFT) 175 /* 16MB hugepage */ 176 return (pte_t *)pm; 177 else 178 hpdp = (hugepd_t *)pm; 179 } 180 } 181 if (!hpdp) 182 return NULL; 183 184 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 185 186 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 187 return NULL; 188 189 return hugepte_offset(*hpdp, addr, pdshift); 190 } 191 192 #else 193 194 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 195 { 196 pgd_t *pg; 197 pud_t *pu; 198 pmd_t *pm; 199 hugepd_t *hpdp = NULL; 200 unsigned pshift = __ffs(sz); 201 unsigned pdshift = PGDIR_SHIFT; 202 203 addr &= ~(sz-1); 204 205 pg = pgd_offset(mm, addr); 206 207 if (pshift >= HUGEPD_PGD_SHIFT) { 208 hpdp = (hugepd_t *)pg; 209 } else { 210 pdshift = PUD_SHIFT; 211 pu = pud_alloc(mm, pg, addr); 212 if (pshift >= HUGEPD_PUD_SHIFT) { 213 hpdp = (hugepd_t *)pu; 214 } else { 215 pdshift = PMD_SHIFT; 216 pm = pmd_alloc(mm, pu, addr); 217 hpdp = (hugepd_t *)pm; 218 } 219 } 220 221 if (!hpdp) 222 return NULL; 223 224 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 225 226 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 227 return NULL; 228 229 return hugepte_offset(*hpdp, addr, pdshift); 230 } 231 #endif 232 233 #ifdef CONFIG_PPC_FSL_BOOK3E 234 /* Build list of addresses of gigantic pages. This function is used in early 235 * boot before the buddy allocator is setup. 236 */ 237 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 238 { 239 unsigned int idx = shift_to_mmu_psize(__ffs(page_size)); 240 int i; 241 242 if (addr == 0) 243 return; 244 245 gpage_freearray[idx].nr_gpages = number_of_pages; 246 247 for (i = 0; i < number_of_pages; i++) { 248 gpage_freearray[idx].gpage_list[i] = addr; 249 addr += page_size; 250 } 251 } 252 253 /* 254 * Moves the gigantic page addresses from the temporary list to the 255 * huge_boot_pages list. 256 */ 257 int alloc_bootmem_huge_page(struct hstate *hstate) 258 { 259 struct huge_bootmem_page *m; 260 int idx = shift_to_mmu_psize(huge_page_shift(hstate)); 261 int nr_gpages = gpage_freearray[idx].nr_gpages; 262 263 if (nr_gpages == 0) 264 return 0; 265 266 #ifdef CONFIG_HIGHMEM 267 /* 268 * If gpages can be in highmem we can't use the trick of storing the 269 * data structure in the page; allocate space for this 270 */ 271 m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0); 272 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages]; 273 #else 274 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]); 275 #endif 276 277 list_add(&m->list, &huge_boot_pages); 278 gpage_freearray[idx].nr_gpages = nr_gpages; 279 gpage_freearray[idx].gpage_list[nr_gpages] = 0; 280 m->hstate = hstate; 281 282 return 1; 283 } 284 /* 285 * Scan the command line hugepagesz= options for gigantic pages; store those in 286 * a list that we use to allocate the memory once all options are parsed. 287 */ 288 289 unsigned long gpage_npages[MMU_PAGE_COUNT]; 290 291 static int __init do_gpage_early_setup(char *param, char *val, 292 const char *unused, void *arg) 293 { 294 static phys_addr_t size; 295 unsigned long npages; 296 297 /* 298 * The hugepagesz and hugepages cmdline options are interleaved. We 299 * use the size variable to keep track of whether or not this was done 300 * properly and skip over instances where it is incorrect. Other 301 * command-line parsing code will issue warnings, so we don't need to. 302 * 303 */ 304 if ((strcmp(param, "default_hugepagesz") == 0) || 305 (strcmp(param, "hugepagesz") == 0)) { 306 size = memparse(val, NULL); 307 } else if (strcmp(param, "hugepages") == 0) { 308 if (size != 0) { 309 if (sscanf(val, "%lu", &npages) <= 0) 310 npages = 0; 311 if (npages > MAX_NUMBER_GPAGES) { 312 pr_warn("MMU: %lu pages requested for page " 313 "size %llu KB, limiting to " 314 __stringify(MAX_NUMBER_GPAGES) "\n", 315 npages, size / 1024); 316 npages = MAX_NUMBER_GPAGES; 317 } 318 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages; 319 size = 0; 320 } 321 } 322 return 0; 323 } 324 325 326 /* 327 * This function allocates physical space for pages that are larger than the 328 * buddy allocator can handle. We want to allocate these in highmem because 329 * the amount of lowmem is limited. This means that this function MUST be 330 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb 331 * allocate to grab highmem. 