1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC version 4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 5 * 6 * Derived from "arch/i386/mm/fault.c" 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * 9 * Modified by Cort Dougan and Paul Mackerras. 10 * 11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) 12 */ 13 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/errno.h> 19 #include <linux/string.h> 20 #include <linux/types.h> 21 #include <linux/pagemap.h> 22 #include <linux/ptrace.h> 23 #include <linux/mman.h> 24 #include <linux/mm.h> 25 #include <linux/interrupt.h> 26 #include <linux/highmem.h> 27 #include <linux/extable.h> 28 #include <linux/kprobes.h> 29 #include <linux/kdebug.h> 30 #include <linux/perf_event.h> 31 #include <linux/ratelimit.h> 32 #include <linux/context_tracking.h> 33 #include <linux/hugetlb.h> 34 #include <linux/uaccess.h> 35 36 #include <asm/firmware.h> 37 #include <asm/page.h> 38 #include <asm/pgtable.h> 39 #include <asm/mmu.h> 40 #include <asm/mmu_context.h> 41 #include <asm/siginfo.h> 42 #include <asm/debug.h> 43 #include <asm/kup.h> 44 45 static inline bool notify_page_fault(struct pt_regs *regs) 46 { 47 bool ret = false; 48 49 #ifdef CONFIG_KPROBES 50 /* kprobe_running() needs smp_processor_id() */ 51 if (!user_mode(regs)) { 52 preempt_disable(); 53 if (kprobe_running() && kprobe_fault_handler(regs, 11)) 54 ret = true; 55 preempt_enable(); 56 } 57 #endif /* CONFIG_KPROBES */ 58 59 if (unlikely(debugger_fault_handler(regs))) 60 ret = true; 61 62 return ret; 63 } 64 65 /* 66 * Check whether the instruction inst is a store using 67 * an update addressing form which will update r1. 68 */ 69 static bool store_updates_sp(unsigned int inst) 70 { 71 /* check for 1 in the rA field */ 72 if (((inst >> 16) & 0x1f) != 1) 73 return false; 74 /* check major opcode */ 75 switch (inst >> 26) { 76 case OP_STWU: 77 case OP_STBU: 78 case OP_STHU: 79 case OP_STFSU: 80 case OP_STFDU: 81 return true; 82 case OP_STD: /* std or stdu */ 83 return (inst & 3) == 1; 84 case OP_31: 85 /* check minor opcode */ 86 switch ((inst >> 1) & 0x3ff) { 87 case OP_31_XOP_STDUX: 88 case OP_31_XOP_STWUX: 89 case OP_31_XOP_STBUX: 90 case OP_31_XOP_STHUX: 91 case OP_31_XOP_STFSUX: 92 case OP_31_XOP_STFDUX: 93 return true; 94 } 95 } 96 return false; 97 } 98 /* 99 * do_page_fault error handling helpers 100 */ 101 102 static int 103 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code) 104 { 105 /* 106 * If we are in kernel mode, bail out with a SEGV, this will 107 * be caught by the assembly which will restore the non-volatile 108 * registers before calling bad_page_fault() 109 */ 110 if (!user_mode(regs)) 111 return SIGSEGV; 112 113 _exception(SIGSEGV, regs, si_code, address); 114 115 return 0; 116 } 117 118 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address) 119 { 120 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR); 121 } 122 123 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code) 124 { 125 struct mm_struct *mm = current->mm; 126 127 /* 128 * Something tried to access memory that isn't in our memory map.. 129 * Fix it, but check if it's kernel or user first.. 130 */ 131 up_read(&mm->mmap_sem); 132 133 return __bad_area_nosemaphore(regs, address, si_code); 134 } 135 136 static noinline int bad_area(struct pt_regs *regs, unsigned long address) 137 { 138 return __bad_area(regs, address, SEGV_MAPERR); 139 } 140 141 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address, 142 int pkey) 143 { 144 /* 145 * If we are in kernel mode, bail out with a SEGV, this will 146 * be caught by the assembly which will restore the non-volatile 147 * registers before calling bad_page_fault() 148 */ 149 if (!user_mode(regs)) 150 return SIGSEGV; 151 152 _exception_pkey(regs, address, pkey); 153 154 return 0; 155 } 156 157 static noinline int bad_access(struct pt_regs *regs, unsigned long address) 158 { 159 return __bad_area(regs, address, SEGV_ACCERR); 160 } 161 162 static int do_sigbus(struct pt_regs *regs, unsigned long address, 163 vm_fault_t fault) 164 { 165 if (!user_mode(regs)) 166 return SIGBUS; 167 168 current->thread.trap_nr = BUS_ADRERR; 169 #ifdef CONFIG_MEMORY_FAILURE 170 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 171 unsigned int lsb = 0; /* shutup gcc */ 