xref: /linux/arch/powerpc/mm/fault.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 
32 #include <asm/page.h>
33 #include <asm/pgtable.h>
34 #include <asm/mmu.h>
35 #include <asm/mmu_context.h>
36 #include <asm/system.h>
37 #include <asm/uaccess.h>
38 #include <asm/tlbflush.h>
39 #include <asm/kdebug.h>
40 #include <asm/siginfo.h>
41 
42 #ifdef CONFIG_KPROBES
43 ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
44 
45 /* Hook to register for page fault notifications */
46 int register_page_fault_notifier(struct notifier_block *nb)
47 {
48 	return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
49 }
50 
51 int unregister_page_fault_notifier(struct notifier_block *nb)
52 {
53 	return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
54 }
55 
56 static inline int notify_page_fault(enum die_val val, const char *str,
57 			struct pt_regs *regs, long err, int trap, int sig)
58 {
59 	struct die_args args = {
60 		.regs = regs,
61 		.str = str,
62 		.err = err,
63 		.trapnr = trap,
64 		.signr = sig
65 	};
66 	return atomic_notifier_call_chain(&notify_page_fault_chain, val, &args);
67 }
68 #else
69 static inline int notify_page_fault(enum die_val val, const char *str,
70 			struct pt_regs *regs, long err, int trap, int sig)
71 {
72 	return NOTIFY_DONE;
73 }
74 #endif
75 
76 /*
77  * Check whether the instruction at regs->nip is a store using
78  * an update addressing form which will update r1.
79  */
80 static int store_updates_sp(struct pt_regs *regs)
81 {
82 	unsigned int inst;
83 
84 	if (get_user(inst, (unsigned int __user *)regs->nip))
85 		return 0;
86 	/* check for 1 in the rA field */
87 	if (((inst >> 16) & 0x1f) != 1)
88 		return 0;
89 	/* check major opcode */
90 	switch (inst >> 26) {
91 	case 37:	/* stwu */
92 	case 39:	/* stbu */
93 	case 45:	/* sthu */
94 	case 53:	/* stfsu */
95 	case 55:	/* stfdu */
96 		return 1;
97 	case 62:	/* std or stdu */
98 		return (inst & 3) == 1;
99 	case 31:
100 		/* check minor opcode */
101 		switch ((inst >> 1) & 0x3ff) {
102 		case 181:	/* stdux */
103 		case 183:	/* stwux */
104 		case 247:	/* stbux */
105 		case 439:	/* sthux */
106 		case 695:	/* stfsux */
107 		case 759:	/* stfdux */
108 			return 1;
109 		}
110 	}
111 	return 0;
112 }
113 
114 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
115 static void do_dabr(struct pt_regs *regs, unsigned long address,
116 		    unsigned long error_code)
117 {
118 	siginfo_t info;
119 
120 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
121 			11, SIGSEGV) == NOTIFY_STOP)
122 		return;
123 
124 	if (debugger_dabr_match(regs))
125 		return;
126 
127 	/* Clear the DABR */
128 	set_dabr(0);
129 
130 	/* Deliver the signal to userspace */
131 	info.si_signo = SIGTRAP;
132 	info.si_errno = 0;
133 	info.si_code = TRAP_HWBKPT;
134 	info.si_addr = (void __user *)address;
135 	force_sig_info(SIGTRAP, &info, current);
136 }
137 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
138 
139 /*
140  * For 600- and 800-family processors, the error_code parameter is DSISR
141  * for a data fault, SRR1 for an instruction fault. For 400-family processors
142  * the error_code parameter is ESR for a data fault, 0 for an instruction
143  * fault.
144  * For 64-bit processors, the error_code parameter is
145  *  - DSISR for a non-SLB data access fault,
146  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
147  *  - 0 any SLB fault.
148  *
149  * The return value is 0 if the fault was handled, or the signal
150  * number if this is a kernel fault that can't be handled here.
151  */
152 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
153 			    unsigned long error_code)
154 {
155 	struct vm_area_struct * vma;
156 	struct mm_struct *mm = current->mm;
157 	siginfo_t info;
158 	int code = SEGV_MAPERR;
159 	int is_write = 0;
160 	int trap = TRAP(regs);
161  	int is_exec = trap == 0x400;
162 
163 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
164 	/*
165 	 * Fortunately the bit assignments in SRR1 for an instruction
166 	 * fault and DSISR for a data fault are mostly the same for the
167 	 * bits we are interested in.  But there are some bits which
168 	 * indicate errors in DSISR but can validly be set in SRR1.
