xref: /linux/arch/powerpc/mm/fault.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/config.h>
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/ptrace.h>
26 #include <linux/mman.h>
27 #include <linux/mm.h>
28 #include <linux/interrupt.h>
29 #include <linux/highmem.h>
30 #include <linux/module.h>
31 #include <linux/kprobes.h>
32 
33 #include <asm/page.h>
34 #include <asm/pgtable.h>
35 #include <asm/mmu.h>
36 #include <asm/mmu_context.h>
37 #include <asm/system.h>
38 #include <asm/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/kdebug.h>
41 #include <asm/siginfo.h>
42 
43 /*
44  * Check whether the instruction at regs->nip is a store using
45  * an update addressing form which will update r1.
46  */
47 static int store_updates_sp(struct pt_regs *regs)
48 {
49 	unsigned int inst;
50 
51 	if (get_user(inst, (unsigned int __user *)regs->nip))
52 		return 0;
53 	/* check for 1 in the rA field */
54 	if (((inst >> 16) & 0x1f) != 1)
55 		return 0;
56 	/* check major opcode */
57 	switch (inst >> 26) {
58 	case 37:	/* stwu */
59 	case 39:	/* stbu */
60 	case 45:	/* sthu */
61 	case 53:	/* stfsu */
62 	case 55:	/* stfdu */
63 		return 1;
64 	case 62:	/* std or stdu */
65 		return (inst & 3) == 1;
66 	case 31:
67 		/* check minor opcode */
68 		switch ((inst >> 1) & 0x3ff) {
69 		case 181:	/* stdux */
70 		case 183:	/* stwux */
71 		case 247:	/* stbux */
72 		case 439:	/* sthux */
73 		case 695:	/* stfsux */
74 		case 759:	/* stfdux */
75 			return 1;
76 		}
77 	}
78 	return 0;
79 }
80 
81 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
82 static void do_dabr(struct pt_regs *regs, unsigned long address,
83 		    unsigned long error_code)
84 {
85 	siginfo_t info;
86 
87 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
88 			11, SIGSEGV) == NOTIFY_STOP)
89 		return;
90 
91 	if (debugger_dabr_match(regs))
92 		return;
93 
94 	/* Clear the DABR */
95 	set_dabr(0);
96 
97 	/* Deliver the signal to userspace */
98 	info.si_signo = SIGTRAP;
99 	info.si_errno = 0;
100 	info.si_code = TRAP_HWBKPT;
101 	info.si_addr = (void __user *)address;
102 	force_sig_info(SIGTRAP, &info, current);
103 }
104 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
105 
106 /*
107  * For 600- and 800-family processors, the error_code parameter is DSISR
108  * for a data fault, SRR1 for an instruction fault. For 400-family processors
109  * the error_code parameter is ESR for a data fault, 0 for an instruction
110  * fault.
111  * For 64-bit processors, the error_code parameter is
112  *  - DSISR for a non-SLB data access fault,
113  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
114  *  - 0 any SLB fault.
115  *
116  * The return value is 0 if the fault was handled, or the signal
117  * number if this is a kernel fault that can't be handled here.
118  */
119 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
120 			    unsigned long error_code)
121 {
122 	struct vm_area_struct * vma;
123 	struct mm_struct *mm = current->mm;
124 	siginfo_t info;
125 	int code = SEGV_MAPERR;
126 	int is_write = 0;
127 	int trap = TRAP(regs);
128  	int is_exec = trap == 0x400;
129 
130 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
131 	/*
132 	 * Fortunately the bit assignments in SRR1 for an instruction
133 	 * fault and DSISR for a data fault are mostly the same for the
134 	 * bits we are interested in.  But there are some bits which
135 	 * indicate errors in DSISR but can validly be set in SRR1.
