xref: /linux/arch/powerpc/mm/fault.c (revision fcab107abe1ab5be9dbe874baa722372da8f4f73)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Derived from "arch/i386/mm/fault.c"
7  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *
9  *  Modified by Cort Dougan and Paul Mackerras.
10  *
11  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12  */
13 
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/string_choices.h>
21 #include <linux/types.h>
22 #include <linux/pagemap.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/highmem.h>
28 #include <linux/extable.h>
29 #include <linux/kprobes.h>
30 #include <linux/kdebug.h>
31 #include <linux/perf_event.h>
32 #include <linux/ratelimit.h>
33 #include <linux/context_tracking.h>
34 #include <linux/hugetlb.h>
35 #include <linux/uaccess.h>
36 #include <linux/kfence.h>
37 #include <linux/pkeys.h>
38 
39 #include <asm/firmware.h>
40 #include <asm/interrupt.h>
41 #include <asm/page.h>
42 #include <asm/mmu.h>
43 #include <asm/mmu_context.h>
44 #include <asm/siginfo.h>
45 #include <asm/debug.h>
46 #include <asm/kup.h>
47 #include <asm/inst.h>
48 
49 
50 /*
51  * do_page_fault error handling helpers
52  */
53 
54 static int
55 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
56 {
57 	/*
58 	 * If we are in kernel mode, bail out with a SEGV, this will
59 	 * be caught by the assembly which will restore the non-volatile
60 	 * registers before calling bad_page_fault()
61 	 */
62 	if (!user_mode(regs))
63 		return SIGSEGV;
64 
65 	_exception(SIGSEGV, regs, si_code, address);
66 
67 	return 0;
68 }
69 
70 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
71 {
72 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
73 }
74 
75 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
76 		      struct mm_struct *mm, struct vm_area_struct *vma)
77 {
78 
79 	/*
80 	 * Something tried to access memory that isn't in our memory map..
81 	 * Fix it, but check if it's kernel or user first..
82 	 */
83 	if (mm)
84 		mmap_read_unlock(mm);
85 	else
86 		vma_end_read(vma);
87 
88 	return __bad_area_nosemaphore(regs, address, si_code);
89 }
90 
91 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
92 				    struct mm_struct *mm,
93 				    struct vm_area_struct *vma)
94 {
95 	int pkey;
96 
97 	/*
98 	 * We don't try to fetch the pkey from page table because reading
99 	 * page table without locking doesn't guarantee stable pte value.
100 	 * Hence the pkey value that we return to userspace can be different
101 	 * from the pkey that actually caused access error.
102 	 *
103 	 * It does *not* guarantee that the VMA we find here
104 	 * was the one that we faulted on.
105 	 *
106 	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
107 	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
108 	 * 3. T1   : faults...
109 	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
110 	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
111 	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
112 	 *	     faulted on a pte with its pkey=4.
113 	 */
114 	pkey = vma_pkey(vma);
115 
116 	if (mm)
117 		mmap_read_unlock(mm);
118 	else
119 		vma_end_read(vma);
120 
121 	/*
122 	 * If we are in kernel mode, bail out with a SEGV, this will
123 	 * be caught by the assembly which will restore the non-volatile
124 	 * registers before calling bad_page_fault()
125 	 */
126 	if (!user_mode(regs))
127 		return SIGSEGV;
128 
129 	_exception_pkey(regs, address, pkey);
130 
131 	return 0;
132 }
133 
134 static noinline int bad_access(struct pt_regs *regs, unsigned long address,
135 			       struct mm_struct *mm, struct vm_area_struct *vma)
136 {
137 	return __bad_area(regs, address, SEGV_ACCERR, mm, vma);
138 }
139 
140 static int do_sigbus(struct pt_regs *regs, unsigned long address,
141 		     vm_fault_t fault)
142 {
143 	if (!user_mode(regs))
144 		return SIGBUS;
145 
146 	current->thread.trap_nr = BUS_ADRERR;
147 #ifdef CONFIG_MEMORY_FAILURE
148 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
149 		unsigned int lsb = 0; /* shutup gcc */
150 
151 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
152 			current->comm, current->pid, address);
153 
154 		if (fault & VM_FAULT_HWPOISON_LARGE)
155 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
156 		if (fault & VM_FAULT_HWPOISON)
157 			lsb = PAGE_SHIFT;
158 
159 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
160 		return 0;
161 	}
162 
163 #endif
164 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
165 	return 0;
166 }
167 
168 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
169 				vm_fault_t fault)
170 {
171 	/*
172 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
173 	 * continue processing.
