1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC version 4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 5 * 6 * Derived from "arch/i386/mm/fault.c" 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * 9 * Modified by Cort Dougan and Paul Mackerras. 10 * 11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) 12 */ 13 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/kernel.h> 18 #include <linux/errno.h> 19 #include <linux/string.h> 20 #include <linux/types.h> 21 #include <linux/pagemap.h> 22 #include <linux/ptrace.h> 23 #include <linux/mman.h> 24 #include <linux/mm.h> 25 #include <linux/interrupt.h> 26 #include <linux/highmem.h> 27 #include <linux/extable.h> 28 #include <linux/kprobes.h> 29 #include <linux/kdebug.h> 30 #include <linux/perf_event.h> 31 #include <linux/ratelimit.h> 32 #include <linux/context_tracking.h> 33 #include <linux/hugetlb.h> 34 #include <linux/uaccess.h> 35 #include <linux/kfence.h> 36 #include <linux/pkeys.h> 37 38 #include <asm/firmware.h> 39 #include <asm/interrupt.h> 40 #include <asm/page.h> 41 #include <asm/mmu.h> 42 #include <asm/mmu_context.h> 43 #include <asm/siginfo.h> 44 #include <asm/debug.h> 45 #include <asm/kup.h> 46 #include <asm/inst.h> 47 48 49 /* 50 * do_page_fault error handling helpers 51 */ 52 53 static int 54 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code) 55 { 56 /* 57 * If we are in kernel mode, bail out with a SEGV, this will 58 * be caught by the assembly which will restore the non-volatile 59 * registers before calling bad_page_fault() 60 */ 61 if (!user_mode(regs)) 62 return SIGSEGV; 63 64 _exception(SIGSEGV, regs, si_code, address); 65 66 return 0; 67 } 68 69 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address) 70 { 71 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR); 72 } 73 74 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code) 75 { 76 struct mm_struct *mm = current->mm; 77 78 /* 79 * Something tried to access memory that isn't in our memory map.. 80 * Fix it, but check if it's kernel or user first.. 81 */ 82 mmap_read_unlock(mm); 83 84 return __bad_area_nosemaphore(regs, address, si_code); 85 } 86 87 static noinline int bad_area(struct pt_regs *regs, unsigned long address) 88 { 89 return __bad_area(regs, address, SEGV_MAPERR); 90 } 91 92 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address, 93 struct vm_area_struct *vma) 94 { 95 struct mm_struct *mm = current->mm; 96 int pkey; 97 98 /* 99 * We don't try to fetch the pkey from page table because reading 100 * page table without locking doesn't guarantee stable pte value. 101 * Hence the pkey value that we return to userspace can be different 102 * from the pkey that actually caused access error. 103 * 104 * It does *not* guarantee that the VMA we find here 105 * was the one that we faulted on. 106 * 107 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 108 * 2. T1 : set AMR to deny access to pkey=4, touches, page 109 * 3. T1 : faults... 110 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 111 * 5. T1 : enters fault handler, takes mmap_lock, etc... 112 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 113 * faulted on a pte with its pkey=4. 114 */ 115 pkey = vma_pkey(vma); 116 117 mmap_read_unlock(mm); 118 119 /* 120 * If we are in kernel mode, bail out with a SEGV, this will 121 * be caught by the assembly which will restore the non-volatile 122 * registers before calling bad_page_fault() 123 */ 124 if (!user_mode(regs)) 125 return SIGSEGV; 126 127 _exception_pkey(regs, address, pkey); 128 129 return 0; 130 } 131 132 static noinline int bad_access(struct pt_regs *regs, unsigned long address) 133 { 134 return __bad_area(regs, address, SEGV_ACCERR); 135 } 136 137 static int do_sigbus(struct pt_regs *regs, unsigned long address, 138 vm_fault_t fault) 139 { 140 if (!user_mode(regs)) 141 return