xref: /linux/arch/powerpc/mm/fault.c (revision 98c45f51f767bfdd71d773cceaceb403352e51ae)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/pagemap.h>
26 #include <linux/ptrace.h>
27 #include <linux/mman.h>
28 #include <linux/mm.h>
29 #include <linux/interrupt.h>
30 #include <linux/highmem.h>
31 #include <linux/extable.h>
32 #include <linux/kprobes.h>
33 #include <linux/kdebug.h>
34 #include <linux/perf_event.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/hugetlb.h>
38 #include <linux/uaccess.h>
39 
40 #include <asm/firmware.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/mmu.h>
44 #include <asm/mmu_context.h>
45 #include <asm/siginfo.h>
46 #include <asm/debug.h>
47 
48 static inline bool notify_page_fault(struct pt_regs *regs)
49 {
50 	bool ret = false;
51 
52 #ifdef CONFIG_KPROBES
53 	/* kprobe_running() needs smp_processor_id() */
54 	if (!user_mode(regs)) {
55 		preempt_disable();
56 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
57 			ret = true;
58 		preempt_enable();
59 	}
60 #endif /* CONFIG_KPROBES */
61 
62 	if (unlikely(debugger_fault_handler(regs)))
63 		ret = true;
64 
65 	return ret;
66 }
67 
68 /*
69  * Check whether the instruction inst is a store using
70  * an update addressing form which will update r1.
71  */
72 static bool store_updates_sp(unsigned int inst)
73 {
74 	/* check for 1 in the rA field */
75 	if (((inst >> 16) & 0x1f) != 1)
76 		return false;
77 	/* check major opcode */
78 	switch (inst >> 26) {
79 	case OP_STWU:
80 	case OP_STBU:
81 	case OP_STHU:
82 	case OP_STFSU:
83 	case OP_STFDU:
84 		return true;
85 	case OP_STD:	/* std or stdu */
86 		return (inst & 3) == 1;
87 	case OP_31:
88 		/* check minor opcode */
89 		switch ((inst >> 1) & 0x3ff) {
90 		case OP_31_XOP_STDUX:
91 		case OP_31_XOP_STWUX:
92 		case OP_31_XOP_STBUX:
93 		case OP_31_XOP_STHUX:
94 		case OP_31_XOP_STFSUX:
95 		case OP_31_XOP_STFDUX:
96 			return true;
97 		}
98 	}
99 	return false;
100 }
101 /*
102  * do_page_fault error handling helpers
103  */
104 
105 static int
106 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code,
107 		int pkey)
108 {
109 	/*
110 	 * If we are in kernel mode, bail out with a SEGV, this will
111 	 * be caught by the assembly which will restore the non-volatile
112 	 * registers before calling bad_page_fault()
113 	 */
114 	if (!user_mode(regs))
115 		return SIGSEGV;
116 
117 	_exception_pkey(SIGSEGV, regs, si_code, address, pkey);
118 
119 	return 0;
120 }
121 
122 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
123 {
124 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR, 0);
125 }
126 
127 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code,
128 			int pkey)
129 {
130 	struct mm_struct *mm = current->mm;
131 
132 	/*
133 	 * Something tried to access memory that isn't in our memory map..
134 	 * Fix it, but check if it's kernel or user first..
