xref: /linux/arch/powerpc/mm/hugetlbpage.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 
25 #define PAGE_SHIFT_64K	16
26 #define PAGE_SHIFT_16M	24
27 #define PAGE_SHIFT_16G	34
28 
29 unsigned int HPAGE_SHIFT;
30 
31 /*
32  * Tracks gpages after the device tree is scanned and before the
33  * huge_boot_pages list is ready.  On non-Freescale implementations, this is
34  * just used to track 16G pages and so is a single array.  FSL-based
35  * implementations may have more than one gpage size, so we need multiple
36  * arrays
37  */
38 #ifdef CONFIG_PPC_FSL_BOOK3E
39 #define MAX_NUMBER_GPAGES	128
40 struct psize_gpages {
41 	u64 gpage_list[MAX_NUMBER_GPAGES];
42 	unsigned int nr_gpages;
43 };
44 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
45 #else
46 #define MAX_NUMBER_GPAGES	1024
47 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
48 static unsigned nr_gpages;
49 #endif
50 
51 static inline int shift_to_mmu_psize(unsigned int shift)
52 {
53 	int psize;
54 
55 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
56 		if (mmu_psize_defs[psize].shift == shift)
57 			return psize;
58 	return -1;
59 }
60 
61 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
62 {
63 	if (mmu_psize_defs[mmu_psize].shift)
64 		return mmu_psize_defs[mmu_psize].shift;
65 	BUG();
66 }
67 
68 #define hugepd_none(hpd)	((hpd).pd == 0)
69 
70 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
71 {
72 	pgd_t *pg;
73 	pud_t *pu;
74 	pmd_t *pm;
75 	hugepd_t *hpdp = NULL;
76 	unsigned pdshift = PGDIR_SHIFT;
77 
78 	if (shift)
79 		*shift = 0;
80 
81 	pg = pgdir + pgd_index(ea);
82 	if (is_hugepd(pg)) {
83 		hpdp = (hugepd_t *)pg;
84 	} else if (!pgd_none(*pg)) {
85 		pdshift = PUD_SHIFT;
86 		pu = pud_offset(pg, ea);
87 		if (is_hugepd(pu))
88 			hpdp = (hugepd_t *)pu;
89 		else if (!pud_none(*pu)) {
90 			pdshift = PMD_SHIFT;
91 			pm = pmd_offset(pu, ea);
92 			if (is_hugepd(pm))
93 				hpdp = (hugepd_t *)pm;
94 			else if (!pmd_none(*pm)) {
95 				return pte_offset_kernel(pm, ea);
96 			}
97 		}
98 	}
99 
100 	if (!hpdp)
101 		return NULL;
102 
103 	if (shift)
104 		*shift = hugepd_shift(*hpdp);
105 	return hugepte_offset(hpdp, ea, pdshift);
106 }
107 EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
108 
109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110 {
111 	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
112 }
113 
114 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
115 			   unsigned long address, unsigned pdshift, unsigned pshift)
116 {
117 	struct kmem_cache *cachep;
118 	pte_t *new;
119 
120 #ifdef CONFIG_PPC_FSL_BOOK3E
121 	int i;
122 	int num_hugepd = 1 << (pshift - pdshift);
123 	cachep = hugepte_cache;
124 #else
125 	cachep = PGT_CACHE(pdshift - pshift);
126 #endif
127 
128 	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
129 
130 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
131 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
132 
133 	if (! new)
134 		return -ENOMEM;
135 
136 	spin_lock(&mm->page_table_lock);
137 #ifdef CONFIG_PPC_FSL_BOOK3E
138 	/*
139 	 * We have multiple higher-level entries that point to the same
140 	 * actual pte location.  Fill in each as we go and backtrack on error.
141 	 * We need all of these so the DTLB pgtable walk code can find the
142 	 * right higher-level entry without knowing if it's a hugepage or not.
143 	 */
144 	for (i = 0; i < num_hugepd; i++, hpdp++) {
145 		if (unlikely(!hugepd_none(*hpdp)))
146 			break;
147 		else
148 			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
149 	}
150 	/* If we bailed from the for loop early, an error occurred, clean up */
151 	if (i < num_hugepd) {
152 		for (i = i - 1 ; i >= 0; i--, hpdp--)
153 			hpdp->pd = 0;
154 		kmem_cache_free(cachep, new);
155 	}
156 #else
157 	if (!hugepd_none(*hpdp))
158 		kmem_cache_free(cachep, new);
159 	else
160 		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
161 #endif
162 	spin_unlock(&mm->page_table_lock);
163 	return 0;
164 }
165 
166 /*
167  * These macros define how to determine which level of the page table holds
168  * the hpdp.
