xref: /linux/arch/powerpc/mm/hugetlbpage.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
25 
26 #ifdef CONFIG_HUGETLB_PAGE
27 
28 #define PAGE_SHIFT_64K	16
29 #define PAGE_SHIFT_16M	24
30 #define PAGE_SHIFT_16G	34
31 
32 unsigned int HPAGE_SHIFT;
33 
34 /*
35  * Tracks gpages after the device tree is scanned and before the
36  * huge_boot_pages list is ready.  On non-Freescale implementations, this is
37  * just used to track 16G pages and so is a single array.  FSL-based
38  * implementations may have more than one gpage size, so we need multiple
39  * arrays
40  */
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES	128
43 struct psize_gpages {
44 	u64 gpage_list[MAX_NUMBER_GPAGES];
45 	unsigned int nr_gpages;
46 };
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES	1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
53 
54 #define hugepd_none(hpd)	((hpd).pd == 0)
55 
56 #ifdef CONFIG_PPC_BOOK3S_64
57 /*
58  * At this point we do the placement change only for BOOK3S 64. This would
59  * possibly work on other subarchs.
60  */
61 
62 /*
63  * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64  * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
65  *
66  * Defined in such a way that we can optimize away code block at build time
67  * if CONFIG_HUGETLB_PAGE=n.
68  */
69 int pmd_huge(pmd_t pmd)
70 {
71 	/*
72 	 * leaf pte for huge page, bottom two bits != 00
73 	 */
74 	return ((pmd_val(pmd) & 0x3) != 0x0);
75 }
76 
77 int pud_huge(pud_t pud)
78 {
79 	/*
80 	 * leaf pte for huge page, bottom two bits != 00
81 	 */
82 	return ((pud_val(pud) & 0x3) != 0x0);
83 }
84 
85 int pgd_huge(pgd_t pgd)
86 {
87 	/*
88 	 * leaf pte for huge page, bottom two bits != 00
89 	 */
90 	return ((pgd_val(pgd) & 0x3) != 0x0);
91 }
92 #else
93 int pmd_huge(pmd_t pmd)
94 {
95 	return 0;
96 }
97 
98 int pud_huge(pud_t pud)
99 {
100 	return 0;
101 }
102 
103 int pgd_huge(pgd_t pgd)
104 {
105 	return 0;
106 }
107 #endif
108 
109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110 {
111 	/* Only called for hugetlbfs pages, hence can ignore THP */
112 	return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
113 }
114 
115 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
116 			   unsigned long address, unsigned pdshift, unsigned pshift)
117 {
118 	struct kmem_cache *cachep;
119 	pte_t *new;
120 
121 #ifdef CONFIG_PPC_FSL_BOOK3E
122 	int i;
123 	int num_hugepd = 1 << (pshift - pdshift);
124 	cachep = hugepte_cache;
125 #else
126 	cachep = PGT_CACHE(pdshift - pshift);
127 #endif
128 
129 	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
130 
131 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
132 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
133 
134 	if (! new)
135 		return -ENOMEM;
136 
137 	spin_lock(&mm->page_table_lock);
138 #ifdef CONFIG_PPC_FSL_BOOK3E
139 	/*
140 	 * We have multiple higher-level entries that point to the same
141 	 * actual pte location.  Fill in each as we go and backtrack on error.
142 	 * We need all of these so the DTLB pgtable walk code can find the
143 	 * right higher-level entry without knowing if it's a hugepage or not.
144 	 */
145 	for (i = 0; i < num_hugepd; i++, hpdp++) {
146 		if (unlikely(!hugepd_none(*hpdp)))
147 			break;
148 		else
149 			/* We use the old format for PPC_FSL_BOOK3E */
150 			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
151 	}
152 	/* If we bailed from the for loop early, an error occurred, clean up */
153 	if (i < num_hugepd) {
154 		for (i = i - 1 ; i >= 0; i--, hpdp--)
155 			hpdp->pd = 0;
156 		kmem_cache_free(cachep, new);
157 	}
158 #else
159 	if (!hugepd_none(*hpdp))
160 		kmem_cache_free(cachep, new);
161 	else {
162 #ifdef CONFIG_PPC_BOOK3S_64
163 		hpdp->pd = (unsigned long)new |
164 			    (shift_to_mmu_psize(pshift) << 2);
165 #else
166 		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
167 #endif
168 	}
169 #endif
170 	spin_unlock(&mm->page_table_lock);
171 	return 0;
172 }
173 
174 /*
175  * These macros define how to determine which level of the page table holds
176  * the hpdp.