SIGBUS; 142 143 current->thread.trap_nr = BUS_ADRERR; 144 #ifdef CONFIG_MEMORY_FAILURE 145 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 146 unsigned int lsb = 0; /* shutup gcc */ 147 148 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 149 current->comm, current->pid, address); 150 151 if (fault & VM_FAULT_HWPOISON_LARGE) 152 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 153 if (fault & VM_FAULT_HWPOISON) 154 lsb = PAGE_SHIFT; 155 156 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); 157 return 0; 158 } 159 160 #endif 161 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); 162 return 0; 163 } 164 165 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, 166 vm_fault_t fault) 167 { 168 /* 169 * Kernel page fault interrupted by SIGKILL. We have no reason to 170 * continue processing. 171 */ 172 if (fatal_signal_pending(current) && !user_mode(regs)) 173 return SIGKILL; 174 175 /* Out of memory */ 176 if (fault & VM_FAULT_OOM) { 177 /* 178 * We ran out of memory, or some other thing happened to us that 179 * made us unable to handle the page fault gracefully. 180 */ 181 if (!user_mode(regs)) 182 return SIGSEGV; 183 pagefault_out_of_memory(); 184 } else { 185 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 186 VM_FAULT_HWPOISON_LARGE)) 187 return do_sigbus(regs, addr, fault); 188 else if (fault & VM_FAULT_SIGSEGV) 189 return bad_area_nosemaphore(regs, addr); 190 else 191 BUG(); 192 } 193 return 0; 194 } 195 196 /* Is this a bad kernel fault ? */ 197 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code, 198 unsigned long address, bool is_write) 199 { 200 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE; 201 202 /* NX faults set DSISR_PROTFAULT on the 8xx, DSISR_NOEXEC_OR_G on others */ 203 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT | 204 DSISR_PROTFAULT))) { 205 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n", 206 address >= TASK_SIZE ? "exec-protected" : "user", 207 address, 208 from_kuid(&init_user_ns, current_uid())); 209 210 // Kernel exec fault is always bad 211 return true; 212 } 213 214 // Kernel fault on kernel address is bad 215 if (address >= TASK_SIZE) 216 return true; 217 218 // Read/write fault blocked by KUAP is bad, it can never succeed. 219 if (bad_kuap_fault(regs, address, is_write)) { 220 pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n", 221 is_write ? "write" : "read", address, 222 from_kuid(&init_user_ns, current_uid())); 223 224 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad 225 if (!search_exception_tables(regs->nip)) 226 return true; 227 228 // Read/write fault in a valid region (the exception table search passed 229 // above), but blocked by KUAP is bad, it can never succeed. 230 return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read"); 231 } 232 233 // What's left? Kernel fault on user and allowed by KUAP in the faulting context. 234 return false; 235 } 236 237 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey, 238 struct vm_area_struct *vma) 239 { 240 /* 241 * Make sure to check the VMA so that we do not perform 242 * faults just to hit a pkey fault as soon as we fill in a 243 * page. Only called for current mm, hence foreign == 0 244 */ 245 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0)) 246 return true; 247 248 return false; 249 } 250 251 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma) 252 { 253 /* 254 * Allow execution from readable areas if the MMU does not 255 * provide separate controls over reading and executing. 256 * 257 * Note: That code used to not be enabled for 4xx/BookE. 258 * It is now as I/D cache coherency for these is done at 259 * set_pte_at() time and I see no reason why the test 260 * below wouldn't be valid on those processors. This -may- 261 * break programs compiled with a really old ABI though. 