169 	 */
170 	if (trap == 0x400)
171 		error_code &= 0x48200000;
172 	else
173 		is_write = error_code & DSISR_ISSTORE;
174 #else
175 	is_write = error_code & ESR_DST;
176 #endif /* CONFIG_4xx || CONFIG_BOOKE */
177 
178 	if (notify_page_fault(DIE_PAGE_FAULT, "page_fault", regs, error_code,
179 				11, SIGSEGV) == NOTIFY_STOP)
180 		return 0;
181 
182 	if (trap == 0x300) {
183 		if (debugger_fault_handler(regs))
184 			return 0;
185 	}
186 
187 	/* On a kernel SLB miss we can only check for a valid exception entry */
188 	if (!user_mode(regs) && (address >= TASK_SIZE))
189 		return SIGSEGV;
190 
191 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
192   	if (error_code & DSISR_DABRMATCH) {
193 		/* DABR match */
194 		do_dabr(regs, address, error_code);
195 		return 0;
196 	}
197 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
198 
199 	if (in_atomic() || mm == NULL) {
200 		if (!user_mode(regs))
201 			return SIGSEGV;
202 		/* in_atomic() in user mode is really bad,
203 		   as is current->mm == NULL. */
204 		printk(KERN_EMERG "Page fault in user mode with"
205 		       "in_atomic() = %d mm = %p\n", in_atomic(), mm);
206 		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n",
207 		       regs->nip, regs->msr);
208 		die("Weird page fault", regs, SIGSEGV);
209 	}
210 
211 	/* When running in the kernel we expect faults to occur only to
212 	 * addresses in user space.  All other faults represent errors in the
213 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
214 	 * erroneous fault occurring in a code path which already holds mmap_sem
215 	 * we will deadlock attempting to validate the fault against the
216 	 * address space.  Luckily the kernel only validly references user
217 	 * space from well defined areas of code, which are listed in the
218 	 * exceptions table.
219 	 *
220 	 * As the vast majority of faults will be valid we will only perform
221 	 * the source reference check when there is a possibility of a deadlock.
222 	 * Attempt to lock the address space, if we cannot we then validate the
223 	 * source.  If this is invalid we can skip the address space check,
224 	 * thus avoiding the deadlock.
225 	 */
226 	if (!down_read_trylock(&mm->mmap_sem)) {
227 		if (!user_mode(regs) && !search_exception_tables(regs->nip))
228 			goto bad_area_nosemaphore;
229 
230 		down_read(&mm->mmap_sem);
231 	}
232 
233 	vma = find_vma(mm, address);
234 	if (!vma)
235 		goto bad_area;
236 	if (vma->vm_start <= address)
237 		goto good_area;
238 	if (!(vma->vm_flags & VM_GROWSDOWN))
239 		goto bad_area;
240 
241 	/*
242 	 * N.B. The POWER/Open ABI allows programs to access up to
243 	 * 288 bytes below the stack pointer.
244 	 * The kernel signal delivery code writes up to about 1.5kB
245 	 * below the stack pointer (r1) before decrementing it.
246 	 * The exec code can write slightly over 640kB to the stack
247 	 * before setting the user r1.  Thus we allow the stack to
248 	 * expand to 1MB without further checks.
249 	 */
250 	if (address + 0x100000 < vma->vm_end) {
251 		/* get user regs even if this fault is in kernel mode */
252 		struct pt_regs *uregs = current->thread.regs;
253 		if (uregs == NULL)
254 			goto bad_area;
255 
256 		/*
257 		 * A user-mode access to an address a long way below
258 		 * the stack pointer is only valid if the instruction
259 		 * is one which would update the stack pointer to the
260 		 * address accessed if the instruction completed,
261 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
262 		 * (or the byte, halfword, float or double forms).
263 		 *
264 		 * If we don't check this then any write to the area
265 		 * between the last mapped region and the stack will
266 		 * expand the stack rather than segfaulting.
267 		 */
268 		if (address + 2048 < uregs->gpr[1]
269 		    && (!user_mode(regs) || !store_updates_sp(regs)))
270 			goto bad_area;
271 	}
272 	if (expand_stack(vma, address))
273 		goto bad_area;
274 
275 good_area:
276 	code = SEGV_ACCERR;
277 #if defined(CONFIG_6xx)
278 	if (error_code & 0x95700000)
279 		/* an error such as lwarx to I/O controller space,
280 		   address matching DABR, eciwx, etc. */
281 		goto bad_area;
282 #endif /* CONFIG_6xx */
283 #if defined(CONFIG_8xx)
284         /* The MPC8xx seems to always set 0x80000000, which is
285          * "undefined".  Of those that can be set, this is the only
286          * one which seems bad.