177  */
178 #ifdef CONFIG_PPC_FSL_BOOK3E
179 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
180 #define HUGEPD_PUD_SHIFT PUD_SHIFT
181 #else
182 #define HUGEPD_PGD_SHIFT PUD_SHIFT
183 #define HUGEPD_PUD_SHIFT PMD_SHIFT
184 #endif
185 
186 #ifdef CONFIG_PPC_BOOK3S_64
187 /*
188  * At this point we do the placement change only for BOOK3S 64. This would
189  * possibly work on other subarchs.
190  */
191 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
192 {
193 	pgd_t *pg;
194 	pud_t *pu;
195 	pmd_t *pm;
196 	hugepd_t *hpdp = NULL;
197 	unsigned pshift = __ffs(sz);
198 	unsigned pdshift = PGDIR_SHIFT;
199 
200 	addr &= ~(sz-1);
201 	pg = pgd_offset(mm, addr);
202 
203 	if (pshift == PGDIR_SHIFT)
204 		/* 16GB huge page */
205 		return (pte_t *) pg;
206 	else if (pshift > PUD_SHIFT)
207 		/*
208 		 * We need to use hugepd table
209 		 */
210 		hpdp = (hugepd_t *)pg;
211 	else {
212 		pdshift = PUD_SHIFT;
213 		pu = pud_alloc(mm, pg, addr);
214 		if (pshift == PUD_SHIFT)
215 			return (pte_t *)pu;
216 		else if (pshift > PMD_SHIFT)
217 			hpdp = (hugepd_t *)pu;
218 		else {
219 			pdshift = PMD_SHIFT;
220 			pm = pmd_alloc(mm, pu, addr);
221 			if (pshift == PMD_SHIFT)
222 				/* 16MB hugepage */
223 				return (pte_t *)pm;
224 			else
225 				hpdp = (hugepd_t *)pm;
226 		}
227 	}
228 	if (!hpdp)
229 		return NULL;
230 
231 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
232 
233 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
234 		return NULL;
235 
236 	return hugepte_offset(*hpdp, addr, pdshift);
237 }
238 
239 #else
240 
241 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
242 {
243 	pgd_t *pg;
244 	pud_t *pu;
245 	pmd_t *pm;
246 	hugepd_t *hpdp = NULL;
247 	unsigned pshift = __ffs(sz);
248 	unsigned pdshift = PGDIR_SHIFT;
249 
250 	addr &= ~(sz-1);
251 
252 	pg = pgd_offset(mm, addr);
253 
254 	if (pshift >= HUGEPD_PGD_SHIFT) {
255 		hpdp = (hugepd_t *)pg;
256 	} else {
257 		pdshift = PUD_SHIFT;
258 		pu = pud_alloc(mm, pg, addr);
259 		if (pshift >= HUGEPD_PUD_SHIFT) {
260 			hpdp = (hugepd_t *)pu;
261 		} else {
262 			pdshift = PMD_SHIFT;
263 			pm = pmd_alloc(mm, pu, addr);
264 			hpdp = (hugepd_t *)pm;
265 		}
266 	}
267 
268 	if (!hpdp)
269 		return NULL;
270 
271 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
272 
273 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
274 		return NULL;
275 
276 	return hugepte_offset(*hpdp, addr, pdshift);
277 }
278 #endif
279 
280 #ifdef CONFIG_PPC_FSL_BOOK3E
281 /* Build list of addresses of gigantic pages.  This function is used in early
282  * boot before the buddy allocator is setup.
283  */
284 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
285 {
286 	unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
287 	int i;
288 
289 	if (addr == 0)
290 		return;
291 
292 	gpage_freearray[idx].nr_gpages = number_of_pages;
293 
294 	for (i = 0; i < number_of_pages; i++) {
295 		gpage_freearray[idx].gpage_list[i] = addr;
296 		addr += page_size;
297 	}
298 }
299 
300 /*
301  * Moves the gigantic page addresses from the temporary list to the
302  * huge_boot_pages list.
