1 /* 2 * PPC Huge TLB Page Support for Kernel. 3 * 4 * Copyright (C) 2003 David Gibson, IBM Corporation. 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor 6 * 7 * Based on the IA-32 version: 8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/io.h> 13 #include <linux/slab.h> 14 #include <linux/hugetlb.h> 15 #include <linux/export.h> 16 #include <linux/of_fdt.h> 17 #include <linux/memblock.h> 18 #include <linux/bootmem.h> 19 #include <linux/moduleparam.h> 20 #include <asm/pgtable.h> 21 #include <asm/pgalloc.h> 22 #include <asm/tlb.h> 23 #include <asm/setup.h> 24 #include <asm/hugetlb.h> 25 26 #ifdef CONFIG_HUGETLB_PAGE 27 28 #define PAGE_SHIFT_64K 16 29 #define PAGE_SHIFT_16M 24 30 #define PAGE_SHIFT_16G 34 31 32 unsigned int HPAGE_SHIFT; 33 34 /* 35 * Tracks gpages after the device tree is scanned and before the 36 * huge_boot_pages list is ready. On non-Freescale implementations, this is 37 * just used to track 16G pages and so is a single array. FSL-based 38 * implementations may have more than one gpage size, so we need multiple 39 * arrays 40 */ 41 #ifdef CONFIG_PPC_FSL_BOOK3E 42 #define MAX_NUMBER_GPAGES 128 43 struct psize_gpages { 44 u64 gpage_list[MAX_NUMBER_GPAGES]; 45 unsigned int nr_gpages; 46 }; 47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT]; 48 #else 49 #define MAX_NUMBER_GPAGES 1024 50 static u64 gpage_freearray[MAX_NUMBER_GPAGES]; 51 static unsigned nr_gpages; 52 #endif 53 54 #define hugepd_none(hpd) ((hpd).pd == 0) 55 56 #ifdef CONFIG_PPC_BOOK3S_64 57 /* 58 * At this point we do the placement change only for BOOK3S 64. This would 59 * possibly work on other subarchs. 60 */ 61 62 /* 63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have 64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD; 65 * 66 * Defined in such a way that we can optimize away code block at build time 67 * if CONFIG_HUGETLB_PAGE=n. 68 */ 69 int pmd_huge(pmd_t pmd) 70 { 71 /* 72 * leaf pte for huge page, bottom two bits != 00 73 */ 74 return ((pmd_val(pmd) & 0x3) != 0x0); 75 } 76 77 int pud_huge(pud_t pud) 78 { 79 /* 80 * leaf pte for huge page, bottom two bits != 00 81 */ 82 return ((pud_val(pud) & 0x3) != 0x0); 83 } 84 85 int pgd_huge(pgd_t pgd) 86 { 87 /* 88 * leaf pte for huge page, bottom two bits != 00 89 */ 90 return ((pgd_val(pgd) & 0x3) != 0x0); 91 } 92 #else 93 int pmd_huge(pmd_t pmd) 94 { 95 return 0; 96 } 97 98 int pud_huge(pud_t pud) 99 { 100 return 0; 101 } 102 103 int pgd_huge(pgd_t pgd) 104 { 105 return 0; 106 } 107 #endif 108 109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) 110 { 111 /* Only called for hugetlbfs pages, hence can ignore THP */ 112 return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL); 113 } 114 115 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, 116 unsigned long address, unsigned pdshift, unsigned pshift) 117 { 118 struct kmem_cache *cachep; 119 pte_t *new; 120 121 #ifdef CONFIG_PPC_FSL_BOOK3E 122 int i; 123 int num_hugepd = 1 << (pshift - pdshift); 124 cachep = hugepte_cache; 125 #else 126 cachep = PGT_CACHE(pdshift - pshift); 127 #endif 128 129 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT); 130 131 BUG_ON(pshift > HUGEPD_SHIFT_MASK); 132 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); 133 134 if (! new) 135 return -ENOMEM; 136 137 spin_lock(&mm->page_table_lock); 138 #ifdef CONFIG_PPC_FSL_BOOK3E 139 /* 140 * We have multiple higher-level entries that point to the same 141 * actual pte location. Fill in each as we go and backtrack on error. 