332 */ 333 void __init reserve_hugetlb_gpages(void) 334 { 335 static __initdata char cmdline[COMMAND_LINE_SIZE]; 336 phys_addr_t size, base; 337 int i; 338 339 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE); 340 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0, 341 NULL, &do_gpage_early_setup); 342 343 /* 344 * Walk gpage list in reverse, allocating larger page sizes first. 345 * Skip over unsupported sizes, or sizes that have 0 gpages allocated. 346 * When we reach the point in the list where pages are no longer 347 * considered gpages, we're done. 348 */ 349 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) { 350 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0) 351 continue; 352 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT)) 353 break; 354 355 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i)); 356 base = memblock_alloc_base(size * gpage_npages[i], size, 357 MEMBLOCK_ALLOC_ANYWHERE); 358 add_gpage(base, size, gpage_npages[i]); 359 } 360 } 361 362 #else /* !PPC_FSL_BOOK3E */ 363 364 /* Build list of addresses of gigantic pages. This function is used in early 365 * boot before the buddy allocator is setup. 366 */ 367 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 368 { 369 if (!addr) 370 return; 371 while (number_of_pages > 0) { 372 gpage_freearray[nr_gpages] = addr; 373 nr_gpages++; 374 number_of_pages--; 375 addr += page_size; 376 } 377 } 378 379 /* Moves the gigantic page addresses from the temporary list to the 380 * huge_boot_pages list. 381 */ 382 int alloc_bootmem_huge_page(struct hstate *hstate) 383 { 384 struct huge_bootmem_page *m; 385 if (nr_gpages == 0) 386 return 0; 387 m = phys_to_virt(gpage_freearray[--nr_gpages]); 388 gpage_freearray[nr_gpages] = 0; 389 list_add(&m->list, &huge_boot_pages); 390 m->hstate = hstate; 391 return 1; 392 } 393 #endif 394 395 #ifdef CONFIG_PPC_FSL_BOOK3E 396 #define HUGEPD_FREELIST_SIZE \ 397 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 398 399 struct hugepd_freelist { 400 struct rcu_head rcu; 401 unsigned int index; 402 void *ptes[0]; 403 }; 404 405 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 406 407 static void hugepd_free_rcu_callback(struct rcu_head *head) 408 { 409 struct hugepd_freelist *batch = 410 container_of(head, struct hugepd_freelist, rcu); 411 unsigned int i; 412 413 for (i = 0; i < batch->index; i++) 414 kmem_cache_free(hugepte_cache, batch->ptes[i]); 415 416 free_page((unsigned long)batch); 417 } 418 419 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 420 { 421 struct hugepd_freelist **batchp; 422 423 batchp = &get_cpu_var(hugepd_freelist_cur); 424 425 if (atomic_read(&tlb->mm->mm_users) < 2 || 426 cpumask_equal(mm_cpumask(tlb->mm), 427 cpumask_of(smp_processor_id()))) { 428 kmem_cache_free(hugepte_cache, hugepte); 429 put_cpu_var(hugepd_freelist_cur); 430 return; 431 } 432 433 if (*batchp == NULL) { 434 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 435 (*batchp)->index = 0; 436 } 437 438 (*batchp)->ptes[(*batchp)->index++] = hugepte; 439 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 440 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); 441 *batchp = NULL; 442 } 443 put_cpu_var(hugepd_freelist_cur); 444 } 445 #endif 446 447 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 448 unsigned long start, unsigned long end, 449 unsigned long floor, unsigned long ceiling) 450 { 451 pte_t *hugepte = hugepd_page(*hpdp); 452 int i; 453 454 unsigned long pdmask = ~((1UL << pdshift) - 1); 455 unsigned int num_hugepd = 1; 456 457 #ifdef CONFIG_PPC_FSL_BOOK3E 458 /* Note: On fsl the hpdp may be the first of several */ 459 