303  */
304 int alloc_bootmem_huge_page(struct hstate *hstate)
305 {
306 	struct huge_bootmem_page *m;
307 	int idx = shift_to_mmu_psize(huge_page_shift(hstate));
308 	int nr_gpages = gpage_freearray[idx].nr_gpages;
309 
310 	if (nr_gpages == 0)
311 		return 0;
312 
313 #ifdef CONFIG_HIGHMEM
314 	/*
315 	 * If gpages can be in highmem we can't use the trick of storing the
316 	 * data structure in the page; allocate space for this
317 	 */
318 	m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
319 	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
320 #else
321 	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
322 #endif
323 
324 	list_add(&m->list, &huge_boot_pages);
325 	gpage_freearray[idx].nr_gpages = nr_gpages;
326 	gpage_freearray[idx].gpage_list[nr_gpages] = 0;
327 	m->hstate = hstate;
328 
329 	return 1;
330 }
331 /*
332  * Scan the command line hugepagesz= options for gigantic pages; store those in
333  * a list that we use to allocate the memory once all options are parsed.
334  */
335 
336 unsigned long gpage_npages[MMU_PAGE_COUNT];
337 
338 static int __init do_gpage_early_setup(char *param, char *val,
339 				       const char *unused, void *arg)
340 {
341 	static phys_addr_t size;
342 	unsigned long npages;
343 
344 	/*
345 	 * The hugepagesz and hugepages cmdline options are interleaved.  We
346 	 * use the size variable to keep track of whether or not this was done
347 	 * properly and skip over instances where it is incorrect.  Other
348 	 * command-line parsing code will issue warnings, so we don't need to.
349 	 *
350 	 */
351 	if ((strcmp(param, "default_hugepagesz") == 0) ||
352 	    (strcmp(param, "hugepagesz") == 0)) {
353 		size = memparse(val, NULL);
354 	} else if (strcmp(param, "hugepages") == 0) {
355 		if (size != 0) {
356 			if (sscanf(val, "%lu", &npages) <= 0)
357 				npages = 0;
358 			if (npages > MAX_NUMBER_GPAGES) {
359 				pr_warn("MMU: %lu pages requested for page "
360 					"size %llu KB, limiting to "
361 					__stringify(MAX_NUMBER_GPAGES) "\n",
362 					npages, size / 1024);
363 				npages = MAX_NUMBER_GPAGES;
364 			}
365 			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
366 			size = 0;
367 		}
368 	}
369 	return 0;
370 }
371 
372 
373 /*
374  * This function allocates physical space for pages that are larger than the
375  * buddy allocator can handle.  We want to allocate these in highmem because
376  * the amount of lowmem is limited.  This means that this function MUST be
377  * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
378  * allocate to grab highmem.
379  */
380 void __init reserve_hugetlb_gpages(void)
381 {
382 	static __initdata char cmdline[COMMAND_LINE_SIZE];
383 	phys_addr_t size, base;
384 	int i;
385 
386 	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
387 	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
388 			NULL, &do_gpage_early_setup);
389 
390 	/*
391 	 * Walk gpage list in reverse, allocating larger page sizes first.
392 	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
393 	 * When we reach the point in the list where pages are no longer
394 	 * considered gpages, we're done.
395 	 */
396 	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
397 		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
398 			continue;
399 		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
400 			break;
401 
402 		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
403 		base = memblock_alloc_base(size * gpage_npages[i], size,
404 					   MEMBLOCK_ALLOC_ANYWHERE);
405 		add_gpage(base, size, gpage_npages[i]);
406 	}
407 }
408 
409 #else /* !PPC_FSL_BOOK3E */
410 
411 /* Build list of addresses of gigantic pages.  This function is used in early
412  * boot before the buddy allocator is setup.
413  */
414 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
415 {
416 	if (!addr)
417 		return;
418 	while (number_of_pages > 0) {
419 		gpage_freearray[nr_gpages] = addr;
420 		nr_gpages++;
421 		number_of_pages--;
422 		addr += page_size;
423 	}
424 }
425 
426 /* Moves the gigantic page addresses from the temporary list to the
427  * huge_boot_pages list.