142 * We need all of these so the DTLB pgtable walk code can find the 143 * right higher-level entry without knowing if it's a hugepage or not. 144 */ 145 for (i = 0; i < num_hugepd; i++, hpdp++) { 146 if (unlikely(!hugepd_none(*hpdp))) 147 break; 148 else 149 /* We use the old format for PPC_FSL_BOOK3E */ 150 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; 151 } 152 /* If we bailed from the for loop early, an error occurred, clean up */ 153 if (i < num_hugepd) { 154 for (i = i - 1 ; i >= 0; i--, hpdp--) 155 hpdp->pd = 0; 156 kmem_cache_free(cachep, new); 157 } 158 #else 159 if (!hugepd_none(*hpdp)) 160 kmem_cache_free(cachep, new); 161 else { 162 #ifdef CONFIG_PPC_BOOK3S_64 163 hpdp->pd = (unsigned long)new | 164 (shift_to_mmu_psize(pshift) << 2); 165 #else 166 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; 167 #endif 168 } 169 #endif 170 spin_unlock(&mm->page_table_lock); 171 return 0; 172 } 173 174 /* 175 * These macros define how to determine which level of the page table holds 176 * the hpdp. 177 */ 178 #ifdef CONFIG_PPC_FSL_BOOK3E 179 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT 180 #define HUGEPD_PUD_SHIFT PUD_SHIFT 181 #else 182 #define HUGEPD_PGD_SHIFT PUD_SHIFT 183 #define HUGEPD_PUD_SHIFT PMD_SHIFT 184 #endif 185 186 #ifdef CONFIG_PPC_BOOK3S_64 187 /* 188 * At this point we do the placement change only for BOOK3S 64. This would 189 * possibly work on other subarchs. 190 */ 191 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 192 { 193 pgd_t *pg; 194 pud_t *pu; 195 pmd_t *pm; 196 hugepd_t *hpdp = NULL; 197 unsigned pshift = __ffs(sz); 198 unsigned pdshift = PGDIR_SHIFT; 199 200 addr &= ~(sz-1); 201 pg = pgd_offset(mm, addr); 202 203 if (pshift == PGDIR_SHIFT) 204 /* 16GB huge page */ 205 return (pte_t *) pg; 206 else if (pshift > PUD_SHIFT) 207 /* 208 * We need to use hugepd table 209 */ 210 hpdp = (hugepd_t *)pg; 211 else { 212 pdshift = PUD_SHIFT; 213 pu = pud_alloc(mm, pg, addr); 214 if (pshift == PUD_SHIFT) 215 return (pte_t *)pu; 216 else if (pshift > PMD_SHIFT) 217 hpdp = (hugepd_t *)pu; 218 else { 219 pdshift = PMD_SHIFT; 220 pm = pmd_alloc(mm, pu, addr); 221 if (pshift == PMD_SHIFT) 222 /* 16MB hugepage */ 223 return (pte_t *)pm; 224 else 225 hpdp = (hugepd_t *)pm; 226 } 227 } 228 if (!hpdp) 229 return NULL; 230 231 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 232 233 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 234 return NULL; 235 236 return hugepte_offset(*hpdp, addr, pdshift); 237 } 238 239 #else 240 241 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) 242 { 243 pgd_t *pg; 244 pud_t *pu; 245 pmd_t *pm; 246 hugepd_t *hpdp = NULL; 247 unsigned pshift = __ffs(sz); 248 unsigned pdshift = PGDIR_SHIFT; 249 250 addr &= ~(sz-1); 251 252 pg = pgd_offset(mm, addr); 253 254 if (pshift >= HUGEPD_PGD_SHIFT) { 255 hpdp = (hugepd_t *)pg; 256 } else { 257 pdshift = PUD_SHIFT; 258 pu = pud_alloc(mm, pg, addr); 259 if (pshift >= HUGEPD_PUD_SHIFT) { 260 hpdp = (hugepd_t *)pu; 261 } else { 262 pdshift = PMD_SHIFT; 263 pm = pmd_alloc(mm, pu, addr); 264 hpdp = (hugepd_t *)pm; 265 } 266 } 267 268 if (!hpdp) 269 return NULL; 270 271 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); 272 273 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) 274 return NULL; 275 276 return hugepte_offset(*hpdp, addr, pdshift); 277 } 278 #endif 279 280 #ifdef CONFIG_PPC_FSL_BOOK3E 281 /* Build list of addresses of gigantic pages. This function is used in early 282 * boot before the buddy allocator is setup. 