xref: /linux/arch/powerpc/mm/fault.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  *  arch/ppc/mm/fault.c
3  *
4  *  PowerPC version
5  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6  *
7  *  Derived from "arch/i386/mm/fault.c"
8  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *
10  *  Modified by Cort Dougan and Paul Mackerras.
11  *
12  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
13  *
14  *  This program is free software; you can redistribute it and/or
15  *  modify it under the terms of the GNU General Public License
16  *  as published by the Free Software Foundation; either version
17  *  2 of the License, or (at your option) any later version.
18  */
19 
20 #include <linux/config.h>
21 #include <linux/signal.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/ptrace.h>
28 #include <linux/mman.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/kprobes.h>
34 
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu.h>
38 #include <asm/mmu_context.h>
39 #include <asm/system.h>
40 #include <asm/uaccess.h>
41 #include <asm/tlbflush.h>
42 #include <asm/kdebug.h>
43 #include <asm/siginfo.h>
44 
45 /*
46  * Check whether the instruction at regs->nip is a store using
47  * an update addressing form which will update r1.
48  */
49 static int store_updates_sp(struct pt_regs *regs)
50 {
51 	unsigned int inst;
52 
53 	if (get_user(inst, (unsigned int __user *)regs->nip))
54 		return 0;
55 	/* check for 1 in the rA field */
56 	if (((inst >> 16) & 0x1f) != 1)
57 		return 0;
58 	/* check major opcode */
59 	switch (inst >> 26) {
60 	case 37:	/* stwu */
61 	case 39:	/* stbu */
62 	case 45:	/* sthu */
63 	case 53:	/* stfsu */
64 	case 55:	/* stfdu */
65 		return 1;
66 	case 62:	/* std or stdu */
67 		return (inst & 3) == 1;
68 	case 31:
69 		/* check minor opcode */
70 		switch ((inst >> 1) & 0x3ff) {
71 		case 181:	/* stdux */
72 		case 183:	/* stwux */
73 		case 247:	/* stbux */
74 		case 439:	/* sthux */
75 		case 695:	/* stfsux */
76 		case 759:	/* stfdux */
77 			return 1;
78 		}
79 	}
80 	return 0;
81 }
82 
83 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
84 static void do_dabr(struct pt_regs *regs, unsigned long error_code)
85 {
86 	siginfo_t info;
87 
88 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
89 			11, SIGSEGV) == NOTIFY_STOP)
90 		return;
91 
92 	if (debugger_dabr_match(regs))
93 		return;
94 
95 	/* Clear the DABR */
96 	set_dabr(0);
97 
98 	/* Deliver the signal to userspace */
99 	info.si_signo = SIGTRAP;
100 	info.si_errno = 0;
101 	info.si_code = TRAP_HWBKPT;
102 	info.si_addr = (void __user *)regs->nip;
103 	force_sig_info(SIGTRAP, &info, current);
104 }
105 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
106 
107 /*
108  * For 600- and 800-family processors, the error_code parameter is DSISR
109  * for a data fault, SRR1 for an instruction fault. For 400-family processors
110  * the error_code parameter is ESR for a data fault, 0 for an instruction
111  * fault.
112  * For 64-bit processors, the error_code parameter is
113  *  - DSISR for a non-SLB data access fault,
114  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
115  *  - 0 any SLB fault.
116  *
117  * The return value is 0 if the fault was handled, or the signal
118  * number if this is a kernel fault that can't be handled here.
119  */
120 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
121 			    unsigned long error_code)
122 {
123 	struct vm_area_struct * vma;
124 	struct mm_struct *mm = current->mm;
125 	siginfo_t info;
126 	int code = SEGV_MAPERR;
127 	int is_write = 0;
128 	int trap = TRAP(regs);
129  	int is_exec = trap == 0x400;
130 
131 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
132 	/*
133 	 * Fortunately the bit assignments in SRR1 for an instruction
134 	 * fault and DSISR for a data fault are mostly the same for the
135 	 * bits we are interested in.  But there are some bits which
136 	 * indicate errors in DSISR but can validly be set in SRR1.