428  */
429 int alloc_bootmem_huge_page(struct hstate *hstate)
430 {
431 	struct huge_bootmem_page *m;
432 	if (nr_gpages == 0)
433 		return 0;
434 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
435 	gpage_freearray[nr_gpages] = 0;
436 	list_add(&m->list, &huge_boot_pages);
437 	m->hstate = hstate;
438 	return 1;
439 }
440 #endif
441 
442 #ifdef CONFIG_PPC_FSL_BOOK3E
443 #define HUGEPD_FREELIST_SIZE \
444 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
445 
446 struct hugepd_freelist {
447 	struct rcu_head	rcu;
448 	unsigned int index;
449 	void *ptes[0];
450 };
451 
452 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
453 
454 static void hugepd_free_rcu_callback(struct rcu_head *head)
455 {
456 	struct hugepd_freelist *batch =
457 		container_of(head, struct hugepd_freelist, rcu);
458 	unsigned int i;
459 
460 	for (i = 0; i < batch->index; i++)
461 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
462 
463 	free_page((unsigned long)batch);
464 }
465 
466 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
467 {
468 	struct hugepd_freelist **batchp;
469 
470 	batchp = this_cpu_ptr(&hugepd_freelist_cur);
471 
472 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
473 	    cpumask_equal(mm_cpumask(tlb->mm),
474 			  cpumask_of(smp_processor_id()))) {
475 		kmem_cache_free(hugepte_cache, hugepte);
476         put_cpu_var(hugepd_freelist_cur);
477 		return;
478 	}
479 
480 	if (*batchp == NULL) {
481 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
482 		(*batchp)->index = 0;
483 	}
484 
485 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
486 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
487 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
488 		*batchp = NULL;
489 	}
490 	put_cpu_var(hugepd_freelist_cur);
491 }
492 #endif
493 
494 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
495 			      unsigned long start, unsigned long end,
496 			      unsigned long floor, unsigned long ceiling)
497 {
498 	pte_t *hugepte = hugepd_page(*hpdp);
499 	int i;
500 
501 	unsigned long pdmask = ~((1UL << pdshift) - 1);
502 	unsigned int num_hugepd = 1;
503 
504 #ifdef CONFIG_PPC_FSL_BOOK3E
505 	/* Note: On fsl the hpdp may be the first of several */
506 	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
507 #else
508 	unsigned int shift = hugepd_shift(*hpdp);
509 #endif
510 
511 	start &= pdmask;
512 	if (start < floor)
513 		return;
514 	if (ceiling) {
515 		ceiling &= pdmask;
516 		if (! ceiling)
517 			return;
518 	}
519 	if (end - 1 > ceiling - 1)
520 		return;
521 
522 	for (i = 0; i < num_hugepd; i++, hpdp++)
523 		hpdp->pd = 0;
524 
525 #ifdef CONFIG_PPC_FSL_BOOK3E
526 	hugepd_free(tlb, hugepte);
527 #else
528 	pgtable_free_tlb(tlb, hugepte, pdshift - shift);
529 #endif
530 }
531 
532 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
533 				   unsigned long addr, unsigned long end,
534 				   unsigned long floor, unsigned long ceiling)
535 {
536 	pmd_t *pmd;
537 	unsigned long next;
538 	unsigned long start;
539 
540 	start = addr;
541 	do {
542 		pmd = pmd_offset(pud, addr);
543 		next = pmd_addr_end(addr, end);
544 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
545 			/*
546 			 * if it is not hugepd pointer, we should already find
547 			 * it cleared.
548 			 */
549 			WARN_ON(!pmd_none_or_clear_bad(pmd));
550 			continue;
551 		}
552 #ifdef CONFIG_PPC_FSL_BOOK3E
553 		/*
554 		 * Increment next by the size of the huge mapping since
555 		 * there may be more than one entry at this level for a
556 		 * single hugepage, but all of them point to
557 		 * the same kmem cache that holds the hugepte.