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift)); 460 #else 461 unsigned int shift = hugepd_shift(*hpdp); 462 #endif 463 464 start &= pdmask; 465 if (start < floor) 466 return; 467 if (ceiling) { 468 ceiling &= pdmask; 469 if (! ceiling) 470 return; 471 } 472 if (end - 1 > ceiling - 1) 473 return; 474 475 for (i = 0; i < num_hugepd; i++, hpdp++) 476 hpdp->pd = 0; 477 478 #ifdef CONFIG_PPC_FSL_BOOK3E 479 hugepd_free(tlb, hugepte); 480 #else 481 pgtable_free_tlb(tlb, hugepte, pdshift - shift); 482 #endif 483 } 484 485 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 486 unsigned long addr, unsigned long end, 487 unsigned long floor, unsigned long ceiling) 488 { 489 pmd_t *pmd; 490 unsigned long next; 491 unsigned long start; 492 493 start = addr; 494 do { 495 pmd = pmd_offset(pud, addr); 496 next = pmd_addr_end(addr, end); 497 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { 498 /* 499 * if it is not hugepd pointer, we should already find 500 * it cleared. 501 */ 502 WARN_ON(!pmd_none_or_clear_bad(pmd)); 503 continue; 504 } 505 #ifdef CONFIG_PPC_FSL_BOOK3E 506 /* 507 * Increment next by the size of the huge mapping since 508 * there may be more than one entry at this level for a 509 * single hugepage, but all of them point to 510 * the same kmem cache that holds the hugepte. 511 */ 512 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 513 #endif 514 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 515 addr, next, floor, ceiling); 516 } while (addr = next, addr != end); 517 518 start &= PUD_MASK; 519 if (start < floor) 520 return; 521 if (ceiling) { 522 ceiling &= PUD_MASK; 523 if (!ceiling) 524 return; 525 } 526 if (end - 1 > ceiling - 1) 527 return; 528 529 pmd = pmd_offset(pud, start); 530 pud_clear(pud); 531 pmd_free_tlb(tlb, pmd, start); 532 mm_dec_nr_pmds(tlb->mm); 533 } 534 535 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 536 unsigned long addr, unsigned long end, 537 unsigned long floor, unsigned long ceiling) 538 { 539 pud_t *pud; 540 unsigned long next; 541 unsigned long start; 542 543 start = addr; 544 do { 545 pud = pud_offset(pgd, addr); 546 next = pud_addr_end(addr, end); 547 if (!is_hugepd(__hugepd(pud_val(*pud)))) { 548 if (pud_none_or_clear_bad(pud)) 549 continue; 550 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 551 ceiling); 552 } else { 553 #ifdef CONFIG_PPC_FSL_BOOK3E 554 /* 555 * Increment next by the size of the huge mapping since 556 * there may be more than one entry at this level for a 557 * single hugepage, but all of them point to 558 * the same kmem cache that holds the hugepte. 559 */ 560 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 561 #endif 562 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 563 addr, next, floor, ceiling); 564 } 565 } while (addr = next, addr != end); 566 567 start &= PGDIR_MASK; 568 if (start < floor) 569 return; 570 if (ceiling) { 571 ceiling &= PGDIR_MASK; 572 if (!ceiling) 573 return; 574 } 575 if (end - 1 > ceiling - 1) 576 return; 577 578 pud = pud_offset(pgd, start); 579 pgd_clear(pgd); 580 pud_free_tlb(tlb, pud, start); 581 } 582 583 /* 584 * This function frees user-level page tables of a process. 585 */ 586 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 587 unsigned long addr, unsigned long end, 588 unsigned long floor, unsigned long ceiling) 589 { 590 pgd_t *pgd; 591 unsigned long next; 592 593 /* 594 * Because there are a number of different possible pagetable 595 * layouts for hugepage ranges, we limit knowledge of how 596 * things should be laid out to the allocation path 597 * (huge_pte_alloc(), above). Everything else works out the 598 * structure as it goes from information in the hugepd 599 * pointers. That means that we can't here use the 600 * optimization used in the normal page free_pgd_range(), of 601 * checking whether we're actually covering a large enough 602 * range to have to do anything at the top level of the walk 603 * instead of at the bottom. 