169  */
170 #ifdef CONFIG_PPC_FSL_BOOK3E
171 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
172 #define HUGEPD_PUD_SHIFT PUD_SHIFT
173 #else
174 #define HUGEPD_PGD_SHIFT PUD_SHIFT
175 #define HUGEPD_PUD_SHIFT PMD_SHIFT
176 #endif
177 
178 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
179 {
180 	pgd_t *pg;
181 	pud_t *pu;
182 	pmd_t *pm;
183 	hugepd_t *hpdp = NULL;
184 	unsigned pshift = __ffs(sz);
185 	unsigned pdshift = PGDIR_SHIFT;
186 
187 	addr &= ~(sz-1);
188 
189 	pg = pgd_offset(mm, addr);
190 
191 	if (pshift >= HUGEPD_PGD_SHIFT) {
192 		hpdp = (hugepd_t *)pg;
193 	} else {
194 		pdshift = PUD_SHIFT;
195 		pu = pud_alloc(mm, pg, addr);
196 		if (pshift >= HUGEPD_PUD_SHIFT) {
197 			hpdp = (hugepd_t *)pu;
198 		} else {
199 			pdshift = PMD_SHIFT;
200 			pm = pmd_alloc(mm, pu, addr);
201 			hpdp = (hugepd_t *)pm;
202 		}
203 	}
204 
205 	if (!hpdp)
206 		return NULL;
207 
208 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
209 
210 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
211 		return NULL;
212 
213 	return hugepte_offset(hpdp, addr, pdshift);
214 }
215 
216 #ifdef CONFIG_PPC_FSL_BOOK3E
217 /* Build list of addresses of gigantic pages.  This function is used in early
218  * boot before the buddy or bootmem allocator is setup.
219  */
220 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
221 {
222 	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
223 	int i;
224 
225 	if (addr == 0)
226 		return;
227 
228 	gpage_freearray[idx].nr_gpages = number_of_pages;
229 
230 	for (i = 0; i < number_of_pages; i++) {
231 		gpage_freearray[idx].gpage_list[i] = addr;
232 		addr += page_size;
233 	}
234 }
235 
236 /*
237  * Moves the gigantic page addresses from the temporary list to the
238  * huge_boot_pages list.
239  */
240 int alloc_bootmem_huge_page(struct hstate *hstate)
241 {
242 	struct huge_bootmem_page *m;
243 	int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
244 	int nr_gpages = gpage_freearray[idx].nr_gpages;
245 
246 	if (nr_gpages == 0)
247 		return 0;
248 
249 #ifdef CONFIG_HIGHMEM
250 	/*
251 	 * If gpages can be in highmem we can't use the trick of storing the
252 	 * data structure in the page; allocate space for this
253 	 */
254 	m = alloc_bootmem(sizeof(struct huge_bootmem_page));
255 	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
256 #else
257 	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
258 #endif
259 
260 	list_add(&m->list, &huge_boot_pages);
261 	gpage_freearray[idx].nr_gpages = nr_gpages;
262 	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
263 	m->hstate = hstate;
264 
265 	return 1;
266 }
267 /*
268  * Scan the command line hugepagesz= options for gigantic pages; store those in
269  * a list that we use to allocate the memory once all options are parsed.
270  */
271 
272 unsigned long gpage_npages[MMU_PAGE_COUNT];
273 
274 static int __init do_gpage_early_setup(char *param, char *val,
275 				       const char *unused)
276 {
277 	static phys_addr_t size;
278 	unsigned long npages;
279 
280 	/*
281 	 * The hugepagesz and hugepages cmdline options are interleaved.  We
282 	 * use the size variable to keep track of whether or not this was done
283 	 * properly and skip over instances where it is incorrect.  Other
284 	 * command-line parsing code will issue warnings, so we don't need to.
285 	 *
286 	 */
287 	if ((strcmp(param, "default_hugepagesz") == 0) ||
288 	    (strcmp(param, "hugepagesz") == 0)) {
289 		size = memparse(val, NULL);
290 	} else if (strcmp(param, "hugepages") == 0) {
291 		if (size != 0) {
292 			if (sscanf(val, "%lu", &npages) <= 0)
293 				npages = 0;
294 			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
295 			size = 0;
296 		}
297 	}
298 	return 0;
299 }
300 
301 
302 /*
303  * This function allocates physical space for pages that are larger than the
304  * buddy allocator can handle.  We want to allocate these in highmem because
305  * the amount of lowmem is limited.  This means that this function MUST be
306  * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
307  * allocate to grab highmem.