558 		 */
559 		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
560 #endif
561 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
562 				  addr, next, floor, ceiling);
563 	} while (addr = next, addr != end);
564 
565 	start &= PUD_MASK;
566 	if (start < floor)
567 		return;
568 	if (ceiling) {
569 		ceiling &= PUD_MASK;
570 		if (!ceiling)
571 			return;
572 	}
573 	if (end - 1 > ceiling - 1)
574 		return;
575 
576 	pmd = pmd_offset(pud, start);
577 	pud_clear(pud);
578 	pmd_free_tlb(tlb, pmd, start);
579 	mm_dec_nr_pmds(tlb->mm);
580 }
581 
582 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
583 				   unsigned long addr, unsigned long end,
584 				   unsigned long floor, unsigned long ceiling)
585 {
586 	pud_t *pud;
587 	unsigned long next;
588 	unsigned long start;
589 
590 	start = addr;
591 	do {
592 		pud = pud_offset(pgd, addr);
593 		next = pud_addr_end(addr, end);
594 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
595 			if (pud_none_or_clear_bad(pud))
596 				continue;
597 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
598 					       ceiling);
599 		} else {
600 #ifdef CONFIG_PPC_FSL_BOOK3E
601 			/*
602 			 * Increment next by the size of the huge mapping since
603 			 * there may be more than one entry at this level for a
604 			 * single hugepage, but all of them point to
605 			 * the same kmem cache that holds the hugepte.
606 			 */
607 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
608 #endif
609 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
610 					  addr, next, floor, ceiling);
611 		}
612 	} while (addr = next, addr != end);
613 
614 	start &= PGDIR_MASK;
615 	if (start < floor)
616 		return;
617 	if (ceiling) {
618 		ceiling &= PGDIR_MASK;
619 		if (!ceiling)
620 			return;
621 	}
622 	if (end - 1 > ceiling - 1)
623 		return;
624 
625 	pud = pud_offset(pgd, start);
626 	pgd_clear(pgd);
627 	pud_free_tlb(tlb, pud, start);
628 }
629 
630 /*
631  * This function frees user-level page tables of a process.
632  */
633 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
634 			    unsigned long addr, unsigned long end,
635 			    unsigned long floor, unsigned long ceiling)
636 {
637 	pgd_t *pgd;
638 	unsigned long next;
639 
640 	/*
641 	 * Because there are a number of different possible pagetable
642 	 * layouts for hugepage ranges, we limit knowledge of how
643 	 * things should be laid out to the allocation path
644 	 * (huge_pte_alloc(), above).  Everything else works out the
645 	 * structure as it goes from information in the hugepd
646 	 * pointers.  That means that we can't here use the
647 	 * optimization used in the normal page free_pgd_range(), of
648 	 * checking whether we're actually covering a large enough
649 	 * range to have to do anything at the top level of the walk
650 	 * instead of at the bottom.
651 	 *
652 	 * To make sense of this, you should probably go read the big
653 	 * block comment at the top of the normal free_pgd_range(),
654 	 * too.
655 	 */
656 
657 	do {
658 		next = pgd_addr_end(addr, end);
659 		pgd = pgd_offset(tlb->mm, addr);
660 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
661 			if (pgd_none_or_clear_bad(pgd))
662 				continue;
663 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
664 		} else {
665 #ifdef CONFIG_PPC_FSL_BOOK3E
666 			/*
667 			 * Increment next by the size of the huge mapping since
668 			 * there may be more than one entry at the pgd level
669 			 * for a single hugepage, but all of them point to the
670 			 * same kmem cache that holds the hugepte.
671 			 */
672 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
673 #endif
674 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
675 					  addr, next, floor, ceiling);
676 		}
677 	} while (addr = next, addr != end);
678 }
679 
680 /*
681  * We are holding mmap_sem, so a parallel huge page collapse cannot run.
682  * To prevent hugepage split, disable irq.
683  */
684 struct page *
685 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
686 {
687 	pte_t *ptep, pte;
688 	unsigned shift;
689 	unsigned long mask, flags;
690 	struct page *page = ERR_PTR(-EINVAL);
691 
692 	local_irq_save(flags);
693 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
694 	if (!ptep)
695 		goto no_page;
696 	pte = READ_ONCE(*ptep);
697 	/*
698 	 * Verify it is a huge page else bail.