135 	 */
136 	up_read(&mm->mmap_sem);
137 
138 	return __bad_area_nosemaphore(regs, address, si_code, pkey);
139 }
140 
141 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
142 {
143 	return __bad_area(regs, address, SEGV_MAPERR, 0);
144 }
145 
146 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
147 				    int pkey)
148 {
149 	return __bad_area_nosemaphore(regs, address, SEGV_PKUERR, pkey);
150 }
151 
152 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
153 {
154 	return __bad_area(regs, address, SEGV_ACCERR, 0);
155 }
156 
157 static int do_sigbus(struct pt_regs *regs, unsigned long address,
158 		     unsigned int fault)
159 {
160 	siginfo_t info;
161 	unsigned int lsb = 0;
162 
163 	if (!user_mode(regs))
164 		return SIGBUS;
165 
166 	current->thread.trap_nr = BUS_ADRERR;
167 	clear_siginfo(&info);
168 	info.si_signo = SIGBUS;
169 	info.si_errno = 0;
170 	info.si_code = BUS_ADRERR;
171 	info.si_addr = (void __user *)address;
172 #ifdef CONFIG_MEMORY_FAILURE
173 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
174 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
175 			current->comm, current->pid, address);
176 		info.si_code = BUS_MCEERR_AR;
177 	}
178 
179 	if (fault & VM_FAULT_HWPOISON_LARGE)
180 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 	if (fault & VM_FAULT_HWPOISON)
182 		lsb = PAGE_SHIFT;
183 #endif
184 	info.si_addr_lsb = lsb;
185 	force_sig_info(SIGBUS, &info, current);
186 	return 0;
187 }
188 
189 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
190 {
191 	/*
192 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
193 	 * continue processing.
194 	 */
195 	if (fatal_signal_pending(current) && !user_mode(regs))
196 		return SIGKILL;
197 
198 	/* Out of memory */
199 	if (fault & VM_FAULT_OOM) {
200 		/*
201 		 * We ran out of memory, or some other thing happened to us that
202 		 * made us unable to handle the page fault gracefully.
203 		 */
204 		if (!user_mode(regs))
205 			return SIGSEGV;
206 		pagefault_out_of_memory();
207 	} else {
208 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
209 			     VM_FAULT_HWPOISON_LARGE))
210 			return do_sigbus(regs, addr, fault);
211 		else if (fault & VM_FAULT_SIGSEGV)
212 			return bad_area_nosemaphore(regs, addr);
213 		else
214 			BUG();
215 	}
216 	return 0;
217 }
218 
219 /* Is this a bad kernel fault ? */
220 static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
221 			     unsigned long address)
222 {
223 	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
224 		printk_ratelimited(KERN_CRIT "kernel tried to execute"
225 				   " exec-protected page (%lx) -"
226 				   "exploit attempt? (uid: %d)\n",
227 				   address, from_kuid(&init_user_ns,
228 						      current_uid()));
229 	}
230 	return is_exec || (address >= TASK_SIZE);
231 }
232 
233 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
234 				struct vm_area_struct *vma, unsigned int flags,
235 				bool *must_retry)
236 {
237 	/*
238 	 * N.B. The POWER/Open ABI allows programs to access up to
239 	 * 288 bytes below the stack pointer.
240 	 * The kernel signal delivery code writes up to about 1.5kB
241 	 * below the stack pointer (r1) before decrementing it.
242 	 * The exec code can write slightly over 640kB to the stack
243 	 * before setting the user r1.  Thus we allow the stack to
244 	 * expand to 1MB without further checks.
245 	 */
246 	if (address + 0x100000 < vma->vm_end) {
247 		unsigned int __user *nip = (unsigned int __user *)regs->nip;
248 		/* get user regs even if this fault is in kernel mode */
249 		struct pt_regs *uregs = current->thread.regs;
250 		if (uregs == NULL)
251 			return true;
252 
253 		/*
254 		 * A user-mode access to an address a long way below
255 		 * the stack pointer is only valid if the instruction
256 		 * is one which would update the stack pointer to the
257 		 * address accessed if the instruction completed,
258 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
259 		 * (or the byte, halfword, float or double forms).
260 		 *
261 		 * If we don't check this then any write to the area
262 		 * between the last mapped region and the stack will
263 		 * expand the stack rather than segfaulting.
264 		 */
265 		if (address + 2048 >= uregs->gpr[1])
266 			return false;
267 
268 		if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
269 		    access_ok(VERIFY_READ, nip, sizeof(*nip))) {
270 			unsigned int inst;
271 			int res;
272 
273 			pagefault_disable();
274 			res = __get_user_inatomic(inst, nip);
275 			pagefault_enable();
276 			if (!res)
277 				return !store_updates_sp(inst);
278 			*must_retry = true;
279 		}
280 		return true;
281 	}
282 	return false;
283 }
284 
285 static bool access_error(bool is_write, bool is_exec,
286 			 struct vm_area_struct *vma)
287 {
288 	/*
289 	 * Allow execution from readable areas if the MMU does not
290 	 * provide separate controls over reading and executing.