604 * 605 * To make sense of this, you should probably go read the big 606 * block comment at the top of the normal free_pgd_range(), 607 * too. 608 */ 609 610 do { 611 next = pgd_addr_end(addr, end); 612 pgd = pgd_offset(tlb->mm, addr); 613 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { 614 if (pgd_none_or_clear_bad(pgd)) 615 continue; 616 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); 617 } else { 618 #ifdef CONFIG_PPC_FSL_BOOK3E 619 /* 620 * Increment next by the size of the huge mapping since 621 * there may be more than one entry at the pgd level 622 * for a single hugepage, but all of them point to the 623 * same kmem cache that holds the hugepte. 624 */ 625 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 626 #endif 627 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, 628 addr, next, floor, ceiling); 629 } 630 } while (addr = next, addr != end); 631 } 632 633 /* 634 * We are holding mmap_sem, so a parallel huge page collapse cannot run. 635 * To prevent hugepage split, disable irq. 636 */ 637 struct page * 638 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) 639 { 640 bool is_thp; 641 pte_t *ptep, pte; 642 unsigned shift; 643 unsigned long mask, flags; 644 struct page *page = ERR_PTR(-EINVAL); 645 646 local_irq_save(flags); 647 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift); 648 if (!ptep) 649 goto no_page; 650 pte = READ_ONCE(*ptep); 651 /* 652 * Verify it is a huge page else bail. 653 * Transparent hugepages are handled by generic code. We can skip them 654 * here. 655 */ 656 if (!shift || is_thp) 657 goto no_page; 658 659 if (!pte_present(pte)) { 660 page = NULL; 661 goto no_page; 662 } 663 mask = (1UL << shift) - 1; 664 page = pte_page(pte); 665 if (page) 666 page += (address & mask) / PAGE_SIZE; 667 668 no_page: 669 local_irq_restore(flags); 670 return page; 671 } 672 673 struct page * 674 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 675 pmd_t *pmd, int write) 676 { 677 BUG(); 678 return NULL; 679 } 680 681 struct page * 682 follow_huge_pud(struct mm_struct *mm, unsigned long address, 683 pud_t *pud, int write) 684 { 685 BUG(); 686 return NULL; 687 } 688 689 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 690 unsigned long sz) 691 { 692 unsigned long __boundary = (addr + sz) & ~(sz-1); 693 return (__boundary - 1 < end - 1) ? __boundary : end; 694 } 695 696 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift, 697 unsigned long end, int write, struct page **pages, int *nr) 698 { 699 pte_t *ptep; 700 unsigned long sz = 1UL << hugepd_shift(hugepd); 701 unsigned long next; 702 703 ptep = hugepte_offset(hugepd, addr, pdshift); 704 do { 705 next = hugepte_addr_end(addr, end, sz); 706 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) 707 return 0; 708 } while (ptep++, addr = next, addr != end); 709 710 return 1; 711 } 712 713 #ifdef CONFIG_PPC_MM_SLICES 714 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 715 unsigned long len, unsigned long pgoff, 716 unsigned long flags) 717 { 718 struct hstate *hstate = hstate_file(file); 719 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 720 721 if (radix_enabled()) 722 return radix__hugetlb_get_unmapped_area(file, addr, len, 723 pgoff, flags); 724 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 725 } 726 #endif 727 728 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 729 { 730 #ifdef CONFIG_PPC_MM_SLICES 731 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 732 /* With radix we don't use slice, so derive it from vma*/ 733 if (!radix_enabled()) 734 return 1UL << mmu_psize_to_shift(psize); 735 #endif 736 if (!is_vm_hugetlb_page(vma)) 737 return PAGE_SIZE; 738 739 return huge_page_size(hstate_vma(vma)); 740 } 741 742 static inline bool is_power_of_4(unsigned long x) 743 { 744 if (is_power_of_2(x)) 745 return (__ilog2(x) % 2) ? false : true; 746 return false; 747 } 748 749 static int __init add_huge_page_size(unsigned long long size) 750 { 751 int shift = __ffs(size); 