699 	 * Transparent hugepages are handled by generic code. We can skip them
700 	 * here.
701 	 */
702 	if (!shift || pmd_trans_huge(__pmd(pte_val(pte))))
703 		goto no_page;
704 
705 	if (!pte_present(pte)) {
706 		page = NULL;
707 		goto no_page;
708 	}
709 	mask = (1UL << shift) - 1;
710 	page = pte_page(pte);
711 	if (page)
712 		page += (address & mask) / PAGE_SIZE;
713 
714 no_page:
715 	local_irq_restore(flags);
716 	return page;
717 }
718 
719 struct page *
720 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
721 		pmd_t *pmd, int write)
722 {
723 	BUG();
724 	return NULL;
725 }
726 
727 struct page *
728 follow_huge_pud(struct mm_struct *mm, unsigned long address,
729 		pud_t *pud, int write)
730 {
731 	BUG();
732 	return NULL;
733 }
734 
735 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
736 				      unsigned long sz)
737 {
738 	unsigned long __boundary = (addr + sz) & ~(sz-1);
739 	return (__boundary - 1 < end - 1) ? __boundary : end;
740 }
741 
742 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
743 		unsigned long end, int write, struct page **pages, int *nr)
744 {
745 	pte_t *ptep;
746 	unsigned long sz = 1UL << hugepd_shift(hugepd);
747 	unsigned long next;
748 
749 	ptep = hugepte_offset(hugepd, addr, pdshift);
750 	do {
751 		next = hugepte_addr_end(addr, end, sz);
752 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
753 			return 0;
754 	} while (ptep++, addr = next, addr != end);
755 
756 	return 1;
757 }
758 
759 #ifdef CONFIG_PPC_MM_SLICES
760 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
761 					unsigned long len, unsigned long pgoff,
762 					unsigned long flags)
763 {
764 	struct hstate *hstate = hstate_file(file);
765 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
766 
767 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
768 }
769 #endif
770 
771 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
772 {
773 #ifdef CONFIG_PPC_MM_SLICES
774 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
775 
776 	return 1UL << mmu_psize_to_shift(psize);
777 #else
778 	if (!is_vm_hugetlb_page(vma))
779 		return PAGE_SIZE;
780 
781 	return huge_page_size(hstate_vma(vma));
782 #endif
783 }
784 
785 static inline bool is_power_of_4(unsigned long x)
786 {
787 	if (is_power_of_2(x))
788 		return (__ilog2(x) % 2) ? false : true;
789 	return false;
790 }
791 
792 static int __init add_huge_page_size(unsigned long long size)
793 {
794 	int shift = __ffs(size);
795 	int mmu_psize;
796 
797 	/* Check that it is a page size supported by the hardware and
798 	 * that it fits within pagetable and slice limits. */
799 #ifdef CONFIG_PPC_FSL_BOOK3E
800 	if ((size < PAGE_SIZE) || !is_power_of_4(size))
801 		return -EINVAL;
802 #else
803 	if (!is_power_of_2(size)
804 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
805 		return -EINVAL;
806 #endif
807 
808 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
809 		return -EINVAL;
810 
811 #ifdef CONFIG_SPU_FS_64K_LS
812 	/* Disable support for 64K huge pages when 64K SPU local store
813 	 * support is enabled as the current implementation conflicts.
