xref: /linux/arch/powerpc/mm/fault.c (revision 24b10e5f8e0d2bee1a10fc67011ea5d936c1a389)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  PowerPC version
4  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5  *
6  *  Derived from "arch/i386/mm/fault.c"
7  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *
9  *  Modified by Cort Dougan and Paul Mackerras.
10  *
11  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12  */
13 
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/highmem.h>
27 #include <linux/extable.h>
28 #include <linux/kprobes.h>
29 #include <linux/kdebug.h>
30 #include <linux/perf_event.h>
31 #include <linux/ratelimit.h>
32 #include <linux/context_tracking.h>
33 #include <linux/hugetlb.h>
34 #include <linux/uaccess.h>
35 #include <linux/kfence.h>
36 #include <linux/pkeys.h>
37 
38 #include <asm/firmware.h>
39 #include <asm/interrupt.h>
40 #include <asm/page.h>
41 #include <asm/mmu.h>
42 #include <asm/mmu_context.h>
43 #include <asm/siginfo.h>
44 #include <asm/debug.h>
45 #include <asm/kup.h>
46 #include <asm/inst.h>
47 
48 
49 /*
50  * do_page_fault error handling helpers
51  */
52 
53 static int
54 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
55 {
56 	/*
57 	 * If we are in kernel mode, bail out with a SEGV, this will
58 	 * be caught by the assembly which will restore the non-volatile
59 	 * registers before calling bad_page_fault()
60 	 */
61 	if (!user_mode(regs))
62 		return SIGSEGV;
63 
64 	_exception(SIGSEGV, regs, si_code, address);
65 
66 	return 0;
67 }
68 
69 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
70 {
71 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
72 }
73 
74 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
75 {
76 	struct mm_struct *mm = current->mm;
77 
78 	/*
79 	 * Something tried to access memory that isn't in our memory map..
80 	 * Fix it, but check if it's kernel or user first..
81 	 */
82 	mmap_read_unlock(mm);
83 
84 	return __bad_area_nosemaphore(regs, address, si_code);
85 }
86 
87 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
88 				    struct vm_area_struct *vma)
89 {
90 	struct mm_struct *mm = current->mm;
91 	int pkey;
92 
93 	/*
94 	 * We don't try to fetch the pkey from page table because reading
95 	 * page table without locking doesn't guarantee stable pte value.
96 	 * Hence the pkey value that we return to userspace can be different
97 	 * from the pkey that actually caused access error.
98 	 *
99 	 * It does *not* guarantee that the VMA we find here
100 	 * was the one that we faulted on.
101 	 *
102 	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
103 	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
104 	 * 3. T1   : faults...
105 	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
106 	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
107 	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
108 	 *	     faulted on a pte with its pkey=4.
109 	 */
110 	pkey = vma_pkey(vma);
111 
112 	mmap_read_unlock(mm);
113 
114 	/*
115 	 * If we are in kernel mode, bail out with a SEGV, this will
116 	 * be caught by the assembly which will restore the non-volatile
117 	 * registers before calling bad_page_fault()
118 	 */
119 	if (!user_mode(regs))
120 		return SIGSEGV;
121 
122 	_exception_pkey(regs, address, pkey);
123 
124 	return 0;
125 }
126 
127 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
128 {
129 	return __bad_area(regs, address, SEGV_ACCERR);
130 }
131 
132 static int do_sigbus(struct pt_regs *regs, unsigned long address,
133 		     vm_fault_t fault)
134 {
135 	if (!user_mode(regs))
136 		return SIGBUS;
137 
138 	current->thread.trap_nr = BUS_ADRERR;
139 #ifdef CONFIG_MEMORY_FAILURE
140 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
141 		unsigned int lsb = 0; /* shutup gcc */
142 
143 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
144 			current->comm, current->pid, address);
145 
146 		if (fault & VM_FAULT_HWPOISON_LARGE)
147 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
148 		if (fault & VM_FAULT_HWPOISON)
149 			lsb = PAGE_SHIFT;
150 
151 		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
152 		return 0;
153 	}
154 
155 #endif
156 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
157 	return 0;
158 }
159 
160 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
161 				vm_fault_t fault)
162 {
163 	/*
164 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
165 	 * continue processing.