174 	 */
175 	if (fatal_signal_pending(current) && !user_mode(regs))
176 		return SIGKILL;
177 
178 	/* Out of memory */
179 	if (fault & VM_FAULT_OOM) {
180 		/*
181 		 * We ran out of memory, or some other thing happened to us that
182 		 * made us unable to handle the page fault gracefully.
183 		 */
184 		if (!user_mode(regs))
185 			return SIGSEGV;
186 		pagefault_out_of_memory();
187 	} else {
188 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
189 			     VM_FAULT_HWPOISON_LARGE))
190 			return do_sigbus(regs, addr, fault);
191 		else if (fault & VM_FAULT_SIGSEGV)
192 			return bad_area_nosemaphore(regs, addr);
193 		else
194 			BUG();
195 	}
196 	return 0;
197 }
198 
199 /* Is this a bad kernel fault ? */
200 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
201 			     unsigned long address, bool is_write)
202 {
203 	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
204 
205 	if (is_exec) {
206 		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
207 				    address >= TASK_SIZE ? "exec-protected" : "user",
208 				    address,
209 				    from_kuid(&init_user_ns, current_uid()));
210 
211 		// Kernel exec fault is always bad
212 		return true;
213 	}
214 
215 	// Kernel fault on kernel address is bad
216 	if (address >= TASK_SIZE)
217 		return true;
218 
219 	// Read/write fault blocked by KUAP is bad, it can never succeed.
220 	if (bad_kuap_fault(regs, address, is_write)) {
221 		pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
222 				    str_write_read(is_write), address,
223 				    from_kuid(&init_user_ns, current_uid()));
224 
225 		// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
226 		if (!search_exception_tables(regs->nip))
227 			return true;
228 
229 		// Read/write fault in a valid region (the exception table search passed
230 		// above), but blocked by KUAP is bad, it can never succeed.
231 		return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
232 	}
233 
234 	// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
235 	return false;
236 }
237 
238 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
239 			      struct vm_area_struct *vma)
240 {
241 	/*
242 	 * Make sure to check the VMA so that we do not perform
243 	 * faults just to hit a pkey fault as soon as we fill in a
244 	 * page. Only called for current mm, hence foreign == 0
245 	 */
246 	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
247 		return true;
248 
249 	return false;
250 }
251 
252 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
253 {
254 	/*
255 	 * Allow execution from readable areas if the MMU does not
256 	 * provide separate controls over reading and executing.
257 	 *
258 	 * Note: That code used to not be enabled for 4xx/BookE.
259 	 * It is now as I/D cache coherency for these is done at
260 	 * set_pte_at() time and I see no reason why the test
261 	 * below wouldn't be valid on those processors. This -may-
262 	 * break programs compiled with a really old ABI though.
263 	 */
264 	if (is_exec) {
265 		return !(vma->vm_flags & VM_EXEC) &&
266 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
267 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
268 	}
269 
270 	if (is_write) {
271 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
272 			return true;
273 		return false;
274 	}
275 
276 	/*
277 	 * VM_READ, VM_WRITE and VM_EXEC may imply read permissions, as
278 	 * defined in protection_map[].  In that case Read faults can only be
279 	 * caused by a PROT_NONE mapping. However a non exec access on a
280 	 * VM_EXEC only mapping is invalid anyway, so report it as such.
281 	 */
282 	if (unlikely(!vma_is_accessible(vma)))
283 		return true;
284 
285 	if ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)
286 		return true;
287 
288 	/*
289 	 * We should ideally do the vma pkey access check here. But in the
290 	 * fault path, handle_mm_fault() also does the same check. To avoid
291 	 * these multiple checks, we skip it here and handle access error due
292 	 * to pkeys later.