814 	 */
815 	if (shift == PAGE_SHIFT_64K)
816 		return -EINVAL;
817 #endif /* CONFIG_SPU_FS_64K_LS */
818 
819 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
820 
821 	/* Return if huge page size has already been setup */
822 	if (size_to_hstate(size))
823 		return 0;
824 
825 	hugetlb_add_hstate(shift - PAGE_SHIFT);
826 
827 	return 0;
828 }
829 
830 static int __init hugepage_setup_sz(char *str)
831 {
832 	unsigned long long size;
833 
834 	size = memparse(str, &str);
835 
836 	if (add_huge_page_size(size) != 0)
837 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
838 
839 	return 1;
840 }
841 __setup("hugepagesz=", hugepage_setup_sz);
842 
843 #ifdef CONFIG_PPC_FSL_BOOK3E
844 struct kmem_cache *hugepte_cache;
845 static int __init hugetlbpage_init(void)
846 {
847 	int psize;
848 
849 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
850 		unsigned shift;
851 
852 		if (!mmu_psize_defs[psize].shift)
853 			continue;
854 
855 		shift = mmu_psize_to_shift(psize);
856 
857 		/* Don't treat normal page sizes as huge... */
858 		if (shift != PAGE_SHIFT)
859 			if (add_huge_page_size(1ULL << shift) < 0)
860 				continue;
861 	}
862 
863 	/*
864 	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have
865 	 * size information encoded in them, so align them to allow this
866 	 */
867 	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
868 					   HUGEPD_SHIFT_MASK + 1, 0, NULL);
869 	if (hugepte_cache == NULL)
870 		panic("%s: Unable to create kmem cache for hugeptes\n",
871 		      __func__);
872 
873 	/* Default hpage size = 4M */
874 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
875 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
876 	else
877 		panic("%s: Unable to set default huge page size\n", __func__);
878 
879 
880 	return 0;
881 }
882 #else
883 static int __init hugetlbpage_init(void)
884 {
885 	int psize;
886 
887 	if (!mmu_has_feature(MMU_FTR_16M_PAGE))
888 		return -ENODEV;
889 
890 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
891 		unsigned shift;
892 		unsigned pdshift;
893 
894 		if (!mmu_psize_defs[psize].shift)
895 			continue;
896 
897 		shift = mmu_psize_to_shift(psize);
898 
899 		if (add_huge_page_size(1ULL << shift) < 0)
900 			continue;
901 
902 		if (shift < PMD_SHIFT)
903 			pdshift = PMD_SHIFT;
904 		else if (shift < PUD_SHIFT)
905 			pdshift = PUD_SHIFT;
906 		else
907 			pdshift = PGDIR_SHIFT;
908 		/*
909 		 * if we have pdshift and shift value same, we don't
910 		 * use pgt cache for hugepd.
911 		 */
912 		if (pdshift != shift) {
913 			pgtable_cache_add(pdshift - shift, NULL);
914 			if (!PGT_CACHE(pdshift - shift))
915 				panic("hugetlbpage_init(): could not create "
916 				      "pgtable cache for %d bit pagesize\n", shift);
917 		}
918 	}
919 
920 	/* Set default large page size. Currently, we pick 16M or 1M
921 	 * depending on what is available
922 	 */
923 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
924 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
925 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
926 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
927 
928 	return 0;
929 }
930 #endif
931 arch_initcall(hugetlbpage_init);
932 
933 void flush_dcache_icache_hugepage(struct page *page)
934 {
935 	int i;
936 	void *start;
937 
938 	BUG_ON(!PageCompound(page));
939 
940 	for (i = 0; i < (1UL << compound_order(page)); i++) {
941 		if (!PageHighMem(page)) {
942 			__flush_dcache_icache(page_address(page+i));
943 		} else {
944 			start = kmap_atomic(page+i);
945 			__flush_dcache_icache(start);
946 			kunmap_atomic(start);
947 		}
948 	}
949 }
950 
951 #endif /* CONFIG_HUGETLB_PAGE */
952 
953 /*
954  * We have 4 cases for pgds and pmds:
955  * (1) invalid (all zeroes)
956  * (2) pointer to next table, as normal; bottom 6 bits == 0
957  * (3) leaf pte for huge page, bottom two bits != 00
958  * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
959  *
960  * So long as we atomically load page table pointers we are safe against teardown,
961  * we can follow the address down to the the page and take a ref on it.
962  * This function need to be called with interrupts disabled. We use this variant
963  * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
964  */
965 
966 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
967 				   unsigned *shift)
968 {
969 	pgd_t pgd, *pgdp;
970 	pud_t pud, *pudp;
971 	pmd_t pmd, *pmdp;
972 	pte_t *ret_pte;
973 	hugepd_t *hpdp = NULL;
974 	unsigned pdshift = PGDIR_SHIFT;
975 
976 	if (shift)
977 		*shift = 0;
978 
979 	pgdp = pgdir + pgd_index(ea);
980 	pgd  = READ_ONCE(*pgdp);
981 	/*
982 	 * Always operate on the local stack value. This make sure the
983 	 * value don't get updated by a parallel THP split/collapse,
984 	 * page fault or a page unmap. The return pte_t * is still not
985 	 * stable. So should be checked there for above conditions.