166 	 */
167 	if (fatal_signal_pending(current) && !user_mode(regs))
168 		return SIGKILL;
169 
170 	/* Out of memory */
171 	if (fault & VM_FAULT_OOM) {
172 		/*
173 		 * We ran out of memory, or some other thing happened to us that
174 		 * made us unable to handle the page fault gracefully.
175 		 */
176 		if (!user_mode(regs))
177 			return SIGSEGV;
178 		pagefault_out_of_memory();
179 	} else {
180 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
181 			     VM_FAULT_HWPOISON_LARGE))
182 			return do_sigbus(regs, addr, fault);
183 		else if (fault & VM_FAULT_SIGSEGV)
184 			return bad_area_nosemaphore(regs, addr);
185 		else
186 			BUG();
187 	}
188 	return 0;
189 }
190 
191 /* Is this a bad kernel fault ? */
192 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
193 			     unsigned long address, bool is_write)
194 {
195 	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
196 
197 	if (is_exec) {
198 		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
199 				    address >= TASK_SIZE ? "exec-protected" : "user",
200 				    address,
201 				    from_kuid(&init_user_ns, current_uid()));
202 
203 		// Kernel exec fault is always bad
204 		return true;
205 	}
206 
207 	// Kernel fault on kernel address is bad
208 	if (address >= TASK_SIZE)
209 		return true;
210 
211 	// Read/write fault blocked by KUAP is bad, it can never succeed.
212 	if (bad_kuap_fault(regs, address, is_write)) {
213 		pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
214 				    is_write ? "write" : "read", address,
215 				    from_kuid(&init_user_ns, current_uid()));
216 
217 		// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
218 		if (!search_exception_tables(regs->nip))
219 			return true;
220 
221 		// Read/write fault in a valid region (the exception table search passed
222 		// above), but blocked by KUAP is bad, it can never succeed.
223 		return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
224 	}
225 
226 	// What's left? Kernel fault on user and allowed by KUAP in the faulting context.
227 	return false;
228 }
229 
230 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
231 			      struct vm_area_struct *vma)
232 {
233 	/*
234 	 * Make sure to check the VMA so that we do not perform
235 	 * faults just to hit a pkey fault as soon as we fill in a
236 	 * page. Only called for current mm, hence foreign == 0
237 	 */
238 	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
239 		return true;
240 
241 	return false;
242 }
243 
244 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
245 {
246 	/*
247 	 * Allow execution from readable areas if the MMU does not
248 	 * provide separate controls over reading and executing.
249 	 *
250 	 * Note: That code used to not be enabled for 4xx/BookE.
251 	 * It is now as I/D cache coherency for these is done at
252 	 * set_pte_at() time and I see no reason why the test
253 	 * below wouldn't be valid on those processors. This -may-
254 	 * break programs compiled with a really old ABI though.
255 	 */
256 	if (is_exec) {
257 		return !(vma->vm_flags & VM_EXEC) &&
258 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
259 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
260 	}
261 
262 	if (is_write) {
263 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
264 			return true;
265 		return false;
266 	}
267 
268 	/*
269 	 * VM_READ, VM_WRITE and VM_EXEC may imply read permissions, as
270 	 * defined in protection_map[].  In that case Read faults can only be
271 	 * caused by a PROT_NONE mapping. However a non exec access on a
272 	 * VM_EXEC only mapping is invalid anyway, so report it as such.
273 	 */
274 	if (unlikely(!vma_is_accessible(vma)))
275 		return true;
276 
277 	if ((vma->vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)
278 		return true;
279 
280 	/*
281 	 * We should ideally do the vma pkey access check here. But in the
282 	 * fault path, handle_mm_fault() also does the same check. To avoid
283 	 * these multiple checks, we skip it here and handle access error due
284 	 * to pkeys later.
285 	 */
286 	return false;
287 }
288 
289 #ifdef CONFIG_PPC_SMLPAR
290 static inline void cmo_account_page_fault(void)
291 {
292 	if (firmware_has_feature(FW_FEATURE_CMO)) {
293 		u32 page_ins;
294 
295 		preempt_disable();
296 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
297 		page_ins += 1 << PAGE_FACTOR;
298 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
299 		preempt_enable();
300 	}
301 }
302 #else
303 static inline void cmo_account_page_fault(void) { }
304 #endif /* CONFIG_PPC_SMLPAR */
305 
306 static void sanity_check_fault(bool is_write, bool is_user,
307 			       unsigned long error_code, unsigned long address)
308 {
309 	/*
310 	 * Userspace trying to access kernel address, we get PROTFAULT for that.