752 int mmu_psize; 753 754 /* Check that it is a page size supported by the hardware and 755 * that it fits within pagetable and slice limits. */ 756 #ifdef CONFIG_PPC_FSL_BOOK3E 757 if ((size < PAGE_SIZE) || !is_power_of_4(size)) 758 return -EINVAL; 759 #else 760 if (!is_power_of_2(size) 761 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT)) 762 return -EINVAL; 763 #endif 764 765 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) 766 return -EINVAL; 767 768 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 769 770 /* Return if huge page size has already been setup */ 771 if (size_to_hstate(size)) 772 return 0; 773 774 hugetlb_add_hstate(shift - PAGE_SHIFT); 775 776 return 0; 777 } 778 779 static int __init hugepage_setup_sz(char *str) 780 { 781 unsigned long long size; 782 783 size = memparse(str, &str); 784 785 if (add_huge_page_size(size) != 0) { 786 hugetlb_bad_size(); 787 pr_err("Invalid huge page size specified(%llu)\n", size); 788 } 789 790 return 1; 791 } 792 __setup("hugepagesz=", hugepage_setup_sz); 793 794 #ifdef CONFIG_PPC_FSL_BOOK3E 795 struct kmem_cache *hugepte_cache; 796 static int __init hugetlbpage_init(void) 797 { 798 int psize; 799 800 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 801 unsigned shift; 802 803 if (!mmu_psize_defs[psize].shift) 804 continue; 805 806 shift = mmu_psize_to_shift(psize); 807 808 /* Don't treat normal page sizes as huge... */ 809 if (shift != PAGE_SHIFT) 810 if (add_huge_page_size(1ULL << shift) < 0) 811 continue; 812 } 813 814 /* 815 * Create a kmem cache for hugeptes. The bottom bits in the pte have 816 * size information encoded in them, so align them to allow this 817 */ 818 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t), 819 HUGEPD_SHIFT_MASK + 1, 0, NULL); 820 if (hugepte_cache == NULL) 821 panic("%s: Unable to create kmem cache for hugeptes\n", 822 __func__); 823 824 /* Default hpage size = 4M */ 825 if (mmu_psize_defs[MMU_PAGE_4M].shift) 826 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; 827 else 828 panic("%s: Unable to set default huge page size\n", __func__); 829 830 831 return 0; 832 } 833 #else 834 static int __init hugetlbpage_init(void) 835 { 836 int psize; 837 838 if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE)) 839 return -ENODEV; 840 841 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 842 unsigned shift; 843 unsigned pdshift; 844 845 if (!mmu_psize_defs[psize].shift) 846 continue; 847 848 shift = mmu_psize_to_shift(psize); 849 850 if (add_huge_page_size(1ULL << shift) < 0) 851 continue; 852 853 if (shift < PMD_SHIFT) 854 pdshift = PMD_SHIFT; 855 else if (shift < PUD_SHIFT) 856 pdshift = PUD_SHIFT; 857 else 858 pdshift = PGDIR_SHIFT; 859 /* 860 * if we have pdshift and shift value same, we don't 861 * use pgt cache for hugepd. 862 */ 863 if (pdshift != shift) { 864 pgtable_cache_add(pdshift - shift, NULL); 865 if (!PGT_CACHE(pdshift - shift)) 866 panic("hugetlbpage_init(): could not create " 867 "pgtable cache for %d bit pagesize\n", shift); 868 } 869 } 870 871 /* Set default large page size. Currently, we pick 16M or 1M 872 * depending on what is available 873 */ 874 if (mmu_psize_defs[MMU_PAGE_16M].shift) 875 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; 876 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 877 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; 878 else if (mmu_psize_defs[MMU_PAGE_2M].shift) 879 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift; 880 881 882 return 0; 883 } 884 #endif 885 arch_initcall(hugetlbpage_init); 886 887 void flush_dcache_icache_hugepage(struct page *page) 888 { 889 int i; 890 void *start; 891 892 BUG_ON(!PageCompound(page)); 893 894 for (i = 0; i < (1UL << compound_order(page)); i++) { 895 if (!PageHighMem(page)) { 896 __flush_dcache_icache(page_address(page+i)); 897 } else { 898 start = kmap_atomic(page+i); 899 __flush_dcache_icache(start); 900 kunmap_atomic(start); 901 } 902 } 903 } 904 905 #endif /* CONFIG_HUGETLB_PAGE */ 906 907 /* 908 * We have 4 cases for pgds and pmds: 909 * (1) invalid (all zeroes) 910 * (2) pointer to next table, as normal; bottom 6 bits == 0 911 * (3) leaf pte for huge page _PAGE_PTE set 912 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table 913 * 914 * So long as we atomically load page table pointers we are safe against teardown, 915 * we can follow the address down to the the page and take a ref on it. 916 * This function need to be called with interrupts disabled. We use this variant 917 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1 918 */ 919 920 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, 921 bool *is_thp, unsigned *shift) 922 { 923 pgd_t pgd, *pgdp; 924 pud_t pud, *pudp; 925 pmd_t pmd, *pmdp; 926 pte_t *ret_pte; 927 hugepd_t *hpdp = NULL; 928 unsigned pdshift = PGDIR_SHIFT; 929 930 if (shift) 931 *shift = 0; 932 933 if (is_thp) 934 *is_thp = false; 935 936 pgdp = pgdir + pgd_index(ea); 937 pgd = READ_ONCE(*pgdp); 938 /* 939 * Always operate on the local stack value. This make sure the 940 * value don't get updated by a parallel THP split/collapse, 941 * page fault or a page unmap. The return pte_t * is still not 942 * stable. So should be checked there for above conditions. 943 */ 944 if (pgd_none(pgd)) 945 return NULL; 946 else if (pgd_huge(pgd)) { 947 ret_pte = (pte_t *) pgdp; 948 goto out; 949 } else if (is_hugepd(__hugepd(pgd_val(pgd)))) 950 hpdp = (hugepd_t *)&pgd; 951 else { 952 /* 953 * Even if we end up with an unmap, the pgtable will not 954 * be freed, because we do an rcu free and here we are 955 * irq disabled 956 */ 957 pdshift = PUD_SHIFT; 958 pudp = pud_offset(&pgd, ea); 959 pud = READ_ONCE(*pudp); 960 961 if (pud_none(pud)) 962 return NULL; 963 else if (pud_huge(pud)) { 964 ret_pte = (pte_t *) pudp; 965 goto out; 966 } else if (is_hugepd(__hugepd(pud_val(pud)))) 967 hpdp = (hugepd_t *)&pud; 968 else { 969 pdshift = PMD_SHIFT; 970 pmdp = pmd_offset(&pud, ea); 971 pmd = READ_ONCE(*pmdp); 972 /* 973 * A hugepage collapse is captured by pmd_none, because 974 * it mark the pmd none and do a hpte invalidate. 975 */ 976 if (pmd_none(pmd)) 977 return NULL; 978 979 if (pmd_trans_huge(pmd)) { 980 if (is_thp) 981 *is_thp = true; 982 ret_pte = (pte_t *) pmdp; 983 goto out; 984 } 985 986 if (pmd_huge(pmd)) { 987 ret_pte = (pte_t *) pmdp; 988 goto out; 989 } else if (is_hugepd(__hugepd(pmd_val(pmd)))) 990 hpdp = (hugepd_t *)&pmd; 991 else 992 return pte_offset_kernel(&pmd, ea); 993 } 994 } 995 if (!hpdp) 996 return NULL; 997 998 ret_pte = hugepte_offset(*hpdp, ea, pdshift); 999 pdshift = hugepd_shift(*hpdp); 1000 out: 1001 if (shift) 1002 *shift = pdshift; 1003 return ret_pte; 1004 } 1005 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte); 1006 1007 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 1008 unsigned long end, int write, struct page **pages, int *nr) 1009 { 1010 unsigned long mask; 1011 unsigned long pte_end; 1012 struct page *head, *page; 1013 pte_t pte; 1014 int refs; 1015 1016 pte_end = (addr + sz) & ~(sz-1); 1017 if (pte_end < end) 1018 end = pte_end; 1019 1020 pte = READ_ONCE(*ptep); 1021 mask = _PAGE_PRESENT | _PAGE_READ; 1022 if (write) 1023 mask |= _PAGE_WRITE; 1024 1025 if ((pte_val(pte) & mask) != mask) 1026 return 0; 1027 1028 /* hugepages are never "special" */ 1029 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1030 1031 refs = 0; 1032 head = pte_page(pte); 1033 1034 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 1035 do { 1036 VM_BUG_ON(compound_head(page) != head); 1037 pages[*nr] = page; 1038 (*nr)++; 1039 page++; 1040 refs++; 1041 } while (addr += PAGE_SIZE, addr != end); 1042 1043 if (!page_cache_add_speculative(head, refs)) { 1044 *nr -= refs; 1045 return 0; 1046 } 1047 1048 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1049 /* Could be optimized better */ 1050 *nr -= refs; 1051 while (refs--) 1052 put_page(head); 1053 return 0; 1054 } 1055 1056 return 1; 1057 } 1058