262 */ 263 if (is_exec) { 264 return !(vma->vm_flags & VM_EXEC) && 265 (cpu_has_feature(CPU_FTR_NOEXECUTE) || 266 !(vma->vm_flags & (VM_READ | VM_WRITE))); 267 } 268 269 if (is_write) { 270 if (unlikely(!(vma->vm_flags & VM_WRITE))) 271 return true; 272 return false; 273 } 274 275 if (unlikely(!vma_is_accessible(vma))) 276 return true; 277 /* 278 * We should ideally do the vma pkey access check here. But in the 279 * fault path, handle_mm_fault() also does the same check. To avoid 280 * these multiple checks, we skip it here and handle access error due 281 * to pkeys later. 282 */ 283 return false; 284 } 285 286 #ifdef CONFIG_PPC_SMLPAR 287 static inline void cmo_account_page_fault(void) 288 { 289 if (firmware_has_feature(FW_FEATURE_CMO)) { 290 u32 page_ins; 291 292 preempt_disable(); 293 page_ins = be32_to_cpu(get_lppaca()->page_ins); 294 page_ins += 1 << PAGE_FACTOR; 295 get_lppaca()->page_ins = cpu_to_be32(page_ins); 296 preempt_enable(); 297 } 298 } 299 #else 300 static inline void cmo_account_page_fault(void) { } 301 #endif /* CONFIG_PPC_SMLPAR */ 302 303 static void sanity_check_fault(bool is_write, bool is_user, 304 unsigned long error_code, unsigned long address) 305 { 306 /* 307 * Userspace trying to access kernel address, we get PROTFAULT for that. 308 */ 309 if (is_user && address >= TASK_SIZE) { 310 if ((long)address == -1) 311 return; 312 313 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n", 314 current->comm, current->pid, address, 315 from_kuid(&init_user_ns, current_uid())); 316 return; 317 } 318 319 if (!IS_ENABLED(CONFIG_PPC_BOOK3S)) 320 return; 321 322 /* 323 * For hash translation mode, we should never get a 324 * PROTFAULT. Any update to pte to reduce access will result in us 325 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE 326 * fault instead of DSISR_PROTFAULT. 327 * 328 * A pte update to relax the access will not result in a hash page table 329 * entry invalidate and hence can result in DSISR_PROTFAULT. 330 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have 331 * the special !is_write in the below conditional. 332 * 333 * For platforms that doesn't supports coherent icache and do support 334 * per page noexec bit, we do setup things such that we do the 335 * sync between D/I cache via fault. But that is handled via low level 336 * hash fault code (hash_page_do_lazy_icache()) and we should not reach 337 * here in such case. 338 * 339 * For wrong access that can result in PROTFAULT, the above vma->vm_flags 340 * check should handle those and hence we should fall to the bad_area 341 * handling correctly. 342 * 343 * For embedded with per page exec support that doesn't support coherent 344 * icache we do get PROTFAULT and we handle that D/I cache sync in 345 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON 346 * is conditional for server MMU. 347 * 348 * For radix, we can get prot fault for autonuma case, because radix 349 * page table will have them marked noaccess for user. 350 */ 351 if (radix_enabled() || is_write) 352 return; 353 354 WARN_ON_ONCE(error_code & DSISR_PROTFAULT); 355 } 356 357 /* 358 * Define the correct "is_write" bit in error_code based 359 * on the processor family 360 */ 361 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) 362 #define page_fault_is_write(__err) ((__err) & ESR_DST) 363 #else 364 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE) 365 #endif 366 367 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 368 #define page_fault_is_bad(__err) (0) 369 #elif defined(CONFIG_PPC_8xx) 370 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G) 371 #elif defined(CONFIG_PPC64) 372 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S) 373 #else 374 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S) 375 #endif 376 377 /* 378 * For 600- and 800-family processors, the error_code parameter is DSISR 379 * for a data fault, SRR1 for an instruction fault. 