291 	 *
292 	 * Note: That code used to not be enabled for 4xx/BookE.
293 	 * It is now as I/D cache coherency for these is done at
294 	 * set_pte_at() time and I see no reason why the test
295 	 * below wouldn't be valid on those processors. This -may-
296 	 * break programs compiled with a really old ABI though.
297 	 */
298 	if (is_exec) {
299 		return !(vma->vm_flags & VM_EXEC) &&
300 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
301 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
302 	}
303 
304 	if (is_write) {
305 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
306 			return true;
307 		return false;
308 	}
309 
310 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
311 		return true;
312 	/*
313 	 * We should ideally do the vma pkey access check here. But in the
314 	 * fault path, handle_mm_fault() also does the same check. To avoid
315 	 * these multiple checks, we skip it here and handle access error due
316 	 * to pkeys later.
317 	 */
318 	return false;
319 }
320 
321 #ifdef CONFIG_PPC_SMLPAR
322 static inline void cmo_account_page_fault(void)
323 {
324 	if (firmware_has_feature(FW_FEATURE_CMO)) {
325 		u32 page_ins;
326 
327 		preempt_disable();
328 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
329 		page_ins += 1 << PAGE_FACTOR;
330 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
331 		preempt_enable();
332 	}
333 }
334 #else
335 static inline void cmo_account_page_fault(void) { }
336 #endif /* CONFIG_PPC_SMLPAR */
337 
338 #ifdef CONFIG_PPC_STD_MMU
339 static void sanity_check_fault(bool is_write, unsigned long error_code)
340 {
341 	/*
342 	 * For hash translation mode, we should never get a
343 	 * PROTFAULT. Any update to pte to reduce access will result in us
344 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
345 	 * fault instead of DSISR_PROTFAULT.
346 	 *
347 	 * A pte update to relax the access will not result in a hash page table
348 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
349 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
350 	 * the special !is_write in the below conditional.
351 	 *
352 	 * For platforms that doesn't supports coherent icache and do support
353 	 * per page noexec bit, we do setup things such that we do the
354 	 * sync between D/I cache via fault. But that is handled via low level
355 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
356 	 * here in such case.
357 	 *
358 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
359 	 * check should handle those and hence we should fall to the bad_area
360 	 * handling correctly.
361 	 *
362 	 * For embedded with per page exec support that doesn't support coherent
363 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
364 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
365 	 * is conditional for server MMU.
366 	 *
367 	 * For radix, we can get prot fault for autonuma case, because radix
368 	 * page table will have them marked noaccess for user.
369 	 */
370 	if (!radix_enabled() && !is_write)
371 		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
372 }
373 #else
374 static void sanity_check_fault(bool is_write, unsigned long error_code) { }
375 #endif /* CONFIG_PPC_STD_MMU */
376 
377 /*
378  * Define the correct "is_write" bit in error_code based
379  * on the processor family
380  */
381 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
382 #define page_fault_is_write(__err)	((__err) & ESR_DST)
383 #define page_fault_is_bad(__err)	(0)
384 #else
385 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
386 #if defined(CONFIG_PPC_8xx)
387 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
388 #elif defined(CONFIG_PPC64)
389 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
390 #else
391 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
392 #endif
393 #endif
394 
395 /*
396  * For 600- and 800-family processors, the error_code parameter is DSISR
397  * for a data fault, SRR1 for an instruction fault. For 400-family processors
398  * the error_code parameter is ESR for a data fault, 0 for an instruction
399  * fault.
400  * For 64-bit processors, the error_code parameter is
401  *  - DSISR for a non-SLB data access fault,
402  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
403  *  - 0 any SLB fault.
404  *
405  * The return value is 0 if the fault was handled, or the signal
406  * number if this is a kernel fault that can't be handled here.