308  */
309 void __init reserve_hugetlb_gpages(void)
310 {
311 	static __initdata char cmdline[COMMAND_LINE_SIZE];
312 	phys_addr_t size, base;
313 	int i;
314 
315 	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
316 	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
317 			&do_gpage_early_setup);
318 
319 	/*
320 	 * Walk gpage list in reverse, allocating larger page sizes first.
321 	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
322 	 * When we reach the point in the list where pages are no longer
323 	 * considered gpages, we're done.
324 	 */
325 	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
326 		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
327 			continue;
328 		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
329 			break;
330 
331 		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
332 		base = memblock_alloc_base(size * gpage_npages[i], size,
333 					   MEMBLOCK_ALLOC_ANYWHERE);
334 		add_gpage(base, size, gpage_npages[i]);
335 	}
336 }
337 
338 #else /* !PPC_FSL_BOOK3E */
339 
340 /* Build list of addresses of gigantic pages.  This function is used in early
341  * boot before the buddy or bootmem allocator is setup.
342  */
343 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
344 {
345 	if (!addr)
346 		return;
347 	while (number_of_pages > 0) {
348 		gpage_freearray[nr_gpages] = addr;
349 		nr_gpages++;
350 		number_of_pages--;
351 		addr += page_size;
352 	}
353 }
354 
355 /* Moves the gigantic page addresses from the temporary list to the
356  * huge_boot_pages list.
357  */
358 int alloc_bootmem_huge_page(struct hstate *hstate)
359 {
360 	struct huge_bootmem_page *m;
361 	if (nr_gpages == 0)
362 		return 0;
363 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
364 	gpage_freearray[nr_gpages] = 0;
365 	list_add(&m->list, &huge_boot_pages);
366 	m->hstate = hstate;
367 	return 1;
368 }
369 #endif
370 
371 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
372 {
373 	return 0;
374 }
375 
376 #ifdef CONFIG_PPC_FSL_BOOK3E
377 #define HUGEPD_FREELIST_SIZE \
378 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
379 
380 struct hugepd_freelist {
381 	struct rcu_head	rcu;
382 	unsigned int index;
383 	void *ptes[0];
384 };
385 
386 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
387 
388 static void hugepd_free_rcu_callback(struct rcu_head *head)
389 {
390 	struct hugepd_freelist *batch =
391 		container_of(head, struct hugepd_freelist, rcu);
392 	unsigned int i;
393 
394 	for (i = 0; i < batch->index; i++)
395 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
396 
397 	free_page((unsigned long)batch);
398 }
399 
400 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
401 {
402 	struct hugepd_freelist **batchp;
403 
404 	batchp = &__get_cpu_var(hugepd_freelist_cur);
405 
406 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
407 	    cpumask_equal(mm_cpumask(tlb->mm),
408 			  cpumask_of(smp_processor_id()))) {
409 		kmem_cache_free(hugepte_cache, hugepte);
410 		return;
411 	}
412 
413 	if (*batchp == NULL) {
414 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
415 		(*batchp)->index = 0;
416 	}
417 
418 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
419 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
420 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
421 		*batchp = NULL;
422 	}
423 }
424 #endif
425 
426 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
427 			      unsigned long start, unsigned long end,
428 			      unsigned long floor, unsigned long ceiling)
429 {
430 	pte_t *hugepte = hugepd_page(*hpdp);
431 	int i;
432 
433 	unsigned long pdmask = ~((1UL << pdshift) - 1);
434 	unsigned int num_hugepd = 1;
435 
436 #ifdef CONFIG_PPC_FSL_BOOK3E
437 	/* Note: On fsl the hpdp may be the first of several */
438 	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
439 #else
440 	unsigned int shift = hugepd_shift(*hpdp);
441 #endif
442 
443 	start &= pdmask;
444 	if (start < floor)
445 		return;
446 	if (ceiling) {
447 		ceiling &= pdmask;
448 		if (! ceiling)
449 			return;
450 	}
451 	if (end - 1 > ceiling - 1)
452 		return;
453 
454 	for (i = 0; i < num_hugepd; i++, hpdp++)
455 		hpdp->pd = 0;
456 
457 	tlb->need_flush = 1;
458 
459 #ifdef CONFIG_PPC_FSL_BOOK3E
460 	hugepd_free(tlb, hugepte);
461 #else
462 	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
463 #endif
464 }
465 
466 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
467 				   unsigned long addr, unsigned long end,
468 				   unsigned long floor, unsigned long ceiling)
469 {
470 	pmd_t *pmd;
471 	unsigned long next;
472 	unsigned long start;
473 
474 	start = addr;
475 	do {
476 		pmd = pmd_offset(pud, addr);
477 		next = pmd_addr_end(addr, end);
478 		if (pmd_none(*pmd))
479 			continue;
480 #ifdef CONFIG_PPC_FSL_BOOK3E
481 		/*
482 		 * Increment next by the size of the huge mapping since
483 		 * there may be more than one entry at this level for a
484 		 * single hugepage, but all of them point to
485 		 * the same kmem cache that holds the hugepte.