380 * For 400-family processors the error_code parameter is ESR for a data fault, 381 * 0 for an instruction fault. 382 * For 64-bit processors, the error_code parameter is DSISR for a data access 383 * fault, SRR1 & 0x08000000 for an instruction access fault. 384 * 385 * The return value is 0 if the fault was handled, or the signal 386 * number if this is a kernel fault that can't be handled here. 387 */ 388 static int ___do_page_fault(struct pt_regs *regs, unsigned long address, 389 unsigned long error_code) 390 { 391 struct vm_area_struct * vma; 392 struct mm_struct *mm = current->mm; 393 unsigned int flags = FAULT_FLAG_DEFAULT; 394 int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE; 395 int is_user = user_mode(regs); 396 int is_write = page_fault_is_write(error_code); 397 vm_fault_t fault, major = 0; 398 bool kprobe_fault = kprobe_page_fault(regs, 11); 399 400 if (unlikely(debugger_fault_handler(regs) || kprobe_fault)) 401 return 0; 402 403 if (unlikely(page_fault_is_bad(error_code))) { 404 if (is_user) { 405 _exception(SIGBUS, regs, BUS_OBJERR, address); 406 return 0; 407 } 408 return SIGBUS; 409 } 410 411 /* Additional sanity check(s) */ 412 sanity_check_fault(is_write, is_user, error_code, address); 413 414 /* 415 * The kernel should never take an execute fault nor should it 416 * take a page fault to a kernel address or a page fault to a user 417 * address outside of dedicated places 418 */ 419 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) { 420 if (kfence_handle_page_fault(address, is_write, regs)) 421 return 0; 422 423 return SIGSEGV; 424 } 425 426 /* 427 * If we're in an interrupt, have no user context or are running 428 * in a region with pagefaults disabled then we must not take the fault 429 */ 430 if (unlikely(faulthandler_disabled() || !mm)) { 431 if (is_user) 432 printk_ratelimited(KERN_ERR "Page fault in user mode" 433 " with faulthandler_disabled()=%d" 434 " mm=%p\n", 435 faulthandler_disabled(), mm); 436 return bad_area_nosemaphore(regs, address); 437 } 438 439 interrupt_cond_local_irq_enable(regs); 440 441 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 442 443 /* 444 * We want to do this outside mmap_lock, because reading code around nip 445 * can result in fault, which will cause a deadlock when called with 446 * mmap_lock held 447 */ 448 if (is_user) 449 flags |= FAULT_FLAG_USER; 450 if (is_write) 451 flags |= FAULT_FLAG_WRITE; 452 if (is_exec) 453 flags |= FAULT_FLAG_INSTRUCTION; 454 455 /* When running in the kernel we expect faults to occur only to 456 * addresses in user space. All other faults represent errors in the 457 * kernel and should generate an OOPS. Unfortunately, in the case of an 458 * erroneous fault occurring in a code path which already holds mmap_lock 459 * we will deadlock attempting to validate the fault against the 460 * address space. Luckily the kernel only validly references user 461 * space from well defined areas of code, which are listed in the 462 * exceptions table. 463 * 464 * As the vast majority of faults will be valid we will only perform 465 * the source reference check when there is a possibility of a deadlock. 466 * Attempt to lock the address space, if we cannot we then validate the 467 * source. If this is invalid we can skip the address space check, 468 * thus avoiding the deadlock. 