172 173 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 174 current->comm, current->pid, address); 175 176 if (fault & VM_FAULT_HWPOISON_LARGE) 177 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 178 if (fault & VM_FAULT_HWPOISON) 179 lsb = PAGE_SHIFT; 180 181 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, 182 current); 183 return 0; 184 } 185 186 #endif 187 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address, current); 188 return 0; 189 } 190 191 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, 192 vm_fault_t fault) 193 { 194 /* 195 * Kernel page fault interrupted by SIGKILL. We have no reason to 196 * continue processing. 197 */ 198 if (fatal_signal_pending(current) && !user_mode(regs)) 199 return SIGKILL; 200 201 /* Out of memory */ 202 if (fault & VM_FAULT_OOM) { 203 /* 204 * We ran out of memory, or some other thing happened to us that 205 * made us unable to handle the page fault gracefully. 206 */ 207 if (!user_mode(regs)) 208 return SIGSEGV; 209 pagefault_out_of_memory(); 210 } else { 211 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 212 VM_FAULT_HWPOISON_LARGE)) 213 return do_sigbus(regs, addr, fault); 214 else if (fault & VM_FAULT_SIGSEGV) 215 return bad_area_nosemaphore(regs, addr); 216 else 217 BUG(); 218 } 219 return 0; 220 } 221 222 /* Is this a bad kernel fault ? */ 223 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code, 224 unsigned long address, bool is_write) 225 { 226 int is_exec = TRAP(regs) == 0x400; 227 228 /* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */ 229 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT | 230 DSISR_PROTFAULT))) { 231 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n", 232 address >= TASK_SIZE ? "exec-protected" : "user", 233 address, 234 from_kuid(&init_user_ns, current_uid())); 235 236 // Kernel exec fault is always bad 237 return true; 238 } 239 240 if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) && 241 !search_exception_tables(regs->nip)) { 242 pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n", 243 address, 244 from_kuid(&init_user_ns, current_uid())); 245 } 246 247 // Kernel fault on kernel address is bad 248 if (address >= TASK_SIZE) 249 return true; 250 251 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad 252 if (!search_exception_tables(regs->nip)) 253 return true; 254 255 // Read/write fault in a valid region (the exception table search passed 256 // above), but blocked by KUAP is bad, it can never succeed. 257 if (bad_kuap_fault(regs, is_write)) 258 return true; 259 260 // What's left? Kernel fault on user in well defined regions (extable 261 // matched), and allowed by KUAP in the faulting context. 262 return false; 263 } 264 265 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address, 266 struct vm_area_struct *vma, unsigned int flags, 267 bool *must_retry) 268 { 269 /* 270 * N.B. The POWER/Open ABI allows programs to access up to 271 * 288 bytes below the stack pointer. 272 * The kernel signal delivery code writes up to about 1.5kB 273 * below the stack pointer (r1) before decrementing it. 274 * The exec code can write slightly over 640kB to the stack 275 * before setting the user r1. Thus we allow the stack to 276 * expand to 1MB without further checks. 277 */ 278 if (address + 0x100000 < vma->vm_end) { 279 unsigned int __user *nip = (unsigned int __user *)regs->nip; 280 /* get user regs even if this fault is in kernel mode */ 281 struct pt_regs *uregs = current->thread.regs; 282 if (uregs == NULL) 283 return true; 284 285 /* 286 * A user-mode access to an address a long way below 287 * the stack pointer is only valid if the instruction 288 * is one which would update the stack pointer to the 289 * address accessed if the instruction completed, 290 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb 291 * (or the byte, halfword, float or double forms). 292 * 293 * If we don't check this then any write to the area 294 * between the last mapped region and the stack will 295 * expand the stack rather than segfaulting. 