311 	 */
312 	if (is_user && address >= TASK_SIZE) {
313 		if ((long)address == -1)
314 			return;
315 
316 		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
317 				   current->comm, current->pid, address,
318 				   from_kuid(&init_user_ns, current_uid()));
319 		return;
320 	}
321 
322 	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
323 		return;
324 
325 	/*
326 	 * For hash translation mode, we should never get a
327 	 * PROTFAULT. Any update to pte to reduce access will result in us
328 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
329 	 * fault instead of DSISR_PROTFAULT.
330 	 *
331 	 * A pte update to relax the access will not result in a hash page table
332 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
333 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
334 	 * the special !is_write in the below conditional.
335 	 *
336 	 * For platforms that doesn't supports coherent icache and do support
337 	 * per page noexec bit, we do setup things such that we do the
338 	 * sync between D/I cache via fault. But that is handled via low level
339 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
340 	 * here in such case.
341 	 *
342 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
343 	 * check should handle those and hence we should fall to the bad_area
344 	 * handling correctly.
345 	 *
346 	 * For embedded with per page exec support that doesn't support coherent
347 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
348 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
349 	 * is conditional for server MMU.
350 	 *
351 	 * For radix, we can get prot fault for autonuma case, because radix
352 	 * page table will have them marked noaccess for user.
353 	 */
354 	if (radix_enabled() || is_write)
355 		return;
356 
357 	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
358 }
359 
360 /*
361  * Define the correct "is_write" bit in error_code based
362  * on the processor family
363  */
364 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
365 #define page_fault_is_write(__err)	((__err) & ESR_DST)
366 #else
367 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
368 #endif
369 
370 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
371 #define page_fault_is_bad(__err)	(0)
372 #elif defined(CONFIG_PPC_8xx)
373 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
374 #elif defined(CONFIG_PPC64)
375 static int page_fault_is_bad(unsigned long err)
376 {
377 	unsigned long flag = DSISR_BAD_FAULT_64S;
378 
379 	/*
380 	 * PAPR+ v2.11 § 14.15.3.4.1 (unreleased)
381 	 * If byte 0, bit 3 of pi-attribute-specifier-type in
382 	 * ibm,pi-features property is defined, ignore the DSI error
383 	 * which is caused by the paste instruction on the
384 	 * suspended NX window.
385 	 */
386 	if (mmu_has_feature(MMU_FTR_NX_DSI))
387 		flag &= ~DSISR_BAD_COPYPASTE;
388 
389 	return err & flag;
390 }
391 #else
392 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
393 #endif
394 
395 /*
396  * For 600- and 800-family processors, the error_code parameter is DSISR
397  * for a data fault, SRR1 for an instruction fault.
398  * For 400-family processors the error_code parameter is ESR for a data fault,
399  * 0 for an instruction fault.
400  * For 64-bit processors, the error_code parameter is DSISR for a data access
401  * fault, SRR1 & 0x08000000 for an instruction access fault.
402  *
403  * The return value is 0 if the fault was handled, or the signal
404  * number if this is a kernel fault that can't be handled here.