486 		 */
487 		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
488 #endif
489 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
490 				  addr, next, floor, ceiling);
491 	} while (addr = next, addr != end);
492 
493 	start &= PUD_MASK;
494 	if (start < floor)
495 		return;
496 	if (ceiling) {
497 		ceiling &= PUD_MASK;
498 		if (!ceiling)
499 			return;
500 	}
501 	if (end - 1 > ceiling - 1)
502 		return;
503 
504 	pmd = pmd_offset(pud, start);
505 	pud_clear(pud);
506 	pmd_free_tlb(tlb, pmd, start);
507 }
508 
509 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
510 				   unsigned long addr, unsigned long end,
511 				   unsigned long floor, unsigned long ceiling)
512 {
513 	pud_t *pud;
514 	unsigned long next;
515 	unsigned long start;
516 
517 	start = addr;
518 	do {
519 		pud = pud_offset(pgd, addr);
520 		next = pud_addr_end(addr, end);
521 		if (!is_hugepd(pud)) {
522 			if (pud_none_or_clear_bad(pud))
523 				continue;
524 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
525 					       ceiling);
526 		} else {
527 #ifdef CONFIG_PPC_FSL_BOOK3E
528 			/*
529 			 * Increment next by the size of the huge mapping since
530 			 * there may be more than one entry at this level for a
531 			 * single hugepage, but all of them point to
532 			 * the same kmem cache that holds the hugepte.
533 			 */
534 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
535 #endif
536 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
537 					  addr, next, floor, ceiling);
538 		}
539 	} while (addr = next, addr != end);
540 
541 	start &= PGDIR_MASK;
542 	if (start < floor)
543 		return;
544 	if (ceiling) {
545 		ceiling &= PGDIR_MASK;
546 		if (!ceiling)
547 			return;
548 	}
549 	if (end - 1 > ceiling - 1)
550 		return;
551 
552 	pud = pud_offset(pgd, start);
553 	pgd_clear(pgd);
554 	pud_free_tlb(tlb, pud, start);
555 }
556 
557 /*
558  * This function frees user-level page tables of a process.
559  *
560  * Must be called with pagetable lock held.
561  */
562 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
563 			    unsigned long addr, unsigned long end,
564 			    unsigned long floor, unsigned long ceiling)
565 {
566 	pgd_t *pgd;
567 	unsigned long next;
568 
569 	/*
570 	 * Because there are a number of different possible pagetable
571 	 * layouts for hugepage ranges, we limit knowledge of how
572 	 * things should be laid out to the allocation path
573 	 * (huge_pte_alloc(), above).  Everything else works out the
574 	 * structure as it goes from information in the hugepd
575 	 * pointers.  That means that we can't here use the
576 	 * optimization used in the normal page free_pgd_range(), of
577 	 * checking whether we're actually covering a large enough
578 	 * range to have to do anything at the top level of the walk
579 	 * instead of at the bottom.
580 	 *
581 	 * To make sense of this, you should probably go read the big
582 	 * block comment at the top of the normal free_pgd_range(),
583 	 * too.
584 	 */
585 
586 	do {
587 		next = pgd_addr_end(addr, end);
588 		pgd = pgd_offset(tlb->mm, addr);
589 		if (!is_hugepd(pgd)) {
590 			if (pgd_none_or_clear_bad(pgd))
591 				continue;
592 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
593 		} else {
594 #ifdef CONFIG_PPC_FSL_BOOK3E
595 			/*
596 			 * Increment next by the size of the huge mapping since
597 			 * there may be more than one entry at the pgd level
598 			 * for a single hugepage, but all of them point to the
599 			 * same kmem cache that holds the hugepte.