137 	 */
138 	if (trap == 0x400)
139 		error_code &= 0x48200000;
140 	else
141 		is_write = error_code & DSISR_ISSTORE;
142 #else
143 	is_write = error_code & ESR_DST;
144 #endif /* CONFIG_4xx || CONFIG_BOOKE */
145 
146 	if (notify_die(DIE_PAGE_FAULT, "page_fault", regs, error_code,
147 				11, SIGSEGV) == NOTIFY_STOP)
148 		return 0;
149 
150 	if (trap == 0x300) {
151 		if (debugger_fault_handler(regs))
152 			return 0;
153 	}
154 
155 	/* On a kernel SLB miss we can only check for a valid exception entry */
156 	if (!user_mode(regs) && (address >= TASK_SIZE))
157 		return SIGSEGV;
158 
159 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
160   	if (error_code & DSISR_DABRMATCH) {
161 		/* DABR match */
162 		do_dabr(regs, error_code);
163 		return 0;
164 	}
165 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
166 
167 	if (in_atomic() || mm == NULL) {
168 		if (!user_mode(regs))
169 			return SIGSEGV;
170 		/* in_atomic() in user mode is really bad,
171 		   as is current->mm == NULL. */
172 		printk(KERN_EMERG "Page fault in user mode with"
173 		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
174 		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
175 		       regs->nip, regs->msr);
176 		die("Weird page fault", regs, SIGSEGV);
177 	}
178 
179 	/* When running in the kernel we expect faults to occur only to
180 	 * addresses in user space.  All other faults represent errors in the
181 	 * kernel and should generate an OOPS.  Unfortunatly, in the case of an
182 	 * erroneous fault occuring in a code path which already holds mmap_sem
183 	 * we will deadlock attempting to validate the fault against the
184 	 * address space.  Luckily the kernel only validly references user
185 	 * space from well defined areas of code, which are listed in the
186 	 * exceptions table.
187 	 *
188 	 * As the vast majority of faults will be valid we will only perform
189 	 * the source reference check when there is a possibilty of a deadlock.
190 	 * Attempt to lock the address space, if we cannot we then validate the
191 	 * source.  If this is invalid we can skip the address space check,
192 	 * thus avoiding the deadlock.
193 	 */
194 	if (!down_read_trylock(&mm->mmap_sem)) {
195 		if (!user_mode(regs) && !search_exception_tables(regs->nip))
196 			goto bad_area_nosemaphore;
197 
198 		down_read(&mm->mmap_sem);
199 	}
200 
201 	vma = find_vma(mm, address);
202 	if (!vma)
203 		goto bad_area;
204 	if (vma->vm_start <= address)
205 		goto good_area;
206 	if (!(vma->vm_flags & VM_GROWSDOWN))
207 		goto bad_area;
208 
209 	/*
210 	 * N.B. The POWER/Open ABI allows programs to access up to
211 	 * 288 bytes below the stack pointer.
212 	 * The kernel signal delivery code writes up to about 1.5kB
213 	 * below the stack pointer (r1) before decrementing it.
214 	 * The exec code can write slightly over 640kB to the stack
215 	 * before setting the user r1.  Thus we allow the stack to
216 	 * expand to 1MB without further checks.
217 	 */
218 	if (address + 0x100000 < vma->vm_end) {
219 		/* get user regs even if this fault is in kernel mode */
220 		struct pt_regs *uregs = current->thread.regs;
221 		if (uregs == NULL)
222 			goto bad_area;
223 
224 		/*
225 		 * A user-mode access to an address a long way below
226 		 * the stack pointer is only valid if the instruction
227 		 * is one which would update the stack pointer to the
228 		 * address accessed if the instruction completed,
229 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
230 		 * (or the byte, halfword, float or double forms).
231 		 *
232 		 * If we don't check this then any write to the area
233 		 * between the last mapped region and the stack will
234 		 * expand the stack rather than segfaulting.
235 		 */
236 		if (address + 2048 < uregs->gpr[1]
237 		    && (!user_mode(regs) || !store_updates_sp(regs)))
238 			goto bad_area;
239 	}
240 	if (expand_stack(vma, address))
241 		goto bad_area;
242 
243 good_area:
244 	code = SEGV_ACCERR;
245 #if defined(CONFIG_6xx)
246 	if (error_code & 0x95700000)
247 		/* an error such as lwarx to I/O controller space,
248 		   address matching DABR, eciwx, etc. */
249 		goto bad_area;
250 #endif /* CONFIG_6xx */
251 #if defined(CONFIG_8xx)
252         /* The MPC8xx seems to always set 0x80000000, which is
253          * "undefined".  Of those that can be set, this is the only
254          * one which seems bad.