296 */ 297 if (address + 2048 >= uregs->gpr[1]) 298 return false; 299 300 if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) && 301 access_ok(nip, sizeof(*nip))) { 302 unsigned int inst; 303 int res; 304 305 pagefault_disable(); 306 res = __get_user_inatomic(inst, nip); 307 pagefault_enable(); 308 if (!res) 309 return !store_updates_sp(inst); 310 *must_retry = true; 311 } 312 return true; 313 } 314 return false; 315 } 316 317 static bool access_error(bool is_write, bool is_exec, 318 struct vm_area_struct *vma) 319 { 320 /* 321 * Allow execution from readable areas if the MMU does not 322 * provide separate controls over reading and executing. 323 * 324 * Note: That code used to not be enabled for 4xx/BookE. 325 * It is now as I/D cache coherency for these is done at 326 * set_pte_at() time and I see no reason why the test 327 * below wouldn't be valid on those processors. This -may- 328 * break programs compiled with a really old ABI though. 329 */ 330 if (is_exec) { 331 return !(vma->vm_flags & VM_EXEC) && 332 (cpu_has_feature(CPU_FTR_NOEXECUTE) || 333 !(vma->vm_flags & (VM_READ | VM_WRITE))); 334 } 335 336 if (is_write) { 337 if (unlikely(!(vma->vm_flags & VM_WRITE))) 338 return true; 339 return false; 340 } 341 342 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))) 343 return true; 344 /* 345 * We should ideally do the vma pkey access check here. But in the 346 * fault path, handle_mm_fault() also does the same check. To avoid 347 * these multiple checks, we skip it here and handle access error due 348 * to pkeys later. 349 */ 350 return false; 351 } 352 353 #ifdef CONFIG_PPC_SMLPAR 354 static inline void cmo_account_page_fault(void) 355 { 356 if (firmware_has_feature(FW_FEATURE_CMO)) { 357 u32 page_ins; 358 359 preempt_disable(); 360 page_ins = be32_to_cpu(get_lppaca()->page_ins); 361 page_ins += 1 << PAGE_FACTOR; 362 get_lppaca()->page_ins = cpu_to_be32(page_ins); 363 preempt_enable(); 364 } 365 } 366 #else 367 static inline void cmo_account_page_fault(void) { } 368 #endif /* CONFIG_PPC_SMLPAR */ 369 370 #ifdef CONFIG_PPC_BOOK3S 371 static void sanity_check_fault(bool is_write, bool is_user, 372 unsigned long error_code, unsigned long address) 373 { 374 /* 375 * Userspace trying to access kernel address, we get PROTFAULT for that. 376 */ 377 if (is_user && address >= TASK_SIZE) { 378 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n", 379 current->comm, current->pid, address, 380 from_kuid(&init_user_ns, current_uid())); 381 return; 382 } 383 384 /* 385 * For hash translation mode, we should never get a 386 * PROTFAULT. Any update to pte to reduce access will result in us 387 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE 388 * fault instead of DSISR_PROTFAULT. 389 * 390 * A pte update to relax the access will not result in a hash page table 391 * entry invalidate and hence can result in DSISR_PROTFAULT. 392 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have 393 * the special !is_write in the below conditional. 394 * 395 * For platforms that doesn't supports coherent icache and do support 396 * per page noexec bit, we do setup things such that we do the 397 * sync between D/I cache via fault. But that is handled via low level 398 * hash fault code (hash_page_do_lazy_icache()) and we should not reach 399 * here in such case. 400 * 401 * For wrong access that can result in PROTFAULT, the above vma->vm_flags 402 * check should handle those and hence we should fall to the bad_area 403 * handling correctly. 404 * 405 * For embedded with per page exec support that doesn't support coherent 406 * icache we do get PROTFAULT and we handle that D/I cache sync in 407 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON 408 * is conditional for server MMU. 409 * 410 * For radix, we can get prot fault for autonuma case, because radix 411 * page table will have them marked noaccess for user. 412 */ 413 if (radix_enabled() || is_write) 414 return; 415 416 WARN_ON_ONCE(error_code & DSISR_PROTFAULT); 417 } 418 #else 419 static void sanity_check_fault(bool is_write, bool is_user, 420 unsigned long error_code, unsigned long address) { } 421 #endif /* CONFIG_PPC_BOOK3S */ 422 423 /* 424 * Define the correct "is_write" bit in error_code based 425 * on the processor family 426 */ 427 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) 428 #define page_fault_is_write(__err) ((__err) & ESR_DST) 429 #define page_fault_is_bad(__err) (0) 430 #else 431 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE) 432 #if defined(CONFIG_PPC_8xx) 433 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G) 434 #elif defined(CONFIG_PPC64) 435 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S) 436 #else 437 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S) 438 #endif 439 #endif 440 441 /* 442 * For 600- and 800-family processors, the error_code parameter is DSISR 443 * for a data fault, SRR1 for an instruction fault. For 400-family processors 444 * the error_code parameter is ESR for a data fault, 0 for an instruction 445 * fault. 