136 	 */
137 	if (trap == 0x400)
138 		error_code &= 0x48200000;
139 	else
140 		is_write = error_code & DSISR_ISSTORE;
141 #else
142 	is_write = error_code & ESR_DST;
143 #endif /* CONFIG_4xx || CONFIG_BOOKE */
144 
145 	if (notify_die(DIE_PAGE_FAULT, "page_fault", regs, error_code,
146 				11, SIGSEGV) == NOTIFY_STOP)
147 		return 0;
148 
149 	if (trap == 0x300) {
150 		if (debugger_fault_handler(regs))
151 			return 0;
152 	}
153 
154 	/* On a kernel SLB miss we can only check for a valid exception entry */
155 	if (!user_mode(regs) && (address >= TASK_SIZE))
156 		return SIGSEGV;
157 
158 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
159   	if (error_code & DSISR_DABRMATCH) {
160 		/* DABR match */
161 		do_dabr(regs, address, error_code);
162 		return 0;
163 	}
164 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
165 
166 	if (in_atomic() || mm == NULL) {
167 		if (!user_mode(regs))
168 			return SIGSEGV;
169 		/* in_atomic() in user mode is really bad,
170 		   as is current->mm == NULL. */
171 		printk(KERN_EMERG "Page fault in user mode with"
172 		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
173 		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
174 		       regs->nip, regs->msr);
175 		die("Weird page fault", regs, SIGSEGV);
176 	}
177 
178 	/* When running in the kernel we expect faults to occur only to
179 	 * addresses in user space.  All other faults represent errors in the
180 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
181 	 * erroneous fault occurring in a code path which already holds mmap_sem
182 	 * we will deadlock attempting to validate the fault against the
183 	 * address space.  Luckily the kernel only validly references user
184 	 * space from well defined areas of code, which are listed in the
185 	 * exceptions table.
186 	 *
187 	 * As the vast majority of faults will be valid we will only perform
188 	 * the source reference check when there is a possibility of a deadlock.
189 	 * Attempt to lock the address space, if we cannot we then validate the
190 	 * source.  If this is invalid we can skip the address space check,
191 	 * thus avoiding the deadlock.
192 	 */
193 	if (!down_read_trylock(&mm->mmap_sem)) {
194 		if (!user_mode(regs) && !search_exception_tables(regs->nip))
195 			goto bad_area_nosemaphore;
196 
197 		down_read(&mm->mmap_sem);
198 	}
199 
200 	vma = find_vma(mm, address);
201 	if (!vma)
202 		goto bad_area;
203 	if (vma->vm_start <= address)
204 		goto good_area;
205 	if (!(vma->vm_flags & VM_GROWSDOWN))
206 		goto bad_area;
207 
208 	/*
209 	 * N.B. The POWER/Open ABI allows programs to access up to
210 	 * 288 bytes below the stack pointer.
211 	 * The kernel signal delivery code writes up to about 1.5kB
212 	 * below the stack pointer (r1) before decrementing it.
213 	 * The exec code can write slightly over 640kB to the stack
214 	 * before setting the user r1.  Thus we allow the stack to
215 	 * expand to 1MB without further checks.
216 	 */
217 	if (address + 0x100000 < vma->vm_end) {
218 		/* get user regs even if this fault is in kernel mode */
219 		struct pt_regs *uregs = current->thread.regs;
220 		if (uregs == NULL)
221 			goto bad_area;
222 
223 		/*
224 		 * A user-mode access to an address a long way below
225 		 * the stack pointer is only valid if the instruction
226 		 * is one which would update the stack pointer to the
227 		 * address accessed if the instruction completed,
228 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
229 		 * (or the byte, halfword, float or double forms).
230 		 *
231 		 * If we don't check this then any write to the area
232 		 * between the last mapped region and the stack will
233 		 * expand the stack rather than segfaulting.
234 		 */
235 		if (address + 2048 < uregs->gpr[1]
236 		    && (!user_mode(regs) || !store_updates_sp(regs)))
237 			goto bad_area;
238 	}
239 	if (expand_stack(vma, address))
240 		goto bad_area;
241 
242 good_area:
243 	code = SEGV_ACCERR;
244 #if defined(CONFIG_6xx)
245 	if (error_code & 0x95700000)
246 		/* an error such as lwarx to I/O controller space,
247 		   address matching DABR, eciwx, etc. */
248 		goto bad_area;
249 #endif /* CONFIG_6xx */
250 #if defined(CONFIG_8xx)
251         /* The MPC8xx seems to always set 0x80000000, which is
252          * "undefined".  Of those that can be set, this is the only
253          * one which seems bad.