600 			 */
601 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
602 #endif
603 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
604 					  addr, next, floor, ceiling);
605 		}
606 	} while (addr = next, addr != end);
607 }
608 
609 struct page *
610 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
611 {
612 	pte_t *ptep;
613 	struct page *page;
614 	unsigned shift;
615 	unsigned long mask;
616 
617 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
618 
619 	/* Verify it is a huge page else bail. */
620 	if (!ptep || !shift)
621 		return ERR_PTR(-EINVAL);
622 
623 	mask = (1UL << shift) - 1;
624 	page = pte_page(*ptep);
625 	if (page)
626 		page += (address & mask) / PAGE_SIZE;
627 
628 	return page;
629 }
630 
631 int pmd_huge(pmd_t pmd)
632 {
633 	return 0;
634 }
635 
636 int pud_huge(pud_t pud)
637 {
638 	return 0;
639 }
640 
641 struct page *
642 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
643 		pmd_t *pmd, int write)
644 {
645 	BUG();
646 	return NULL;
647 }
648 
649 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
650 		       unsigned long end, int write, struct page **pages, int *nr)
651 {
652 	unsigned long mask;
653 	unsigned long pte_end;
654 	struct page *head, *page, *tail;
655 	pte_t pte;
656 	int refs;
657 
658 	pte_end = (addr + sz) & ~(sz-1);
659 	if (pte_end < end)
660 		end = pte_end;
661 
662 	pte = *ptep;
663 	mask = _PAGE_PRESENT | _PAGE_USER;
664 	if (write)
665 		mask |= _PAGE_RW;
666 
667 	if ((pte_val(pte) & mask) != mask)
668 		return 0;
669 
670 	/* hugepages are never "special" */
671 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
672 
673 	refs = 0;
674 	head = pte_page(pte);
675 
676 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
677 	tail = page;
678 	do {
679 		VM_BUG_ON(compound_head(page) != head);
680 		pages[*nr] = page;
681 		(*nr)++;
682 		page++;
683 		refs++;
684 	} while (addr += PAGE_SIZE, addr != end);
685 
686 	if (!page_cache_add_speculative(head, refs)) {
687 		*nr -= refs;
688 		return 0;
689 	}
690 
691 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
692 		/* Could be optimized better */
693 		*nr -= refs;
694 		while (refs--)
695 			put_page(head);
696 		return 0;
697 	}
698 
699 	/*
700 	 * Any tail page need their mapcount reference taken before we
701 	 * return.
702 	 */
703 	while (refs--) {
704 		if (PageTail(tail))
705 			get_huge_page_tail(tail);
706 		tail++;
707 	}
708 
709 	return 1;
710 }
711 
712 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
713 				      unsigned long sz)
714 {
715 	unsigned long __boundary = (addr + sz) & ~(sz-1);
716 	return (__boundary - 1 < end - 1) ? __boundary : end;
717 }
718 
719 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
720 	       unsigned long addr, unsigned long end,
721 	       int write, struct page **pages, int *nr)
722 {
723 	pte_t *ptep;
724 	unsigned long sz = 1UL << hugepd_shift(*hugepd);
725 	unsigned long next;
726 
727 	ptep = hugepte_offset(hugepd, addr, pdshift);
728 	do {
729 		next = hugepte_addr_end(addr, end, sz);
730 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
731 			return 0;
732 	} while (ptep++, addr = next, addr != end);
733 
734 	return 1;
735 }
736 
737 #ifdef CONFIG_PPC_MM_SLICES
738 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
739 					unsigned long len, unsigned long pgoff,
740 					unsigned long flags)
741 {
742 	struct hstate *hstate = hstate_file(file);
743 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
744 
745 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
746 }
747 #endif
748 
749 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
750 {
751 #ifdef CONFIG_PPC_MM_SLICES
752 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
753 
754 	return 1UL << mmu_psize_to_shift(psize);
755 #else
756 	if (!is_vm_hugetlb_page(vma))
757 		return PAGE_SIZE;
758 
759 	return huge_page_size(hstate_vma(vma));
760 #endif
761 }
762 
763 static inline bool is_power_of_4(unsigned long x)
764 {
765 	if (is_power_of_2(x))
766 		return (__ilog2(x) % 2) ? false : true;
767 	return false;
768 }
769 
770 static int __init add_huge_page_size(unsigned long long size)
771 {
772 	int shift = __ffs(size);
773 	int mmu_psize;
774 
775 	/* Check that it is a page size supported by the hardware and
776 	 * that it fits within pagetable and slice limits. */
777 #ifdef CONFIG_PPC_FSL_BOOK3E
778 	if ((size < PAGE_SIZE) || !is_power_of_4(size))
779 		return -EINVAL;
780 #else
781 	if (!is_power_of_2(size)
782 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
783 		return -EINVAL;
784 #endif
785 
786 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
787 		return -EINVAL;
788 
789 #ifdef CONFIG_SPU_FS_64K_LS
790 	/* Disable support for 64K huge pages when 64K SPU local store
791 	 * support is enabled as the current implementation conflicts.