293 	 */
294 	return false;
295 }
296 
297 #ifdef CONFIG_PPC_SMLPAR
298 static inline void cmo_account_page_fault(void)
299 {
300 	if (firmware_has_feature(FW_FEATURE_CMO)) {
301 		u32 page_ins;
302 
303 		preempt_disable();
304 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
305 		page_ins += 1 << PAGE_FACTOR;
306 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
307 		preempt_enable();
308 	}
309 }
310 #else
311 static inline void cmo_account_page_fault(void) { }
312 #endif /* CONFIG_PPC_SMLPAR */
313 
314 static void sanity_check_fault(bool is_write, bool is_user,
315 			       unsigned long error_code, unsigned long address)
316 {
317 	/*
318 	 * Userspace trying to access kernel address, we get PROTFAULT for that.
319 	 */
320 	if (is_user && address >= TASK_SIZE) {
321 		if ((long)address == -1)
322 			return;
323 
324 		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
325 				   current->comm, current->pid, address,
326 				   from_kuid(&init_user_ns, current_uid()));
327 		return;
328 	}
329 
330 	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
331 		return;
332 
333 	/*
334 	 * For hash translation mode, we should never get a
335 	 * PROTFAULT. Any update to pte to reduce access will result in us
336 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
337 	 * fault instead of DSISR_PROTFAULT.
338 	 *
339 	 * A pte update to relax the access will not result in a hash page table
340 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
341 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
342 	 * the special !is_write in the below conditional.
343 	 *
344 	 * For platforms that doesn't supports coherent icache and do support
345 	 * per page noexec bit, we do setup things such that we do the
346 	 * sync between D/I cache via fault. But that is handled via low level
347 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
348 	 * here in such case.
349 	 *
350 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
351 	 * check should handle those and hence we should fall to the bad_area
352 	 * handling correctly.
353 	 *
354 	 * For embedded with per page exec support that doesn't support coherent
355 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
356 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
357 	 * is conditional for server MMU.
358 	 *
359 	 * For radix, we can get prot fault for autonuma case, because radix
360 	 * page table will have them marked noaccess for user.
361 	 */
362 	if (radix_enabled() || is_write)
363 		return;
364 
365 	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
366 }
367 
368 /*
369  * Define the correct "is_write" bit in error_code based
370  * on the processor family
371  */
372 #ifdef CONFIG_BOOKE
373 #define page_fault_is_write(__err)	((__err) & ESR_DST)
374 #else
375 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
376 #endif
377 
378 #ifdef CONFIG_BOOKE
379 #define page_fault_is_bad(__err)	(0)
380 #elif defined(CONFIG_PPC_8xx)
381 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
382 #elif defined(CONFIG_PPC64)
383 static int page_fault_is_bad(unsigned long err)
384 {
385 	unsigned long flag = DSISR_BAD_FAULT_64S;
386 
387 	/*
388 	 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
389 	 * If byte 0, bit 3 of pi-attribute-specifier-type in
390 	 * ibm,pi-features property is defined, ignore the DSI error
391 	 * which is caused by the paste instruction on the
392 	 * suspended NX window.
393 	 */
394 	if (mmu_has_feature(MMU_FTR_NX_DSI))
395 		flag &= ~DSISR_BAD_COPYPASTE;
396 
397 	return err & flag;
398 }
399 #else
400 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
401 #endif
402 
403 /*
404  * For 600- and 800-family processors, the error_code parameter is DSISR
405  * for a data fault, SRR1 for an instruction fault.
406  * For 400-family processors the error_code parameter is ESR for a data fault,
407  * 0 for an instruction fault.
408  * For 64-bit processors, the error_code parameter is DSISR for a data access
409  * fault, SRR1 & 0x08000000 for an instruction access fault.
410  *
411  * The return value is 0 if the fault was handled, or the signal
412  * number if this is a kernel fault that can't be handled here.
413  */
414 static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
415 			   unsigned long error_code)
416 {
417 	struct vm_area_struct * vma;
418 	struct mm_struct *mm = current->mm;
419 	unsigned int flags = FAULT_FLAG_DEFAULT;
420 	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
421 	int is_user = user_mode(regs);
422 	int is_write = page_fault_is_write(error_code);
423 	vm_fault_t fault, major = 0;
424 	bool kprobe_fault = kprobe_page_fault(regs, 11);
425 
426 	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
427 		return 0;
428 
429 	if (unlikely(page_fault_is_bad(error_code))) {
430 		if (is_user) {
431 			_exception(SIGBUS, regs, BUS_OBJERR, address);
432 			return 0;
433 		}
434 		return SIGBUS;
435 	}
436 
437 	/* Additional sanity check(s) */
438 	sanity_check_fault(is_write, is_user, error_code, address);
439 
440 	/*
441 	 * The kernel should never take an execute fault nor should it
442 	 * take a page fault to a kernel address or a page fault to a user
443 	 * address outside of dedicated places.