283 */ 284 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 285 { 286 unsigned int idx = shift_to_mmu_psize(__ffs(page_size)); 287 int i; 288 289 if (addr == 0) 290 return; 291 292 gpage_freearray[idx].nr_gpages = number_of_pages; 293 294 for (i = 0; i < number_of_pages; i++) { 295 gpage_freearray[idx].gpage_list[i] = addr; 296 addr += page_size; 297 } 298 } 299 300 /* 301 * Moves the gigantic page addresses from the temporary list to the 302 * huge_boot_pages list. 303 */ 304 int alloc_bootmem_huge_page(struct hstate *hstate) 305 { 306 struct huge_bootmem_page *m; 307 int idx = shift_to_mmu_psize(huge_page_shift(hstate)); 308 int nr_gpages = gpage_freearray[idx].nr_gpages; 309 310 if (nr_gpages == 0) 311 return 0; 312 313 #ifdef CONFIG_HIGHMEM 314 /* 315 * If gpages can be in highmem we can't use the trick of storing the 316 * data structure in the page; allocate space for this 317 */ 318 m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0); 319 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages]; 320 #else 321 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]); 322 #endif 323 324 list_add(&m->list, &huge_boot_pages); 325 gpage_freearray[idx].nr_gpages = nr_gpages; 326 gpage_freearray[idx].gpage_list[nr_gpages] = 0; 327 m->hstate = hstate; 328 329 return 1; 330 } 331 /* 332 * Scan the command line hugepagesz= options for gigantic pages; store those in 333 * a list that we use to allocate the memory once all options are parsed. 334 */ 335 336 unsigned long gpage_npages[MMU_PAGE_COUNT]; 337 338 static int __init do_gpage_early_setup(char *param, char *val, 339 const char *unused, void *arg) 340 { 341 static phys_addr_t size; 342 unsigned long npages; 343 344 /* 345 * The hugepagesz and hugepages cmdline options are interleaved. We 346 * use the size variable to keep track of whether or not this was done 347 * properly and skip over instances where it is incorrect. Other 348 * command-line parsing code will issue warnings, so we don't need to. 349 * 350 */ 351 if ((strcmp(param, "default_hugepagesz") == 0) || 352 (strcmp(param, "hugepagesz") == 0)) { 353 size = memparse(val, NULL); 354 } else if (strcmp(param, "hugepages") == 0) { 355 if (size != 0) { 356 if (sscanf(val, "%lu", &npages) <= 0) 357 npages = 0; 358 if (npages > MAX_NUMBER_GPAGES) { 359 pr_warn("MMU: %lu pages requested for page " 360 "size %llu KB, limiting to " 361 __stringify(MAX_NUMBER_GPAGES) "\n", 362 npages, size / 1024); 363 npages = MAX_NUMBER_GPAGES; 364 } 365 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages; 366 size = 0; 367 } 368 } 369 return 0; 370 } 371 372 373 /* 374 * This function allocates physical space for pages that are larger than the 375 * buddy allocator can handle. We want to allocate these in highmem because 376 * the amount of lowmem is limited. This means that this function MUST be 377 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb 378 * allocate to grab highmem. 379 */ 380 void __init reserve_hugetlb_gpages(void) 381 { 382 static __initdata char cmdline[COMMAND_LINE_SIZE]; 383 phys_addr_t size, base; 384 int i; 385 386 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE); 387 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0, 388 NULL, &do_gpage_early_setup); 389 390 /* 391 * Walk gpage list in reverse, allocating larger page sizes first. 392 * Skip over unsupported sizes, or sizes that have 0 gpages allocated. 393 * When we reach the point in the list where pages are no longer 394 * considered gpages, we're done. 395 */ 396 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) { 397 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0) 398 continue; 399 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT)) 400 break; 401 402 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i)); 403 base = memblock_alloc_base(size * gpage_npages[i], size, 404 MEMBLOCK_ALLOC_ANYWHERE); 405 add_gpage(base, size, gpage_npages[i]); 406 } 407 } 408 409 #else /* !PPC_FSL_BOOK3E */ 410 411 /* Build list of addresses of gigantic pages. This function is used in early 412 * boot before the buddy allocator is setup. 