405  */
406 static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
407 			   unsigned long error_code)
408 {
409 	struct vm_area_struct * vma;
410 	struct mm_struct *mm = current->mm;
411 	unsigned int flags = FAULT_FLAG_DEFAULT;
412 	int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
413 	int is_user = user_mode(regs);
414 	int is_write = page_fault_is_write(error_code);
415 	vm_fault_t fault, major = 0;
416 	bool kprobe_fault = kprobe_page_fault(regs, 11);
417 
418 	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
419 		return 0;
420 
421 	if (unlikely(page_fault_is_bad(error_code))) {
422 		if (is_user) {
423 			_exception(SIGBUS, regs, BUS_OBJERR, address);
424 			return 0;
425 		}
426 		return SIGBUS;
427 	}
428 
429 	/* Additional sanity check(s) */
430 	sanity_check_fault(is_write, is_user, error_code, address);
431 
432 	/*
433 	 * The kernel should never take an execute fault nor should it
434 	 * take a page fault to a kernel address or a page fault to a user
435 	 * address outside of dedicated places
436 	 */
437 	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
438 		if (kfence_handle_page_fault(address, is_write, regs))
439 			return 0;
440 
441 		return SIGSEGV;
442 	}
443 
444 	/*
445 	 * If we're in an interrupt, have no user context or are running
446 	 * in a region with pagefaults disabled then we must not take the fault
447 	 */
448 	if (unlikely(faulthandler_disabled() || !mm)) {
449 		if (is_user)
450 			printk_ratelimited(KERN_ERR "Page fault in user mode"
451 					   " with faulthandler_disabled()=%d"
452 					   " mm=%p\n",
453 					   faulthandler_disabled(), mm);
454 		return bad_area_nosemaphore(regs, address);
455 	}
456 
457 	interrupt_cond_local_irq_enable(regs);
458 
459 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
460 
461 	/*
462 	 * We want to do this outside mmap_lock, because reading code around nip
463 	 * can result in fault, which will cause a deadlock when called with
464 	 * mmap_lock held
465 	 */
466 	if (is_user)
467 		flags |= FAULT_FLAG_USER;
468 	if (is_write)
469 		flags |= FAULT_FLAG_WRITE;
470 	if (is_exec)
471 		flags |= FAULT_FLAG_INSTRUCTION;
472 
473 	if (!(flags & FAULT_FLAG_USER))
474 		goto lock_mmap;
475 
476 	vma = lock_vma_under_rcu(mm, address);
477 	if (!vma)
478 		goto lock_mmap;
479 
480 	if (unlikely(access_pkey_error(is_write, is_exec,
481 				       (error_code & DSISR_KEYFAULT), vma))) {
482 		vma_end_read(vma);
483 		goto lock_mmap;
484 	}
485 
486 	if (unlikely(access_error(is_write, is_exec, vma))) {
487 		vma_end_read(vma);
488 		goto lock_mmap;
489 	}
490 
491 	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
492 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
493 		vma_end_read(vma);
494 
495 	if (!(fault & VM_FAULT_RETRY)) {
496 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
497 		goto done;
498 	}
499 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
500 	if (fault & VM_FAULT_MAJOR)
501 		flags |= FAULT_FLAG_TRIED;
502 
503 	if (fault_signal_pending(fault, regs))
504 		return user_mode(regs) ? 0 : SIGBUS;
505 
506 lock_mmap:
507 
508 	/* When running in the kernel we expect faults to occur only to
509 	 * addresses in user space.  All other faults represent errors in the
510 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
511 	 * erroneous fault occurring in a code path which already holds mmap_lock
512 	 * we will deadlock attempting to validate the fault against the
513 	 * address space.  Luckily the kernel only validly references user
514 	 * space from well defined areas of code, which are listed in the
515 	 * exceptions table. lock_mm_and_find_vma() handles that logic.
516 	 */
517 retry:
518 	vma = lock_mm_and_find_vma(mm, address, regs);
519 	if (unlikely(!vma))
520 		return bad_area_nosemaphore(regs, address);
521 
522 	if (unlikely(access_pkey_error(is_write, is_exec,
523 				       (error_code & DSISR_KEYFAULT), vma)))
524 		return bad_access_pkey(regs, address, vma);
525 
526 	if (unlikely(access_error(is_write, is_exec, vma)))
527 		return bad_access(regs, address);
528 
529 	/*
530 	 * If for any reason at all we couldn't handle the fault,
531 	 * make sure we exit gracefully rather than endlessly redo
532 	 * the fault.
533 	 */
534 	fault = handle_mm_fault(vma, address, flags, regs);
535 
536 	major |= fault & VM_FAULT_MAJOR;
537 
538 	if (fault_signal_pending(fault, regs))
539 		return user_mode(regs) ? 0 : SIGBUS;
540 
541 	/* The fault is fully completed (including releasing mmap lock) */
542 	if (fault & VM_FAULT_COMPLETED)
543 		goto out;
544 
545 	/*
546 	 * Handle the retry right now, the mmap_lock has been released in that
547 	 * case.