444 	 *
445 	 * Rather than kfence directly reporting false negatives, search whether
446 	 * the NIP belongs to the fixup table for cases where fault could come
447 	 * from functions like copy_from_kernel_nofault().
448 	 */
449 	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
450 		if (is_kfence_address((void *)address) &&
451 		    !search_exception_tables(instruction_pointer(regs)) &&
452 		    kfence_handle_page_fault(address, is_write, regs))
453 			return 0;
454 
455 		return SIGSEGV;
456 	}
457 
458 	/*
459 	 * If we're in an interrupt, have no user context or are running
460 	 * in a region with pagefaults disabled then we must not take the fault
461 	 */
462 	if (unlikely(faulthandler_disabled() || !mm)) {
463 		if (is_user)
464 			printk_ratelimited(KERN_ERR "Page fault in user mode"
465 					   " with faulthandler_disabled()=%d"
466 					   " mm=%p\n",
467 					   faulthandler_disabled(), mm);
468 		return bad_area_nosemaphore(regs, address);
469 	}
470 
471 	interrupt_cond_local_irq_enable(regs);
472 
473 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
474 
475 	/*
476 	 * We want to do this outside mmap_lock, because reading code around nip
477 	 * can result in fault, which will cause a deadlock when called with
478 	 * mmap_lock held
479 	 */
480 	if (is_user)
481 		flags |= FAULT_FLAG_USER;
482 	if (is_write)
483 		flags |= FAULT_FLAG_WRITE;
484 	if (is_exec)
485 		flags |= FAULT_FLAG_INSTRUCTION;
486 
487 	if (!(flags & FAULT_FLAG_USER))
488 		goto lock_mmap;
489 
490 	vma = lock_vma_under_rcu(mm, address);
491 	if (!vma)
492 		goto lock_mmap;
493 
494 	if (unlikely(access_pkey_error(is_write, is_exec,
495 				       (error_code & DSISR_KEYFAULT), vma))) {
496 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
497 		return bad_access_pkey(regs, address, NULL, vma);
498 	}
499 
500 	if (unlikely(access_error(is_write, is_exec, vma))) {
501 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
502 		return bad_access(regs, address, NULL, vma);
503 	}
504 
505 	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
506 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
507 		vma_end_read(vma);
508 
509 	if (!(fault & VM_FAULT_RETRY)) {
510 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
511 		goto done;
512 	}
513 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
514 	if (fault & VM_FAULT_MAJOR)
515 		flags |= FAULT_FLAG_TRIED;
516 
517 	if (fault_signal_pending(fault, regs))
518 		return user_mode(regs) ? 0 : SIGBUS;
519 
520 lock_mmap:
521 
522 	/* When running in the kernel we expect faults to occur only to
523 	 * addresses in user space.  All other faults represent errors in the
524 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
525 	 * erroneous fault occurring in a code path which already holds mmap_lock
526 	 * we will deadlock attempting to validate the fault against the
527 	 * address space.  Luckily the kernel only validly references user
528 	 * space from well defined areas of code, which are listed in the
529 	 * exceptions table. lock_mm_and_find_vma() handles that logic.
530 	 */
531 retry:
532 	vma = lock_mm_and_find_vma(mm, address, regs);
533 	if (unlikely(!vma))
534 		return bad_area_nosemaphore(regs, address);
535 
536 	if (unlikely(access_pkey_error(is_write, is_exec,
537 				       (error_code & DSISR_KEYFAULT), vma)))
538 		return bad_access_pkey(regs, address, mm, vma);
539 
540 	if (unlikely(access_error(is_write, is_exec, vma)))
541 		return bad_access(regs, address, mm, vma);
542 
543 	/*
544 	 * If for any reason at all we couldn't handle the fault,
545 	 * make sure we exit gracefully rather than endlessly redo
546 	 * the fault.
547 	 */
548 	fault = handle_mm_fault(vma, address, flags, regs);
549 
550 	major |= fault & VM_FAULT_MAJOR;
551 
552 	if (fault_signal_pending(fault, regs))
553 		return user_mode(regs) ? 0 : SIGBUS;
554 
555 	/* The fault is fully completed (including releasing mmap lock) */
556 	if (fault & VM_FAULT_COMPLETED)
557 		goto out;
558 
559 	/*
560 	 * Handle the retry right now, the mmap_lock has been released in that
561 	 * case.