413 */ 414 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) 415 { 416 if (!addr) 417 return; 418 while (number_of_pages > 0) { 419 gpage_freearray[nr_gpages] = addr; 420 nr_gpages++; 421 number_of_pages--; 422 addr += page_size; 423 } 424 } 425 426 /* Moves the gigantic page addresses from the temporary list to the 427 * huge_boot_pages list. 428 */ 429 int alloc_bootmem_huge_page(struct hstate *hstate) 430 { 431 struct huge_bootmem_page *m; 432 if (nr_gpages == 0) 433 return 0; 434 m = phys_to_virt(gpage_freearray[--nr_gpages]); 435 gpage_freearray[nr_gpages] = 0; 436 list_add(&m->list, &huge_boot_pages); 437 m->hstate = hstate; 438 return 1; 439 } 440 #endif 441 442 #ifdef CONFIG_PPC_FSL_BOOK3E 443 #define HUGEPD_FREELIST_SIZE \ 444 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) 445 446 struct hugepd_freelist { 447 struct rcu_head rcu; 448 unsigned int index; 449 void *ptes[0]; 450 }; 451 452 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); 453 454 static void hugepd_free_rcu_callback(struct rcu_head *head) 455 { 456 struct hugepd_freelist *batch = 457 container_of(head, struct hugepd_freelist, rcu); 458 unsigned int i; 459 460 for (i = 0; i < batch->index; i++) 461 kmem_cache_free(hugepte_cache, batch->ptes[i]); 462 463 free_page((unsigned long)batch); 464 } 465 466 static void hugepd_free(struct mmu_gather *tlb, void *hugepte) 467 { 468 struct hugepd_freelist **batchp; 469 470 batchp = this_cpu_ptr(&hugepd_freelist_cur); 471 472 if (atomic_read(&tlb->mm->mm_users) < 2 || 473 cpumask_equal(mm_cpumask(tlb->mm), 474 cpumask_of(smp_processor_id()))) { 475 kmem_cache_free(hugepte_cache, hugepte); 476 put_cpu_var(hugepd_freelist_cur); 477 return; 478 } 479 480 if (*batchp == NULL) { 481 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); 482 (*batchp)->index = 0; 483 } 484 485 (*batchp)->ptes[(*batchp)->index++] = hugepte; 486 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { 487 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); 488 *batchp = NULL; 489 } 490 put_cpu_var(hugepd_freelist_cur); 491 } 492 #endif 493 494 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, 495 unsigned long start, unsigned long end, 496 unsigned long floor, unsigned long ceiling) 497 { 498 pte_t *hugepte = hugepd_page(*hpdp); 499 int i; 500 501 unsigned long pdmask = ~((1UL << pdshift) - 1); 502 unsigned int num_hugepd = 1; 503 504 #ifdef CONFIG_PPC_FSL_BOOK3E 505 /* Note: On fsl the hpdp may be the first of several */ 506 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift)); 507 #else 508 unsigned int shift = hugepd_shift(*hpdp); 509 #endif 510 511 start &= pdmask; 512 if (start < floor) 513 return; 514 if (ceiling) { 515 ceiling &= pdmask; 516 if (! ceiling) 517 return; 518 } 519 if (end - 1 > ceiling - 1) 520 return; 521 522 for (i = 0; i < num_hugepd; i++, hpdp++) 523 hpdp->pd = 0; 524 525 #ifdef CONFIG_PPC_FSL_BOOK3E 526 hugepd_free(tlb, hugepte); 527 #else 528 pgtable_free_tlb(tlb, hugepte, pdshift - shift); 529 #endif 530 } 531 532 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 533 unsigned long addr, unsigned long end, 534 unsigned long floor, unsigned long ceiling) 535 { 536 pmd_t *pmd; 537 unsigned long next; 538 unsigned long start; 539 540 start = addr; 541 do { 542 pmd = pmd_offset(pud, addr); 543 next = pmd_addr_end(addr, end); 544 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) { 545 /* 546 * if it is not hugepd pointer, we should already find 547 * it cleared. 548 */ 549 WARN_ON(!pmd_none_or_clear_bad(pmd)); 550 continue; 551 } 552 #ifdef CONFIG_PPC_FSL_BOOK3E 553 /* 554 * Increment next by the size of the huge mapping since 555 * there may be more than one entry at this level for a 556 * single hugepage, but all of them point to 557 * the same kmem cache that holds the hugepte. 