287          */
288 	if (error_code & 0x10000000)
289                 /* Guarded storage error. */
290 		goto bad_area;
291 #endif /* CONFIG_8xx */
292 
293 	if (is_exec) {
294 #ifdef CONFIG_PPC64
295 		/* protection fault */
296 		if (error_code & DSISR_PROTFAULT)
297 			goto bad_area;
298 		if (!(vma->vm_flags & VM_EXEC))
299 			goto bad_area;
300 #endif
301 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
302 		pte_t *ptep;
303 		pmd_t *pmdp;
304 
305 		/* Since 4xx/Book-E supports per-page execute permission,
306 		 * we lazily flush dcache to icache. */
307 		ptep = NULL;
308 		if (get_pteptr(mm, address, &ptep, &pmdp)) {
309 			spinlock_t *ptl = pte_lockptr(mm, pmdp);
310 			spin_lock(ptl);
311 			if (pte_present(*ptep)) {
312 				struct page *page = pte_page(*ptep);
313 
314 				if (!test_bit(PG_arch_1, &page->flags)) {
315 					flush_dcache_icache_page(page);
316 					set_bit(PG_arch_1, &page->flags);
317 				}
318 				pte_update(ptep, 0, _PAGE_HWEXEC);
319 				_tlbie(address);
320 				pte_unmap_unlock(ptep, ptl);
321 				up_read(&mm->mmap_sem);
322 				return 0;
323 			}
324 			pte_unmap_unlock(ptep, ptl);
325 		}
326 #endif
327 	/* a write */
328 	} else if (is_write) {
329 		if (!(vma->vm_flags & VM_WRITE))
330 			goto bad_area;
331 	/* a read */
332 	} else {
333 		/* protection fault */
334 		if (error_code & 0x08000000)
335 			goto bad_area;
336 		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
337 			goto bad_area;
338 	}
339 
340 	/*
341 	 * If for any reason at all we couldn't handle the fault,
342 	 * make sure we exit gracefully rather than endlessly redo
343 	 * the fault.
344 	 */
345  survive:
346 	switch (handle_mm_fault(mm, vma, address, is_write)) {
347 
348 	case VM_FAULT_MINOR:
349 		current->min_flt++;
350 		break;
351 	case VM_FAULT_MAJOR:
352 		current->maj_flt++;
353 		break;
354 	case VM_FAULT_SIGBUS:
355 		goto do_sigbus;
356 	case VM_FAULT_OOM:
357 		goto out_of_memory;
358 	default:
359 		BUG();
360 	}
361 
362 	up_read(&mm->mmap_sem);
363 	return 0;
364 
365 bad_area:
366 	up_read(&mm->mmap_sem);
367 
368 bad_area_nosemaphore:
369 	/* User mode accesses cause a SIGSEGV */
370 	if (user_mode(regs)) {
371 		_exception(SIGSEGV, regs, code, address);
372 		return 0;
373 	}
374 
375 	if (is_exec && (error_code & DSISR_PROTFAULT)
376 	    && printk_ratelimit())
377 		printk(KERN_CRIT "kernel tried to execute NX-protected"
378 		       " page (%lx) - exploit attempt? (uid: %d)\n",
379 		       address, current->uid);
380 
381 	return SIGSEGV;
382 
383 /*
384  * We ran out of memory, or some other thing happened to us that made
385  * us unable to handle the page fault gracefully.
386  */
387 out_of_memory:
388 	up_read(&mm->mmap_sem);
389 	if (current->pid == 1) {
390 		yield();
391 		down_read(&mm->mmap_sem);
392 		goto survive;
393 	}
394 	printk("VM: killing process %s\n", current->comm);
395 	if (user_mode(regs))
396 		do_exit(SIGKILL);
397 	return SIGKILL;
398 
399 do_sigbus:
400 	up_read(&mm->mmap_sem);
401 	if (user_mode(regs)) {
402 		info.si_signo = SIGBUS;
403 		info.si_errno = 0;
404 		info.si_code = BUS_ADRERR;
405 		info.si_addr = (void __user *)address;
406 		force_sig_info(SIGBUS, &info, current);
407 		return 0;
408 	}
409 	return SIGBUS;
410 }
411 
412 /*
413  * bad_page_fault is called when we have a bad access from the kernel.
414  * It is called from the DSI and ISI handlers in head.S and from some
415  * of the procedures in traps.c.
416  */
417 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
418 {
419 	const struct exception_table_entry *entry;
420 
421 	/* Are we prepared to handle this fault?  */
422 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
423 		regs->nip = entry->fixup;
424 		return;
425 	}
426 
427 	/* kernel has accessed a bad area */
428 
429 	printk(KERN_ALERT "Unable to handle kernel paging request for ");
430 	switch (regs->trap) {
431 		case 0x300:
432 		case 0x380:
433 			printk("data at address 0x%08lx\n", regs->dar);
434 			break;
435 		case 0x400:
436 		case 0x480:
437 			printk("instruction fetch\n");
438 			break;
439 		default:
440 			printk("unknown fault\n");
441 	}
442 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
443 		regs->nip);
444 
445 	die("Kernel access of bad area", regs, sig);
446 }
447