562 	 */
563 	if (unlikely(fault & VM_FAULT_RETRY)) {
564 		flags |= FAULT_FLAG_TRIED;
565 		goto retry;
566 	}
567 
568 	mmap_read_unlock(current->mm);
569 
570 done:
571 	if (unlikely(fault & VM_FAULT_ERROR))
572 		return mm_fault_error(regs, address, fault);
573 
574 out:
575 	/*
576 	 * Major/minor page fault accounting.
577 	 */
578 	if (major)
579 		cmo_account_page_fault();
580 
581 	return 0;
582 }
583 NOKPROBE_SYMBOL(___do_page_fault);
584 
585 static __always_inline void __do_page_fault(struct pt_regs *regs)
586 {
587 	long err;
588 
589 	err = ___do_page_fault(regs, regs->dar, regs->dsisr);
590 	if (unlikely(err))
591 		bad_page_fault(regs, err);
592 }
593 
594 DEFINE_INTERRUPT_HANDLER(do_page_fault)
595 {
596 	__do_page_fault(regs);
597 }
598 
599 #ifdef CONFIG_PPC_BOOK3S_64
600 /* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
601 void hash__do_page_fault(struct pt_regs *regs)
602 {
603 	__do_page_fault(regs);
604 }
605 NOKPROBE_SYMBOL(hash__do_page_fault);
606 #endif
607 
608 /*
609  * bad_page_fault is called when we have a bad access from the kernel.
610  * It is called from the DSI and ISI handlers in head.S and from some
611  * of the procedures in traps.c.
612  */
613 static void __bad_page_fault(struct pt_regs *regs, int sig)
614 {
615 	int is_write = page_fault_is_write(regs->dsisr);
616 	const char *msg;
617 
618 	/* kernel has accessed a bad area */
619 
620 	if (regs->dar < PAGE_SIZE)
621 		msg = "Kernel NULL pointer dereference";
622 	else
623 		msg = "Unable to handle kernel data access";
624 
625 	switch (TRAP(regs)) {
626 	case INTERRUPT_DATA_STORAGE:
627 	case INTERRUPT_H_DATA_STORAGE:
628 		pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
629 			 str_write_read(is_write), regs->dar);
630 		break;
631 	case INTERRUPT_DATA_SEGMENT:
632 		pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
633 		break;
634 	case INTERRUPT_INST_STORAGE:
635 	case INTERRUPT_INST_SEGMENT:
636 		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
637 			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
638 		break;
639 	case INTERRUPT_ALIGNMENT:
640 		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
641 			 regs->dar);
642 		break;
643 	default:
644 		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
645 			 regs->dar);
646 		break;
647 	}
648 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
649 		regs->nip);
650 
651 	if (task_stack_end_corrupted(current))
652 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
653 
654 	die("Kernel access of bad area", regs, sig);
655 }
656 
657 void bad_page_fault(struct pt_regs *regs, int sig)
658 {
659 	const struct exception_table_entry *entry;
660 
661 	/* Are we prepared to handle this fault?  */
662 	entry = search_exception_tables(instruction_pointer(regs));
663 	if (entry)
664 		instruction_pointer_set(regs, extable_fixup(entry));
665 	else
666 		__bad_page_fault(regs, sig);
667 }
668 
669 #ifdef CONFIG_PPC_BOOK3S_64
670 DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
671 {
672 	bad_page_fault(regs, SIGSEGV);
673 }
674 
675 /*
676  * In radix, segment interrupts indicate the EA is not addressable by the
677  * page table geometry, so they are always sent here.
678  *
679  * In hash, this is called if do_slb_fault returns error. Typically it is
680  * because the EA was outside the region allowed by software.
681  */
682 DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
683 {
684 	int err = regs->result;
685 
686 	if (err == -EFAULT) {
687 		if (user_mode(regs))
688 			_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
689 		else
690 			bad_page_fault(regs, SIGSEGV);
691 	} else if (err == -EINVAL) {
692 		unrecoverable_exception(regs);
693 	} else {
694 		BUG();
695 	}
696 }
697 #endif
698