446 * For 64-bit processors, the error_code parameter is 447 * - DSISR for a non-SLB data access fault, 448 * - SRR1 & 0x08000000 for a non-SLB instruction access fault 449 * - 0 any SLB fault. 450 * 451 * The return value is 0 if the fault was handled, or the signal 452 * number if this is a kernel fault that can't be handled here. 453 */ 454 static int __do_page_fault(struct pt_regs *regs, unsigned long address, 455 unsigned long error_code) 456 { 457 struct vm_area_struct * vma; 458 struct mm_struct *mm = current->mm; 459 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 460 int is_exec = TRAP(regs) == 0x400; 461 int is_user = user_mode(regs); 462 int is_write = page_fault_is_write(error_code); 463 vm_fault_t fault, major = 0; 464 bool must_retry = false; 465 466 if (notify_page_fault(regs)) 467 return 0; 468 469 if (unlikely(page_fault_is_bad(error_code))) { 470 if (is_user) { 471 _exception(SIGBUS, regs, BUS_OBJERR, address); 472 return 0; 473 } 474 return SIGBUS; 475 } 476 477 /* Additional sanity check(s) */ 478 sanity_check_fault(is_write, is_user, error_code, address); 479 480 /* 481 * The kernel should never take an execute fault nor should it 482 * take a page fault to a kernel address or a page fault to a user 483 * address outside of dedicated places 484 */ 485 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) 486 return SIGSEGV; 487 488 /* 489 * If we're in an interrupt, have no user context or are running 490 * in a region with pagefaults disabled then we must not take the fault 491 */ 492 if (unlikely(faulthandler_disabled() || !mm)) { 493 if (is_user) 494 printk_ratelimited(KERN_ERR "Page fault in user mode" 495 " with faulthandler_disabled()=%d" 496 " mm=%p\n", 497 faulthandler_disabled(), mm); 498 return bad_area_nosemaphore(regs, address); 499 } 500 501 /* We restore the interrupt state now */ 502 if (!arch_irq_disabled_regs(regs)) 503 local_irq_enable(); 504 505 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 506 507 if (error_code & DSISR_KEYFAULT) 508 return bad_key_fault_exception(regs, address, 509 get_mm_addr_key(mm, address)); 510 511 /* 512 * We want to do this outside mmap_sem, because reading code around nip 513 * can result in fault, which will cause a deadlock when called with 514 * mmap_sem held 515 */ 516 if (is_user) 517 flags |= FAULT_FLAG_USER; 518 if (is_write) 519 flags |= FAULT_FLAG_WRITE; 520 if (is_exec) 521 flags |= FAULT_FLAG_INSTRUCTION; 522 523 /* When running in the kernel we expect faults to occur only to 524 * addresses in user space. All other faults represent errors in the 525 * kernel and should generate an OOPS. Unfortunately, in the case of an 526 * erroneous fault occurring in a code path which already holds mmap_sem 527 * we will deadlock attempting to validate the fault against the 528 * address space. Luckily the kernel only validly references user 529 * space from well defined areas of code, which are listed in the 530 * exceptions table. 531 * 532 * As the vast majority of faults will be valid we will only perform 533 * the source reference check when there is a possibility of a deadlock. 534 * Attempt to lock the address space, if we cannot we then validate the 535 * source. If this is invalid we can skip the address space check, 536 * thus avoiding the deadlock. 