792 	 */
793 	if (shift == PAGE_SHIFT_64K)
794 		return -EINVAL;
795 #endif /* CONFIG_SPU_FS_64K_LS */
796 
797 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
798 
799 	/* Return if huge page size has already been setup */
800 	if (size_to_hstate(size))
801 		return 0;
802 
803 	hugetlb_add_hstate(shift - PAGE_SHIFT);
804 
805 	return 0;
806 }
807 
808 static int __init hugepage_setup_sz(char *str)
809 {
810 	unsigned long long size;
811 
812 	size = memparse(str, &str);
813 
814 	if (add_huge_page_size(size) != 0)
815 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
816 
817 	return 1;
818 }
819 __setup("hugepagesz=", hugepage_setup_sz);
820 
821 #ifdef CONFIG_PPC_FSL_BOOK3E
822 struct kmem_cache *hugepte_cache;
823 static int __init hugetlbpage_init(void)
824 {
825 	int psize;
826 
827 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
828 		unsigned shift;
829 
830 		if (!mmu_psize_defs[psize].shift)
831 			continue;
832 
833 		shift = mmu_psize_to_shift(psize);
834 
835 		/* Don't treat normal page sizes as huge... */
836 		if (shift != PAGE_SHIFT)
837 			if (add_huge_page_size(1ULL << shift) < 0)
838 				continue;
839 	}
840 
841 	/*
842 	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
843 	 * size information encoded in them, so align them to allow this
844 	 */
845 	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
846 					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
847 	if (hugepte_cache == NULL)
848 		panic("%s: Unable to create kmem cache for hugeptes\n",
849 		      __func__);
850 
851 	/* Default hpage size = 4M */
852 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
853 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
854 	else
855 		panic("%s: Unable to set default huge page size\n", __func__);
856 
857 
858 	return 0;
859 }
860 #else
861 static int __init hugetlbpage_init(void)
862 {
863 	int psize;
864 
865 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
866 		return -ENODEV;
867 
868 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
869 		unsigned shift;
870 		unsigned pdshift;
871 
872 		if (!mmu_psize_defs[psize].shift)
873 			continue;
874 
875 		shift = mmu_psize_to_shift(psize);
876 
877 		if (add_huge_page_size(1ULL << shift) < 0)
878 			continue;
879 
880 		if (shift < PMD_SHIFT)
881 			pdshift = PMD_SHIFT;
882 		else if (shift < PUD_SHIFT)
883 			pdshift = PUD_SHIFT;
884 		else
885 			pdshift = PGDIR_SHIFT;
886 
887 		pgtable_cache_add(pdshift - shift, NULL);
888 		if (!PGT_CACHE(pdshift - shift))
889 			panic("hugetlbpage_init(): could not create "
890 			      "pgtable cache for %d bit pagesize\n", shift);
891 	}
892 
893 	/* Set default large page size. Currently, we pick 16M or 1M
894 	 * depending on what is available
895 	 */
896 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
897 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
898 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
899 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
900 
901 	return 0;
902 }
903 #endif
904 module_init(hugetlbpage_init);
905 
906 void flush_dcache_icache_hugepage(struct page *page)
907 {
908 	int i;
909 	void *start;
910 
911 	BUG_ON(!PageCompound(page));
912 
913 	for (i = 0; i < (1UL << compound_order(page)); i++) {
914 		if (!PageHighMem(page)) {
915 			__flush_dcache_icache(page_address(page+i));
916 		} else {
917 			start = kmap_atomic(page+i);
918 			__flush_dcache_icache(start);
919 			kunmap_atomic(start);
920 		}
921 	}
922 }
923