558 */ 559 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); 560 #endif 561 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, 562 addr, next, floor, ceiling); 563 } while (addr = next, addr != end); 564 565 start &= PUD_MASK; 566 if (start < floor) 567 return; 568 if (ceiling) { 569 ceiling &= PUD_MASK; 570 if (!ceiling) 571 return; 572 } 573 if (end - 1 > ceiling - 1) 574 return; 575 576 pmd = pmd_offset(pud, start); 577 pud_clear(pud); 578 pmd_free_tlb(tlb, pmd, start); 579 mm_dec_nr_pmds(tlb->mm); 580 } 581 582 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 583 unsigned long addr, unsigned long end, 584 unsigned long floor, unsigned long ceiling) 585 { 586 pud_t *pud; 587 unsigned long next; 588 unsigned long start; 589 590 start = addr; 591 do { 592 pud = pud_offset(pgd, addr); 593 next = pud_addr_end(addr, end); 594 if (!is_hugepd(__hugepd(pud_val(*pud)))) { 595 if (pud_none_or_clear_bad(pud)) 596 continue; 597 hugetlb_free_pmd_range(tlb, pud, addr, next, floor, 598 ceiling); 599 } else { 600 #ifdef CONFIG_PPC_FSL_BOOK3E 601 /* 602 * Increment next by the size of the huge mapping since 603 * there may be more than one entry at this level for a 604 * single hugepage, but all of them point to 605 * the same kmem cache that holds the hugepte. 606 */ 607 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); 608 #endif 609 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, 610 addr, next, floor, ceiling); 611 } 612 } while (addr = next, addr != end); 613 614 start &= PGDIR_MASK; 615 if (start < floor) 616 return; 617 if (ceiling) { 618 ceiling &= PGDIR_MASK; 619 if (!ceiling) 620 return; 621 } 622 if (end - 1 > ceiling - 1) 623 return; 624 625 pud = pud_offset(pgd, start); 626 pgd_clear(pgd); 627 pud_free_tlb(tlb, pud, start); 628 } 629 630 /* 631 * This function frees user-level page tables of a process. 632 */ 633 void hugetlb_free_pgd_range(struct mmu_gather *tlb, 634 unsigned long addr, unsigned long end, 635 unsigned long floor, unsigned long ceiling) 636 { 637 pgd_t *pgd; 638 unsigned long next; 639 640 /* 641 * Because there are a number of different possible pagetable 642 * layouts for hugepage ranges, we limit knowledge of how 643 * things should be laid out to the allocation path 644 * (huge_pte_alloc(), above). Everything else works out the 645 * structure as it goes from information in the hugepd 646 * pointers. That means that we can't here use the 647 * optimization used in the normal page free_pgd_range(), of 648 * checking whether we're actually covering a large enough 649 * range to have to do anything at the top level of the walk 650 * instead of at the bottom. 651 * 652 * To make sense of this, you should probably go read the big 653 * block comment at the top of the normal free_pgd_range(), 654 * too. 655 */ 656 657 do { 658 next = pgd_addr_end(addr, end); 659 pgd = pgd_offset(tlb->mm, addr); 660 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) { 661 if (pgd_none_or_clear_bad(pgd)) 662 continue; 663 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); 664 } else { 665 #ifdef CONFIG_PPC_FSL_BOOK3E 666 /* 667 * Increment next by the size of the huge mapping since 668 * there may be more than one entry at the pgd level 669 * for a single hugepage, but all of them point to the 670 * same kmem cache that holds the hugepte. 