xref: /linux/arch/powerpc/mm/fault.c (revision 140eb5227767c6754742020a16d2691222b9c19b)
1 /*
2  *  PowerPC version
3  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4  *
5  *  Derived from "arch/i386/mm/fault.c"
6  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  Modified by Cort Dougan and Paul Mackerras.
9  *
10  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11  *
12  *  This program is free software; you can redistribute it and/or
13  *  modify it under the terms of the GNU General Public License
14  *  as published by the Free Software Foundation; either version
15  *  2 of the License, or (at your option) any later version.
16  */
17 
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/ptrace.h>
26 #include <linux/mman.h>
27 #include <linux/mm.h>
28 #include <linux/interrupt.h>
29 #include <linux/highmem.h>
30 #include <linux/extable.h>
31 #include <linux/kprobes.h>
32 #include <linux/kdebug.h>
33 #include <linux/perf_event.h>
34 #include <linux/ratelimit.h>
35 #include <linux/context_tracking.h>
36 #include <linux/hugetlb.h>
37 #include <linux/uaccess.h>
38 
39 #include <asm/firmware.h>
40 #include <asm/page.h>
41 #include <asm/pgtable.h>
42 #include <asm/mmu.h>
43 #include <asm/mmu_context.h>
44 #include <asm/tlbflush.h>
45 #include <asm/siginfo.h>
46 #include <asm/debug.h>
47 
48 static inline bool notify_page_fault(struct pt_regs *regs)
49 {
50 	bool ret = false;
51 
52 #ifdef CONFIG_KPROBES
53 	/* kprobe_running() needs smp_processor_id() */
54 	if (!user_mode(regs)) {
55 		preempt_disable();
56 		if (kprobe_running() && kprobe_fault_handler(regs, 11))
57 			ret = true;
58 		preempt_enable();
59 	}
60 #endif /* CONFIG_KPROBES */
61 
62 	if (unlikely(debugger_fault_handler(regs)))
63 		ret = true;
64 
65 	return ret;
66 }
67 
68 /*
69  * Check whether the instruction at regs->nip is a store using
70  * an update addressing form which will update r1.
71  */
72 static bool store_updates_sp(struct pt_regs *regs)
73 {
74 	unsigned int inst;
75 
76 	if (get_user(inst, (unsigned int __user *)regs->nip))
77 		return false;
78 	/* check for 1 in the rA field */
79 	if (((inst >> 16) & 0x1f) != 1)
80 		return false;
81 	/* check major opcode */
82 	switch (inst >> 26) {
83 	case 37:	/* stwu */
84 	case 39:	/* stbu */
85 	case 45:	/* sthu */
86 	case 53:	/* stfsu */
87 	case 55:	/* stfdu */
88 		return true;
89 	case 62:	/* std or stdu */
90 		return (inst & 3) == 1;
91 	case 31:
92 		/* check minor opcode */
93 		switch ((inst >> 1) & 0x3ff) {
94 		case 181:	/* stdux */
95 		case 183:	/* stwux */
96 		case 247:	/* stbux */
97 		case 439:	/* sthux */
98 		case 695:	/* stfsux */
99 		case 759:	/* stfdux */
100 			return true;
101 		}
102 	}
103 	return false;
104 }
105 /*
106  * do_page_fault error handling helpers
107  */
108 
109 static int
110 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
111 {
112 	/*
113 	 * If we are in kernel mode, bail out with a SEGV, this will
114 	 * be caught by the assembly which will restore the non-volatile
115 	 * registers before calling bad_page_fault()
116 	 */
117 	if (!user_mode(regs))
118 		return SIGSEGV;
119 
120 	_exception(SIGSEGV, regs, si_code, address);
121 
122 	return 0;
123 }
124 
125 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
126 {
127 	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
128 }
129 
130 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
131 {
132 	struct mm_struct *mm = current->mm;
133 
134 	/*
135 	 * Something tried to access memory that isn't in our memory map..
136 	 * Fix it, but check if it's kernel or user first..
137 	 */
138 	up_read(&mm->mmap_sem);
139 
140 	return __bad_area_nosemaphore(regs, address, si_code);
141 }
142 
143 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
144 {
145 	return __bad_area(regs, address, SEGV_MAPERR);
146 }
147 
148 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
149 {
150 	return __bad_area(regs, address, SEGV_ACCERR);
151 }
152 
153 static int do_sigbus(struct pt_regs *regs, unsigned long address,
154 		     unsigned int fault)
155 {
156 	siginfo_t info;
157 	unsigned int lsb = 0;
158 
159 	if (!user_mode(regs))
160 		return SIGBUS;
161 
162 	current->thread.trap_nr = BUS_ADRERR;
163 	info.si_signo = SIGBUS;
164 	info.si_errno = 0;
165 	info.si_code = BUS_ADRERR;
166 	info.si_addr = (void __user *)address;
167 #ifdef CONFIG_MEMORY_FAILURE
168 	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
169 		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
170 			current->comm, current->pid, address);
171 		info.si_code = BUS_MCEERR_AR;
172 	}
173 
174 	if (fault & VM_FAULT_HWPOISON_LARGE)
175 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
176 	if (fault & VM_FAULT_HWPOISON)
177 		lsb = PAGE_SHIFT;
178 #endif
179 	info.si_addr_lsb = lsb;
180 	force_sig_info(SIGBUS, &info, current);
181 	return 0;
182 }
183 
184 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
185 {
186 	/*
187 	 * Kernel page fault interrupted by SIGKILL. We have no reason to
188 	 * continue processing.