254          */
255 	if (error_code & 0x10000000)
256                 /* Guarded storage error. */
257 		goto bad_area;
258 #endif /* CONFIG_8xx */
259 
260 	if (is_exec) {
261 #ifdef CONFIG_PPC64
262 		/* protection fault */
263 		if (error_code & DSISR_PROTFAULT)
264 			goto bad_area;
265 		if (!(vma->vm_flags & VM_EXEC))
266 			goto bad_area;
267 #endif
268 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
269 		pte_t *ptep;
270 		pmd_t *pmdp;
271 
272 		/* Since 4xx/Book-E supports per-page execute permission,
273 		 * we lazily flush dcache to icache. */
274 		ptep = NULL;
275 		if (get_pteptr(mm, address, &ptep, &pmdp)) {
276 			spinlock_t *ptl = pte_lockptr(mm, pmdp);
277 			spin_lock(ptl);
278 			if (pte_present(*ptep)) {
279 				struct page *page = pte_page(*ptep);
280 
281 				if (!test_bit(PG_arch_1, &page->flags)) {
282 					flush_dcache_icache_page(page);
283 					set_bit(PG_arch_1, &page->flags);
284 				}
285 				pte_update(ptep, 0, _PAGE_HWEXEC);
286 				_tlbie(address);
287 				pte_unmap_unlock(ptep, ptl);
288 				up_read(&mm->mmap_sem);
289 				return 0;
290 			}
291 			pte_unmap_unlock(ptep, ptl);
292 		}
293 #endif
294 	/* a write */
295 	} else if (is_write) {
296 		if (!(vma->vm_flags & VM_WRITE))
297 			goto bad_area;
298 	/* a read */
299 	} else {
300 		/* protection fault */
301 		if (error_code & 0x08000000)
302 			goto bad_area;
303 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
304 			goto bad_area;
305 	}
306 
307 	/*
308 	 * If for any reason at all we couldn't handle the fault,
309 	 * make sure we exit gracefully rather than endlessly redo
310 	 * the fault.
311 	 */
312  survive:
313 	switch (handle_mm_fault(mm, vma, address, is_write)) {
314 
315 	case VM_FAULT_MINOR:
316 		current->min_flt++;
317 		break;
318 	case VM_FAULT_MAJOR:
319 		current->maj_flt++;
320 		break;
321 	case VM_FAULT_SIGBUS:
322 		goto do_sigbus;
323 	case VM_FAULT_OOM:
324 		goto out_of_memory;
325 	default:
326 		BUG();
327 	}
328 
329 	up_read(&mm->mmap_sem);
330 	return 0;
331 
332 bad_area:
333 	up_read(&mm->mmap_sem);
334 
335 bad_area_nosemaphore:
336 	/* User mode accesses cause a SIGSEGV */
337 	if (user_mode(regs)) {
338 		_exception(SIGSEGV, regs, code, address);
339 		return 0;
340 	}
341 
342 	if (is_exec && (error_code & DSISR_PROTFAULT)
343 	    && printk_ratelimit())
344 		printk(KERN_CRIT "kernel tried to execute NX-protected"
345 		       " page (%lx) - exploit attempt? (uid: %d)\n",
346 		       address, current->uid);
347 
348 	return SIGSEGV;
349 
350 /*
351  * We ran out of memory, or some other thing happened to us that made
352  * us unable to handle the page fault gracefully.
353  */
354 out_of_memory:
355 	up_read(&mm->mmap_sem);
356 	if (current->pid == 1) {
357 		yield();
358 		down_read(&mm->mmap_sem);
359 		goto survive;
360 	}
361 	printk("VM: killing process %s\n", current->comm);
362 	if (user_mode(regs))
363 		do_exit(SIGKILL);
364 	return SIGKILL;
365 
366 do_sigbus:
367 	up_read(&mm->mmap_sem);
368 	if (user_mode(regs)) {
369 		info.si_signo = SIGBUS;
370 		info.si_errno = 0;
371 		info.si_code = BUS_ADRERR;
372 		info.si_addr = (void __user *)address;
373 		force_sig_info(SIGBUS, &info, current);
374 		return 0;
375 	}
376 	return SIGBUS;
377 }
378 
379 /*
380  * bad_page_fault is called when we have a bad access from the kernel.
381  * It is called from the DSI and ISI handlers in head.S and from some
382  * of the procedures in traps.c.
383  */
384 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
385 {
386 	const struct exception_table_entry *entry;
387 
388 	/* Are we prepared to handle this fault?  */
389 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
390 		regs->nip = entry->fixup;
391 		return;
392 	}
393 
394 	/* kernel has accessed a bad area */
395 
396 	printk(KERN_ALERT "Unable to handle kernel paging request for ");
397 	switch (regs->trap) {
398 		case 0x300:
399 		case 0x380:
400 			printk("data at address 0x%08lx\n", regs->dar);
401 			break;
402 		case 0x400:
403 		case 0x480:
404 			printk("instruction fetch\n");
405 			break;
406 		default:
407 			printk("unknown fault\n");
408 	}
409 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
410 		regs->nip);
411 
412 	die("Kernel access of bad area", regs, sig);
413 }
414