671 */ 672 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); 673 #endif 674 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, 675 addr, next, floor, ceiling); 676 } 677 } while (addr = next, addr != end); 678 } 679 680 /* 681 * We are holding mmap_sem, so a parallel huge page collapse cannot run. 682 * To prevent hugepage split, disable irq. 683 */ 684 struct page * 685 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) 686 { 687 pte_t *ptep, pte; 688 unsigned shift; 689 unsigned long mask, flags; 690 struct page *page = ERR_PTR(-EINVAL); 691 692 local_irq_save(flags); 693 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift); 694 if (!ptep) 695 goto no_page; 696 pte = READ_ONCE(*ptep); 697 /* 698 * Verify it is a huge page else bail. 699 * Transparent hugepages are handled by generic code. We can skip them 700 * here. 701 */ 702 if (!shift || pmd_trans_huge(__pmd(pte_val(pte)))) 703 goto no_page; 704 705 if (!pte_present(pte)) { 706 page = NULL; 707 goto no_page; 708 } 709 mask = (1UL << shift) - 1; 710 page = pte_page(pte); 711 if (page) 712 page += (address & mask) / PAGE_SIZE; 713 714 no_page: 715 local_irq_restore(flags); 716 return page; 717 } 718 719 struct page * 720 follow_huge_pmd(struct mm_struct *mm, unsigned long address, 721 pmd_t *pmd, int write) 722 { 723 BUG(); 724 return NULL; 725 } 726 727 struct page * 728 follow_huge_pud(struct mm_struct *mm, unsigned long address, 729 pud_t *pud, int write) 730 { 731 BUG(); 732 return NULL; 733 } 734 735 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 736 unsigned long sz) 737 { 738 unsigned long __boundary = (addr + sz) & ~(sz-1); 739 return (__boundary - 1 < end - 1) ? __boundary : end; 740 } 741 742 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift, 743 unsigned long end, int write, struct page **pages, int *nr) 744 { 745 pte_t *ptep; 746 unsigned long sz = 1UL << hugepd_shift(hugepd); 747 unsigned long next; 748 749 ptep = hugepte_offset(hugepd, addr, pdshift); 750 do { 751 next = hugepte_addr_end(addr, end, sz); 752 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) 753 return 0; 754 } while (ptep++, addr = next, addr != end); 755 756 return 1; 757 } 758 759 #ifdef CONFIG_PPC_MM_SLICES 760 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 761 unsigned long len, unsigned long pgoff, 762 unsigned long flags) 763 { 764 struct hstate *hstate = hstate_file(file); 765 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); 766 767 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1); 768 } 769 #endif 770 771 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 772 { 773 #ifdef CONFIG_PPC_MM_SLICES 774 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); 775 776 return 1UL << mmu_psize_to_shift(psize); 777 #else 778 if (!is_vm_hugetlb_page(vma)) 779 return PAGE_SIZE; 780 781 return huge_page_size(hstate_vma(vma)); 782 #endif 783 } 784 785 static inline bool is_power_of_4(unsigned long x) 786 { 787 if (is_power_of_2(x)) 788 return (__ilog2(x) % 2) ? false : true; 789 return false; 790 } 791 792 static int __init add_huge_page_size(unsigned long long size) 793 { 794 int shift = __ffs(size); 795 int mmu_psize; 796 797 /* Check that it is a page size supported by the hardware and 798 * that it fits within pagetable and slice limits. */ 799 #ifdef CONFIG_PPC_FSL_BOOK3E 800 if ((size < PAGE_SIZE) || !is_power_of_4(size)) 801 return -EINVAL; 802 #else 803 if (!is_power_of_2(size) 804 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT)) 805 return -EINVAL; 806 #endif 807 808 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) 809 return -EINVAL; 810 811 #ifdef CONFIG_SPU_FS_64K_LS 812 /* Disable support for 64K huge pages when 64K SPU local store 813 * support is enabled as the current implementation conflicts. 