407  */
408 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
409 			   unsigned long error_code)
410 {
411 	struct vm_area_struct * vma;
412 	struct mm_struct *mm = current->mm;
413 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
414  	int is_exec = TRAP(regs) == 0x400;
415 	int is_user = user_mode(regs);
416 	int is_write = page_fault_is_write(error_code);
417 	int fault, major = 0;
418 	bool must_retry = false;
419 
420 	if (notify_page_fault(regs))
421 		return 0;
422 
423 	if (unlikely(page_fault_is_bad(error_code))) {
424 		if (is_user) {
425 			_exception(SIGBUS, regs, BUS_OBJERR, address);
426 			return 0;
427 		}
428 		return SIGBUS;
429 	}
430 
431 	/* Additional sanity check(s) */
432 	sanity_check_fault(is_write, error_code);
433 
434 	/*
435 	 * The kernel should never take an execute fault nor should it
436 	 * take a page fault to a kernel address.
437 	 */
438 	if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
439 		return SIGSEGV;
440 
441 	/*
442 	 * If we're in an interrupt, have no user context or are running
443 	 * in a region with pagefaults disabled then we must not take the fault
444 	 */
445 	if (unlikely(faulthandler_disabled() || !mm)) {
446 		if (is_user)
447 			printk_ratelimited(KERN_ERR "Page fault in user mode"
448 					   " with faulthandler_disabled()=%d"
449 					   " mm=%p\n",
450 					   faulthandler_disabled(), mm);
451 		return bad_area_nosemaphore(regs, address);
452 	}
453 
454 	/* We restore the interrupt state now */
455 	if (!arch_irq_disabled_regs(regs))
456 		local_irq_enable();
457 
458 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
459 
460 	if (error_code & DSISR_KEYFAULT)
461 		return bad_key_fault_exception(regs, address,
462 					       get_mm_addr_key(mm, address));
463 
464 	/*
465 	 * We want to do this outside mmap_sem, because reading code around nip
466 	 * can result in fault, which will cause a deadlock when called with
467 	 * mmap_sem held
468 	 */
469 	if (is_user)
470 		flags |= FAULT_FLAG_USER;
471 	if (is_write)
472 		flags |= FAULT_FLAG_WRITE;
473 	if (is_exec)
474 		flags |= FAULT_FLAG_INSTRUCTION;
475 
476 	/* When running in the kernel we expect faults to occur only to
477 	 * addresses in user space.  All other faults represent errors in the
478 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
479 	 * erroneous fault occurring in a code path which already holds mmap_sem
480 	 * we will deadlock attempting to validate the fault against the
481 	 * address space.  Luckily the kernel only validly references user
482 	 * space from well defined areas of code, which are listed in the
483 	 * exceptions table.
484 	 *
485 	 * As the vast majority of faults will be valid we will only perform
486 	 * the source reference check when there is a possibility of a deadlock.
487 	 * Attempt to lock the address space, if we cannot we then validate the
488 	 * source.  If this is invalid we can skip the address space check,
489 	 * thus avoiding the deadlock.
490 	 */
491 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
492 		if (!is_user && !search_exception_tables(regs->nip))
493 			return bad_area_nosemaphore(regs, address);
494 
495 retry:
496 		down_read(&mm->mmap_sem);
497 	} else {
498 		/*
499 		 * The above down_read_trylock() might have succeeded in
500 		 * which case we'll have missed the might_sleep() from
501 		 * down_read():
502 		 */
503 		might_sleep();
504 	}
505 
506 	vma = find_vma(mm, address);
507 	if (unlikely(!vma))
508 		return bad_area(regs, address);
509 	if (likely(vma->vm_start <= address))
510 		goto good_area;
511 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
512 		return bad_area(regs, address);
513 
514 	/* The stack is being expanded, check if it's valid */
515 	if (unlikely(bad_stack_expansion(regs, address, vma, flags,
516 					 &must_retry))) {
517 		if (!must_retry)
518 			return bad_area(regs, address);
519 
520 		up_read(&mm->mmap_sem);
521 		if (fault_in_pages_readable((const char __user *)regs->nip,
522 					    sizeof(unsigned int)))
523 			return bad_area_nosemaphore(regs, address);
524 		goto retry;
525 	}
526 
527 	/* Try to expand it */
528 	if (unlikely(expand_stack(vma, address)))
529 		return bad_area(regs, address);
530 
531 good_area:
532 	if (unlikely(access_error(is_write, is_exec, vma)))
533 		return bad_access(regs, address);
534 
535 	/*
536 	 * If for any reason at all we couldn't handle the fault,
537 	 * make sure we exit gracefully rather than endlessly redo
538 	 * the fault.