537 */ 538 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 539 if (!is_user && !search_exception_tables(regs->nip)) 540 return bad_area_nosemaphore(regs, address); 541 542 retry: 543 down_read(&mm->mmap_sem); 544 } else { 545 /* 546 * The above down_read_trylock() might have succeeded in 547 * which case we'll have missed the might_sleep() from 548 * down_read(): 549 */ 550 might_sleep(); 551 } 552 553 vma = find_vma(mm, address); 554 if (unlikely(!vma)) 555 return bad_area(regs, address); 556 if (likely(vma->vm_start <= address)) 557 goto good_area; 558 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 559 return bad_area(regs, address); 560 561 /* The stack is being expanded, check if it's valid */ 562 if (unlikely(bad_stack_expansion(regs, address, vma, flags, 563 &must_retry))) { 564 if (!must_retry) 565 return bad_area(regs, address); 566 567 up_read(&mm->mmap_sem); 568 if (fault_in_pages_readable((const char __user *)regs->nip, 569 sizeof(unsigned int))) 570 return bad_area_nosemaphore(regs, address); 571 goto retry; 572 } 573 574 /* Try to expand it */ 575 if (unlikely(expand_stack(vma, address))) 576 return bad_area(regs, address); 577 578 good_area: 579 if (unlikely(access_error(is_write, is_exec, vma))) 580 return bad_access(regs, address); 581 582 /* 583 * If for any reason at all we couldn't handle the fault, 584 * make sure we exit gracefully rather than endlessly redo 585 * the fault. 586 */ 587 fault = handle_mm_fault(vma, address, flags); 588 589 #ifdef CONFIG_PPC_MEM_KEYS 590 /* 591 * we skipped checking for access error due to key earlier. 592 * Check that using handle_mm_fault error return. 593 */ 594 if (unlikely(fault & VM_FAULT_SIGSEGV) && 595 !arch_vma_access_permitted(vma, is_write, is_exec, 0)) { 596 597 int pkey = vma_pkey(vma); 598 599 up_read(&mm->mmap_sem); 600 return bad_key_fault_exception(regs, address, pkey); 601 } 602 #endif /* CONFIG_PPC_MEM_KEYS */ 603 604 major |= fault & VM_FAULT_MAJOR; 605 606 /* 607 * Handle the retry right now, the mmap_sem has been released in that 608 * case. 609 */ 610 if (unlikely(fault & VM_FAULT_RETRY)) { 611 /* We retry only once */ 612 if (flags & FAULT_FLAG_ALLOW_RETRY) { 613 /* 614 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk 615 * of starvation. 616 */ 617 flags &= ~FAULT_FLAG_ALLOW_RETRY; 618 flags |= FAULT_FLAG_TRIED; 619 if (!fatal_signal_pending(current)) 620 goto retry; 621 } 622 623 /* 624 * User mode? Just return to handle the fatal exception otherwise 625 * return to bad_page_fault 626 */ 627 return is_user ? 0 : SIGBUS; 628 } 629 630 up_read(¤t->mm->mmap_sem); 631 632 if (unlikely(fault & VM_FAULT_ERROR)) 633 return mm_fault_error(regs, address, fault); 634 635 /* 636 * Major/minor page fault accounting. 637 */ 638 if (major) { 639 current->maj_flt++; 640 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 641 cmo_account_page_fault(); 642 } else { 643 current->min_flt++; 644 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 645 } 646 return 0; 647 } 648 NOKPROBE_SYMBOL(__do_page_fault); 649 650 int do_page_fault(struct pt_regs *regs, unsigned long address, 651 unsigned long error_code) 652 { 653 enum ctx_state prev_state = exception_enter(); 654 int rc = __do_page_fault(regs, address, error_code); 655 exception_exit(prev_state); 656 return rc; 657 } 658 NOKPROBE_SYMBOL(do_page_fault); 659 660 /* 661 * bad_page_fault is called when we have a bad access from the kernel. 662 * It is called from the DSI and ISI handlers in head.S and from some 663 * of the procedures in traps.c. 664 */ 665 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) 666 { 667 const struct exception_table_entry *entry; 668 669 /* Are we prepared to handle this fault? */ 670 if ((entry = search_exception_tables(regs->nip)) != NULL) { 671 regs->nip = extable_fixup(entry); 672 return; 673 } 674 675 /* kernel has accessed a bad area */ 676 677 switch (TRAP(regs)) { 678 case 0x300: 679 case 0x380: 680 case 0xe00: 681 pr_alert("BUG: %s at 0x%08lx\n", 682 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" : 683 "Unable to handle kernel data access", regs->dar); 684 break; 685 case 0x400: 686 case 0x480: 687 pr_alert("BUG: Unable to handle kernel instruction fetch%s", 688 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n"); 689 break; 690 case 0x600: 691 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n", 692 regs->dar); 693 break; 694 default: 695 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n", 696 regs->dar); 697 break; 698 } 699 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", 700 regs->nip); 701 702 if (task_stack_end_corrupted(current)) 703 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 704 705 die("Kernel access of bad area", regs, sig); 706 } 707