469 */ 470 if (unlikely(!mmap_read_trylock(mm))) { 471 if (!is_user && !search_exception_tables(regs->nip)) 472 return bad_area_nosemaphore(regs, address); 473 474 retry: 475 mmap_read_lock(mm); 476 } else { 477 /* 478 * The above down_read_trylock() might have succeeded in 479 * which case we'll have missed the might_sleep() from 480 * down_read(): 481 */ 482 might_sleep(); 483 } 484 485 vma = find_vma(mm, address); 486 if (unlikely(!vma)) 487 return bad_area(regs, address); 488 489 if (unlikely(vma->vm_start > address)) { 490 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 491 return bad_area(regs, address); 492 493 if (unlikely(expand_stack(vma, address))) 494 return bad_area(regs, address); 495 } 496 497 if (unlikely(access_pkey_error(is_write, is_exec, 498 (error_code & DSISR_KEYFAULT), vma))) 499 return bad_access_pkey(regs, address, vma); 500 501 if (unlikely(access_error(is_write, is_exec, vma))) 502 return bad_access(regs, address); 503 504 /* 505 * If for any reason at all we couldn't handle the fault, 506 * make sure we exit gracefully rather than endlessly redo 507 * the fault. 508 */ 509 fault = handle_mm_fault(vma, address, flags, regs); 510 511 major |= fault & VM_FAULT_MAJOR; 512 513 if (fault_signal_pending(fault, regs)) 514 return user_mode(regs) ? 0 : SIGBUS; 515 516 /* 517 * Handle the retry right now, the mmap_lock has been released in that 518 * case. 519 */ 520 if (unlikely(fault & VM_FAULT_RETRY)) { 521 if (flags & FAULT_FLAG_ALLOW_RETRY) { 522 flags |= FAULT_FLAG_TRIED; 523 goto retry; 524 } 525 } 526 527 mmap_read_unlock(current->mm); 528 529 if (unlikely(fault & VM_FAULT_ERROR)) 530 return mm_fault_error(regs, address, fault); 531 532 /* 533 * Major/minor page fault accounting. 534 */ 535 if (major) 536 cmo_account_page_fault(); 537 538 return 0; 539 } 540 NOKPROBE_SYMBOL(___do_page_fault); 541 542 static __always_inline void __do_page_fault(struct pt_regs *regs) 543 { 544 long err; 545 546 err = ___do_page_fault(regs, regs->dar, regs->dsisr); 547 if (unlikely(err)) 548 bad_page_fault(regs, err); 549 } 550 551 DEFINE_INTERRUPT_HANDLER(do_page_fault) 552 { 553 __do_page_fault(regs); 554 } 555 556 #ifdef CONFIG_PPC_BOOK3S_64 557 /* Same as do_page_fault but interrupt entry has already run in do_hash_fault */ 558 void hash__do_page_fault(struct pt_regs *regs) 559 { 560 __do_page_fault(regs); 561 } 562 NOKPROBE_SYMBOL(hash__do_page_fault); 563 #endif 564 565 /* 566 * bad_page_fault is called when we have a bad access from the kernel. 567 * It is called from the DSI and ISI handlers in head.S and from some 568 * of the procedures in traps.c. 569 */ 570 static void __bad_page_fault(struct pt_regs *regs, int sig) 571 { 572 int is_write = page_fault_is_write(regs->dsisr); 573 574 /* kernel has accessed a bad area */ 575 576 switch (TRAP(regs)) { 577 case INTERRUPT_DATA_STORAGE: 578 case INTERRUPT_DATA_SEGMENT: 579 case INTERRUPT_H_DATA_STORAGE: 580 pr_alert("BUG: %s on %s at 0x%08lx\n", 581 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" : 582 "Unable to handle kernel data access", 583 is_write ? "write" : "read", regs->dar); 584 break; 585 case INTERRUPT_INST_STORAGE: 586 case INTERRUPT_INST_SEGMENT: 587 pr_alert("BUG: Unable to handle kernel instruction fetch%s", 588 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n"); 589 break; 590 case INTERRUPT_ALIGNMENT: 591 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n", 592 regs->dar); 593 break; 594 default: 595 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n", 596 regs->dar); 597 break; 598 } 599 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", 600 regs->nip); 601 602 if (task_stack_end_corrupted(current)) 603 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 604 605 die("Kernel access of bad area", regs, sig); 606 } 607 608 void bad_page_fault(struct pt_regs *regs, int sig) 609 { 610 const struct exception_table_entry *entry; 611 612 /* Are we prepared to handle this fault? */ 613 entry = search_exception_tables(instruction_pointer(regs)); 614 if (entry) 615 instruction_pointer_set(regs, extable_fixup(entry)); 616 else 617 __bad_page_fault(regs, sig); 618 } 619 620 #ifdef CONFIG_PPC_BOOK3S_64 621 DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv) 622 { 623 bad_page_fault(regs, SIGSEGV); 624 } 625 #endif 626