548 	 */
549 	if (unlikely(fault & VM_FAULT_RETRY)) {
550 		flags |= FAULT_FLAG_TRIED;
551 		goto retry;
552 	}
553 
554 	mmap_read_unlock(current->mm);
555 
556 done:
557 	if (unlikely(fault & VM_FAULT_ERROR))
558 		return mm_fault_error(regs, address, fault);
559 
560 out:
561 	/*
562 	 * Major/minor page fault accounting.
563 	 */
564 	if (major)
565 		cmo_account_page_fault();
566 
567 	return 0;
568 }
569 NOKPROBE_SYMBOL(___do_page_fault);
570 
571 static __always_inline void __do_page_fault(struct pt_regs *regs)
572 {
573 	long err;
574 
575 	err = ___do_page_fault(regs, regs->dar, regs->dsisr);
576 	if (unlikely(err))
577 		bad_page_fault(regs, err);
578 }
579 
580 DEFINE_INTERRUPT_HANDLER(do_page_fault)
581 {
582 	__do_page_fault(regs);
583 }
584 
585 #ifdef CONFIG_PPC_BOOK3S_64
586 /* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
587 void hash__do_page_fault(struct pt_regs *regs)
588 {
589 	__do_page_fault(regs);
590 }
591 NOKPROBE_SYMBOL(hash__do_page_fault);
592 #endif
593 
594 /*
595  * bad_page_fault is called when we have a bad access from the kernel.
596  * It is called from the DSI and ISI handlers in head.S and from some
597  * of the procedures in traps.c.
598  */
599 static void __bad_page_fault(struct pt_regs *regs, int sig)
600 {
601 	int is_write = page_fault_is_write(regs->dsisr);
602 	const char *msg;
603 
604 	/* kernel has accessed a bad area */
605 
606 	if (regs->dar < PAGE_SIZE)
607 		msg = "Kernel NULL pointer dereference";
608 	else
609 		msg = "Unable to handle kernel data access";
610 
611 	switch (TRAP(regs)) {
612 	case INTERRUPT_DATA_STORAGE:
613 	case INTERRUPT_H_DATA_STORAGE:
614 		pr_alert("BUG: %s on %s at 0x%08lx\n", msg,
615 			 is_write ? "write" : "read", regs->dar);
616 		break;
617 	case INTERRUPT_DATA_SEGMENT:
618 		pr_alert("BUG: %s at 0x%08lx\n", msg, regs->dar);
619 		break;
620 	case INTERRUPT_INST_STORAGE:
621 	case INTERRUPT_INST_SEGMENT:
622 		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
623 			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
624 		break;
625 	case INTERRUPT_ALIGNMENT:
626 		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
627 			 regs->dar);
628 		break;
629 	default:
630 		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
631 			 regs->dar);
632 		break;
633 	}
634 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
635 		regs->nip);
636 
637 	if (task_stack_end_corrupted(current))
638 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
639 
640 	die("Kernel access of bad area", regs, sig);
641 }
642 
643 void bad_page_fault(struct pt_regs *regs, int sig)
644 {
645 	const struct exception_table_entry *entry;
646 
647 	/* Are we prepared to handle this fault?  */
648 	entry = search_exception_tables(instruction_pointer(regs));
649 	if (entry)
650 		instruction_pointer_set(regs, extable_fixup(entry));
651 	else
652 		__bad_page_fault(regs, sig);
653 }
654 
655 #ifdef CONFIG_PPC_BOOK3S_64
656 DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
657 {
658 	bad_page_fault(regs, SIGSEGV);
659 }
660 
661 /*
662  * In radix, segment interrupts indicate the EA is not addressable by the
663  * page table geometry, so they are always sent here.
664  *
665  * In hash, this is called if do_slb_fault returns error. Typically it is
666  * because the EA was outside the region allowed by software.
667  */
668 DEFINE_INTERRUPT_HANDLER(do_bad_segment_interrupt)
669 {
670 	int err = regs->result;
671 
672 	if (err == -EFAULT) {
673 		if (user_mode(regs))
674 			_exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
675 		else
676 			bad_page_fault(regs, SIGSEGV);
677 	} else if (err == -EINVAL) {
678 		unrecoverable_exception(regs);
679 	} else {
680 		BUG();
681 	}
682 }
683 #endif
684