255          */
256 	if (error_code & 0x10000000)
257                 /* Guarded storage error. */
258 		goto bad_area;
259 #endif /* CONFIG_8xx */
260 
261 	if (is_exec) {
262 #ifdef CONFIG_PPC64
263 		/* protection fault */
264 		if (error_code & DSISR_PROTFAULT)
265 			goto bad_area;
266 		if (!(vma->vm_flags & VM_EXEC))
267 			goto bad_area;
268 #endif
269 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
270 		pte_t *ptep;
271 
272 		/* Since 4xx/Book-E supports per-page execute permission,
273 		 * we lazily flush dcache to icache. */
274 		ptep = NULL;
275 		if (get_pteptr(mm, address, &ptep) && pte_present(*ptep)) {
276 			struct page *page = pte_page(*ptep);
277 
278 			if (! test_bit(PG_arch_1, &page->flags)) {
279 				flush_dcache_icache_page(page);
280 				set_bit(PG_arch_1, &page->flags);
281 			}
282 			pte_update(ptep, 0, _PAGE_HWEXEC);
283 			_tlbie(address);
284 			pte_unmap(ptep);
285 			up_read(&mm->mmap_sem);
286 			return 0;
287 		}
288 		if (ptep != NULL)
289 			pte_unmap(ptep);
290 #endif
291 	/* a write */
292 	} else if (is_write) {
293 		if (!(vma->vm_flags & VM_WRITE))
294 			goto bad_area;
295 	/* a read */
296 	} else {
297 		/* protection fault */
298 		if (error_code & 0x08000000)
299 			goto bad_area;
300 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
301 			goto bad_area;
302 	}
303 
304 	/*
305 	 * If for any reason at all we couldn't handle the fault,
306 	 * make sure we exit gracefully rather than endlessly redo
307 	 * the fault.
308 	 */
309  survive:
310 	switch (handle_mm_fault(mm, vma, address, is_write)) {
311 
312 	case VM_FAULT_MINOR:
313 		current->min_flt++;
314 		break;
315 	case VM_FAULT_MAJOR:
316 		current->maj_flt++;
317 		break;
318 	case VM_FAULT_SIGBUS:
319 		goto do_sigbus;
320 	case VM_FAULT_OOM:
321 		goto out_of_memory;
322 	default:
323 		BUG();
324 	}
325 
326 	up_read(&mm->mmap_sem);
327 	return 0;
328 
329 bad_area:
330 	up_read(&mm->mmap_sem);
331 
332 bad_area_nosemaphore:
333 	/* User mode accesses cause a SIGSEGV */
334 	if (user_mode(regs)) {
335 		_exception(SIGSEGV, regs, code, address);
336 		return 0;
337 	}
338 
339 	if (is_exec && (error_code & DSISR_PROTFAULT)
340 	    && printk_ratelimit())
341 		printk(KERN_CRIT "kernel tried to execute NX-protected"
342 		       " page (%lx) - exploit attempt? (uid: %d)\n",
343 		       address, current->uid);
344 
345 	return SIGSEGV;
346 
347 /*
348  * We ran out of memory, or some other thing happened to us that made
349  * us unable to handle the page fault gracefully.
350  */
351 out_of_memory:
352 	up_read(&mm->mmap_sem);
353 	if (current->pid == 1) {
354 		yield();
355 		down_read(&mm->mmap_sem);
356 		goto survive;
357 	}
358 	printk("VM: killing process %s\n", current->comm);
359 	if (user_mode(regs))
360 		do_exit(SIGKILL);
361 	return SIGKILL;
362 
363 do_sigbus:
364 	up_read(&mm->mmap_sem);
365 	if (user_mode(regs)) {
366 		info.si_signo = SIGBUS;
367 		info.si_errno = 0;
368 		info.si_code = BUS_ADRERR;
369 		info.si_addr = (void __user *)address;
370 		force_sig_info(SIGBUS, &info, current);
371 		return 0;
372 	}
373 	return SIGBUS;
374 }
375 
376 /*
377  * bad_page_fault is called when we have a bad access from the kernel.
378  * It is called from the DSI and ISI handlers in head.S and from some
379  * of the procedures in traps.c.
380  */
381 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
382 {
383 	const struct exception_table_entry *entry;
384 
385 	/* Are we prepared to handle this fault?  */
386 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
387 		regs->nip = entry->fixup;
388 		return;
389 	}
390 
391 	/* kernel has accessed a bad area */
392 
393 	printk(KERN_ALERT "Unable to handle kernel paging request for ");
394 	switch (regs->trap) {
395 		case 0x300:
396 		case 0x380:
397 			printk("data at address 0x%08lx\n", regs->dar);
398 			break;
399 		case 0x400:
400 		case 0x480:
401 			printk("instruction fetch\n");
402 			break;
403 		default:
404 			printk("unknown fault\n");
405 	}
406 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
407 		regs->nip);
408 
409 	die("Kernel access of bad area", regs, sig);
410 }
411