986 	 */
987 	if (pgd_none(pgd))
988 		return NULL;
989 	else if (pgd_huge(pgd)) {
990 		ret_pte = (pte_t *) pgdp;
991 		goto out;
992 	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
993 		hpdp = (hugepd_t *)&pgd;
994 	else {
995 		/*
996 		 * Even if we end up with an unmap, the pgtable will not
997 		 * be freed, because we do an rcu free and here we are
998 		 * irq disabled
999 		 */
1000 		pdshift = PUD_SHIFT;
1001 		pudp = pud_offset(&pgd, ea);
1002 		pud  = READ_ONCE(*pudp);
1003 
1004 		if (pud_none(pud))
1005 			return NULL;
1006 		else if (pud_huge(pud)) {
1007 			ret_pte = (pte_t *) pudp;
1008 			goto out;
1009 		} else if (is_hugepd(__hugepd(pud_val(pud))))
1010 			hpdp = (hugepd_t *)&pud;
1011 		else {
1012 			pdshift = PMD_SHIFT;
1013 			pmdp = pmd_offset(&pud, ea);
1014 			pmd  = READ_ONCE(*pmdp);
1015 			/*
1016 			 * A hugepage collapse is captured by pmd_none, because
1017 			 * it mark the pmd none and do a hpte invalidate.
1018 			 *
1019 			 * We don't worry about pmd_trans_splitting here, The
1020 			 * caller if it needs to handle the splitting case
1021 			 * should check for that.
1022 			 */
1023 			if (pmd_none(pmd))
1024 				return NULL;
1025 
1026 			if (pmd_huge(pmd) || pmd_large(pmd)) {
1027 				ret_pte = (pte_t *) pmdp;
1028 				goto out;
1029 			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
1030 				hpdp = (hugepd_t *)&pmd;
1031 			else
1032 				return pte_offset_kernel(&pmd, ea);
1033 		}
1034 	}
1035 	if (!hpdp)
1036 		return NULL;
1037 
1038 	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
1039 	pdshift = hugepd_shift(*hpdp);
1040 out:
1041 	if (shift)
1042 		*shift = pdshift;
1043 	return ret_pte;
1044 }
1045 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
1046 
1047 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1048 		unsigned long end, int write, struct page **pages, int *nr)
1049 {
1050 	unsigned long mask;
1051 	unsigned long pte_end;
1052 	struct page *head, *page, *tail;
1053 	pte_t pte;
1054 	int refs;
1055 
1056 	pte_end = (addr + sz) & ~(sz-1);
1057 	if (pte_end < end)
1058 		end = pte_end;
1059 
1060 	pte = READ_ONCE(*ptep);
1061 	mask = _PAGE_PRESENT | _PAGE_USER;
1062 	if (write)
1063 		mask |= _PAGE_RW;
1064 
1065 	if ((pte_val(pte) & mask) != mask)
1066 		return 0;
1067 
1068 	/* hugepages are never "special" */
1069 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1070 
1071 	refs = 0;
1072 	head = pte_page(pte);
1073 
1074 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1075 	tail = page;
1076 	do {
1077 		VM_BUG_ON(compound_head(page) != head);
1078 		pages[*nr] = page;
1079 		(*nr)++;
1080 		page++;
1081 		refs++;
1082 	} while (addr += PAGE_SIZE, addr != end);
1083 
1084 	if (!page_cache_add_speculative(head, refs)) {
1085 		*nr -= refs;
1086 		return 0;
1087 	}
1088 
1089 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1090 		/* Could be optimized better */
1091 		*nr -= refs;
1092 		while (refs--)
1093 			put_page(head);
1094 		return 0;
1095 	}
1096 
1097 	/*
1098 	 * Any tail page need their mapcount reference taken before we
1099 	 * return.
1100 	 */
1101 	while (refs--) {
1102 		if (PageTail(tail))
1103 			get_huge_page_tail(tail);
1104 		tail++;
1105 	}
1106 
1107 	return 1;
1108 }
1109