814 */ 815 if (shift == PAGE_SHIFT_64K) 816 return -EINVAL; 817 #endif /* CONFIG_SPU_FS_64K_LS */ 818 819 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); 820 821 /* Return if huge page size has already been setup */ 822 if (size_to_hstate(size)) 823 return 0; 824 825 hugetlb_add_hstate(shift - PAGE_SHIFT); 826 827 return 0; 828 } 829 830 static int __init hugepage_setup_sz(char *str) 831 { 832 unsigned long long size; 833 834 size = memparse(str, &str); 835 836 if (add_huge_page_size(size) != 0) 837 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size); 838 839 return 1; 840 } 841 __setup("hugepagesz=", hugepage_setup_sz); 842 843 #ifdef CONFIG_PPC_FSL_BOOK3E 844 struct kmem_cache *hugepte_cache; 845 static int __init hugetlbpage_init(void) 846 { 847 int psize; 848 849 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 850 unsigned shift; 851 852 if (!mmu_psize_defs[psize].shift) 853 continue; 854 855 shift = mmu_psize_to_shift(psize); 856 857 /* Don't treat normal page sizes as huge... */ 858 if (shift != PAGE_SHIFT) 859 if (add_huge_page_size(1ULL << shift) < 0) 860 continue; 861 } 862 863 /* 864 * Create a kmem cache for hugeptes. The bottom bits in the pte have 865 * size information encoded in them, so align them to allow this 866 */ 867 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t), 868 HUGEPD_SHIFT_MASK + 1, 0, NULL); 869 if (hugepte_cache == NULL) 870 panic("%s: Unable to create kmem cache for hugeptes\n", 871 __func__); 872 873 /* Default hpage size = 4M */ 874 if (mmu_psize_defs[MMU_PAGE_4M].shift) 875 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; 876 else 877 panic("%s: Unable to set default huge page size\n", __func__); 878 879 880 return 0; 881 } 882 #else 883 static int __init hugetlbpage_init(void) 884 { 885 int psize; 886 887 if (!mmu_has_feature(MMU_FTR_16M_PAGE)) 888 return -ENODEV; 889 890 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { 891 unsigned shift; 892 unsigned pdshift; 893 894 if (!mmu_psize_defs[psize].shift) 895 continue; 896 897 shift = mmu_psize_to_shift(psize); 898 899 if (add_huge_page_size(1ULL << shift) < 0) 900 continue; 901 902 if (shift < PMD_SHIFT) 903 pdshift = PMD_SHIFT; 904 else if (shift < PUD_SHIFT) 905 pdshift = PUD_SHIFT; 906 else 907 pdshift = PGDIR_SHIFT; 908 /* 909 * if we have pdshift and shift value same, we don't 910 * use pgt cache for hugepd. 911 */ 912 if (pdshift != shift) { 913 pgtable_cache_add(pdshift - shift, NULL); 914 if (!PGT_CACHE(pdshift - shift)) 915 panic("hugetlbpage_init(): could not create " 916 "pgtable cache for %d bit pagesize\n", shift); 917 } 918 } 919 920 /* Set default large page size. Currently, we pick 16M or 1M 921 * depending on what is available 922 */ 923 if (mmu_psize_defs[MMU_PAGE_16M].shift) 924 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; 925 else if (mmu_psize_defs[MMU_PAGE_1M].shift) 926 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; 927 928 return 0; 929 } 930 #endif 931 arch_initcall(hugetlbpage_init); 932 933 void flush_dcache_icache_hugepage(struct page *page) 934 { 935 int i; 936 void *start; 937 938 BUG_ON(!PageCompound(page)); 939 940 for (i = 0; i < (1UL << compound_order(page)); i++) { 941 if (!PageHighMem(page)) { 942 __flush_dcache_icache(page_address(page+i)); 943 } else { 944 start = kmap_atomic(page+i); 945 __flush_dcache_icache(start); 946 kunmap_atomic(start); 947 } 948 } 949 } 950 951 #endif /* CONFIG_HUGETLB_PAGE */ 952 953 /* 954 * We have 4 cases for pgds and pmds: 955 * (1) invalid (all zeroes) 956 * (2) pointer to next table, as normal; bottom 6 bits == 0 957 * (3) leaf pte for huge page, bottom two bits != 00 958 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table 959 * 960 * So long as we atomically load page table pointers we are safe against teardown, 961 * we can follow the address down to the the page and take a ref on it. 962 * This function need to be called with interrupts disabled. We