539 	 */
540 	fault = handle_mm_fault(vma, address, flags);
541 
542 #ifdef CONFIG_PPC_MEM_KEYS
543 	/*
544 	 * we skipped checking for access error due to key earlier.
545 	 * Check that using handle_mm_fault error return.
546 	 */
547 	if (unlikely(fault & VM_FAULT_SIGSEGV) &&
548 		!arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
549 
550 		int pkey = vma_pkey(vma);
551 
552 		up_read(&mm->mmap_sem);
553 		return bad_key_fault_exception(regs, address, pkey);
554 	}
555 #endif /* CONFIG_PPC_MEM_KEYS */
556 
557 	major |= fault & VM_FAULT_MAJOR;
558 
559 	/*
560 	 * Handle the retry right now, the mmap_sem has been released in that
561 	 * case.
562 	 */
563 	if (unlikely(fault & VM_FAULT_RETRY)) {
564 		/* We retry only once */
565 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
566 			/*
567 			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
568 			 * of starvation.
569 			 */
570 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
571 			flags |= FAULT_FLAG_TRIED;
572 			if (!fatal_signal_pending(current))
573 				goto retry;
574 		}
575 
576 		/*
577 		 * User mode? Just return to handle the fatal exception otherwise
578 		 * return to bad_page_fault
579 		 */
580 		return is_user ? 0 : SIGBUS;
581 	}
582 
583 	up_read(&current->mm->mmap_sem);
584 
585 	if (unlikely(fault & VM_FAULT_ERROR))
586 		return mm_fault_error(regs, address, fault);
587 
588 	/*
589 	 * Major/minor page fault accounting.
590 	 */
591 	if (major) {
592 		current->maj_flt++;
593 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
594 		cmo_account_page_fault();
595 	} else {
596 		current->min_flt++;
597 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
598 	}
599 	return 0;
600 }
601 NOKPROBE_SYMBOL(__do_page_fault);
602 
603 int do_page_fault(struct pt_regs *regs, unsigned long address,
604 		  unsigned long error_code)
605 {
606 	enum ctx_state prev_state = exception_enter();
607 	int rc = __do_page_fault(regs, address, error_code);
608 	exception_exit(prev_state);
609 	return rc;
610 }
611 NOKPROBE_SYMBOL(do_page_fault);
612 
613 /*
614  * bad_page_fault is called when we have a bad access from the kernel.
615  * It is called from the DSI and ISI handlers in head.S and from some
616  * of the procedures in traps.c.
617  */
618 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
619 {
620 	const struct exception_table_entry *entry;
621 
622 	/* Are we prepared to handle this fault?  */
623 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
624 		regs->nip = extable_fixup(entry);
625 		return;
626 	}
627 
628 	/* kernel has accessed a bad area */
629 
630 	switch (TRAP(regs)) {
631 	case 0x300:
632 	case 0x380:
633 		printk(KERN_ALERT "Unable to handle kernel paging request for "
634 			"data at address 0x%08lx\n", regs->dar);
635 		break;
636 	case 0x400:
637 	case 0x480:
638 		printk(KERN_ALERT "Unable to handle kernel paging request for "
639 			"instruction fetch\n");
640 		break;
641 	case 0x600:
642 		printk(KERN_ALERT "Unable to handle kernel paging request for "
643 			"unaligned access at address 0x%08lx\n", regs->dar);
644 		break;
645 	default:
646 		printk(KERN_ALERT "Unable to handle kernel paging request for "
647 			"unknown fault\n");
648 		break;
649 	}
650 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
651 		regs->nip);
652 
653 	if (task_stack_end_corrupted(current))
654 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
655 
656 	die("Kernel access of bad area", regs, sig);
657 }
658