use this variant 963 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1 964 */ 965 966 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, 967 unsigned *shift) 968 { 969 pgd_t pgd, *pgdp; 970 pud_t pud, *pudp; 971 pmd_t pmd, *pmdp; 972 pte_t *ret_pte; 973 hugepd_t *hpdp = NULL; 974 unsigned pdshift = PGDIR_SHIFT; 975 976 if (shift) 977 *shift = 0; 978 979 pgdp = pgdir + pgd_index(ea); 980 pgd = READ_ONCE(*pgdp); 981 /* 982 * Always operate on the local stack value. This make sure the 983 * value don't get updated by a parallel THP split/collapse, 984 * page fault or a page unmap. The return pte_t * is still not 985 * stable. So should be checked there for above conditions. 986 */ 987 if (pgd_none(pgd)) 988 return NULL; 989 else if (pgd_huge(pgd)) { 990 ret_pte = (pte_t *) pgdp; 991 goto out; 992 } else if (is_hugepd(__hugepd(pgd_val(pgd)))) 993 hpdp = (hugepd_t *)&pgd; 994 else { 995 /* 996 * Even if we end up with an unmap, the pgtable will not 997 * be freed, because we do an rcu free and here we are 998 * irq disabled 999 */ 1000 pdshift = PUD_SHIFT; 1001 pudp = pud_offset(&pgd, ea); 1002 pud = READ_ONCE(*pudp); 1003 1004 if (pud_none(pud)) 1005 return NULL; 1006 else if (pud_huge(pud)) { 1007 ret_pte = (pte_t *) pudp; 1008 goto out; 1009 } else if (is_hugepd(__hugepd(pud_val(pud)))) 1010 hpdp = (hugepd_t *)&pud; 1011 else { 1012 pdshift = PMD_SHIFT; 1013 pmdp = pmd_offset(&pud, ea); 1014 pmd = READ_ONCE(*pmdp); 1015 /* 1016 * A hugepage collapse is captured by pmd_none, because 1017 * it mark the pmd none and do a hpte invalidate. 1018 * 1019 * We don't worry about pmd_trans_splitting here, The 1020 * caller if it needs to handle the splitting case 1021 * should check for that. 1022 */ 1023 if (pmd_none(pmd)) 1024 return NULL; 1025 1026 if (pmd_huge(pmd) || pmd_large(pmd)) { 1027 ret_pte = (pte_t *) pmdp; 1028 goto out; 1029 } else if (is_hugepd(__hugepd(pmd_val(pmd)))) 1030 hpdp = (hugepd_t *)&pmd; 1031 else 1032 return pte_offset_kernel(&pmd, ea); 1033 } 1034 } 1035 if (!hpdp) 1036 return NULL; 1037 1038 ret_pte = hugepte_offset(*hpdp, ea, pdshift); 1039 pdshift = hugepd_shift(*hpdp); 1040 out: 1041 if (shift) 1042 *shift = pdshift; 1043 return ret_pte; 1044 } 1045 EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte); 1046 1047 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 1048 unsigned long end, int write, struct page **pages, int *nr) 1049 { 1050 unsigned long mask; 1051 unsigned long pte_end; 1052 struct page *head, *page, *tail; 1053 pte_t pte; 1054 int refs; 1055 1056 pte_end = (addr + sz) & ~(sz-1); 1057 if (pte_end < end) 1058 end = pte_end; 1059 1060 pte = READ_ONCE(*ptep); 1061 mask = _PAGE_PRESENT | _PAGE_USER; 1062 if (write) 1063 mask |= _PAGE_RW; 1064 1065 if ((pte_val(pte) & mask) != mask) 1066 return 0; 1067 1068 /* hugepages are never "special" */ 1069 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1070 1071 refs = 0; 1072 head = pte_page(pte); 1073 1074 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 1075 tail = page; 1076 do { 1077 VM_BUG_ON(compound_head(page) != head); 1078 pages[*nr] = page; 1079 (*nr)++; 1080 page++; 1081 refs++; 1082 } while (addr += PAGE_SIZE, addr != end); 1083 1084 if (!page_cache_add_speculative(head, refs)) { 1085 *nr -= refs; 1086 return 0; 1087 } 1088 1089 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1090 /* Could be optimized better */ 1091 *nr -= refs; 1092 while (refs--) 1093 put_page(head); 1094 return 0; 1095 } 1096 1097 /* 1098 * Any tail page need their mapcount reference taken before we 1099 * return. 1100 */ 1101 while (refs--) { 1102 if (PageTail(tail)) 1103 get_huge_page_tail(tail); 1104 tail++; 1105 } 1106 1107 return 1; 1108 } 1109