189 	 */
190 	if (fatal_signal_pending(current) && !user_mode(regs))
191 		return SIGKILL;
192 
193 	/* Out of memory */
194 	if (fault & VM_FAULT_OOM) {
195 		/*
196 		 * We ran out of memory, or some other thing happened to us that
197 		 * made us unable to handle the page fault gracefully.
198 		 */
199 		if (!user_mode(regs))
200 			return SIGSEGV;
201 		pagefault_out_of_memory();
202 	} else {
203 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
204 			     VM_FAULT_HWPOISON_LARGE))
205 			return do_sigbus(regs, addr, fault);
206 		else if (fault & VM_FAULT_SIGSEGV)
207 			return bad_area_nosemaphore(regs, addr);
208 		else
209 			BUG();
210 	}
211 	return 0;
212 }
213 
214 /* Is this a bad kernel fault ? */
215 static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
216 			     unsigned long address)
217 {
218 	if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
219 		printk_ratelimited(KERN_CRIT "kernel tried to execute"
220 				   " exec-protected page (%lx) -"
221 				   "exploit attempt? (uid: %d)\n",
222 				   address, from_kuid(&init_user_ns,
223 						      current_uid()));
224 	}
225 	return is_exec || (address >= TASK_SIZE);
226 }
227 
228 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
229 				struct vm_area_struct *vma,
230 				bool store_update_sp)
231 {
232 	/*
233 	 * N.B. The POWER/Open ABI allows programs to access up to
234 	 * 288 bytes below the stack pointer.
235 	 * The kernel signal delivery code writes up to about 1.5kB
236 	 * below the stack pointer (r1) before decrementing it.
237 	 * The exec code can write slightly over 640kB to the stack
238 	 * before setting the user r1.  Thus we allow the stack to
239 	 * expand to 1MB without further checks.
240 	 */
241 	if (address + 0x100000 < vma->vm_end) {
242 		/* get user regs even if this fault is in kernel mode */
243 		struct pt_regs *uregs = current->thread.regs;
244 		if (uregs == NULL)
245 			return true;
246 
247 		/*
248 		 * A user-mode access to an address a long way below
249 		 * the stack pointer is only valid if the instruction
250 		 * is one which would update the stack pointer to the
251 		 * address accessed if the instruction completed,
252 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
253 		 * (or the byte, halfword, float or double forms).
254 		 *
255 		 * If we don't check this then any write to the area
256 		 * between the last mapped region and the stack will
257 		 * expand the stack rather than segfaulting.
258 		 */
259 		if (address + 2048 < uregs->gpr[1] && !store_update_sp)
260 			return true;
261 	}
262 	return false;
263 }
264 
265 static bool access_error(bool is_write, bool is_exec,
266 			 struct vm_area_struct *vma)
267 {
268 	/*
269 	 * Allow execution from readable areas if the MMU does not
270 	 * provide separate controls over reading and executing.
271 	 *
272 	 * Note: That code used to not be enabled for 4xx/BookE.
273 	 * It is now as I/D cache coherency for these is done at
274 	 * set_pte_at() time and I see no reason why the test
275 	 * below wouldn't be valid on those processors. This -may-
276 	 * break programs compiled with a really old ABI though.
277 	 */
278 	if (is_exec) {
279 		return !(vma->vm_flags & VM_EXEC) &&
280 			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
281 			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
282 	}
283 
284 	if (is_write) {
285 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
286 			return true;
287 		return false;
288 	}
289 
290 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
291 		return true;
292 
293 	return false;
294 }
295 
296 #ifdef CONFIG_PPC_SMLPAR
297 static inline void cmo_account_page_fault(void)
298 {
299 	if (firmware_has_feature(FW_FEATURE_CMO)) {
300 		u32 page_ins;
301 
302 		preempt_disable();
303 		page_ins = be32_to_cpu(get_lppaca()->page_ins);
304 		page_ins += 1 << PAGE_FACTOR;
305 		get_lppaca()->page_ins = cpu_to_be32(page_ins);
306 		preempt_enable();
307 	}
308 }
309 #else
310 static inline void cmo_account_page_fault(void) { }
311 #endif /* CONFIG_PPC_SMLPAR */
312 
313 #ifdef CONFIG_PPC_STD_MMU
314 static void sanity_check_fault(bool is_write, unsigned long error_code)
315 {
316 	/*
317 	 * For hash translation mode, we should never get a
318 	 * PROTFAULT. Any update to pte to reduce access will result in us
319 	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
320 	 * fault instead of DSISR_PROTFAULT.
321 	 *
322 	 * A pte update to relax the access will not result in a hash page table
323 	 * entry invalidate and hence can result in DSISR_PROTFAULT.
324 	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
325 	 * the special !is_write in the below conditional.
326 	 *
327 	 * For platforms that doesn't supports coherent icache and do support
328 	 * per page noexec bit, we do setup things such that we do the
329 	 * sync between D/I cache via fault. But that is handled via low level
330 	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
331 	 * here in such case.
332 	 *
333 	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
334 	 * check should handle those and hence we should fall to the bad_area
335 	 * handling correctly.
336 	 *
337 	 * For embedded with per page exec support that doesn't support coherent
338 	 * icache we do get PROTFAULT and we handle that D/I cache sync in
339 	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
340 	 * is conditional for server MMU.
341 	 *
342 	 * For radix, we can get prot fault for autonuma case, because radix
343 	 * page table will have them marked noaccess for user.
344 	 */
345 	if (!radix_enabled() && !is_write)
346 		WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
347 }
348 #else
349 static void sanity_check_fault(bool is_write, unsigned long error_code) { }
350 #endif /* CONFIG_PPC_STD_MMU */
351 
352 /*
353  * Define the correct "is_write" bit in error_code based
354  * on the processor family
355  */
356 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
357 #define page_fault_is_write(__err)	((__err) & ESR_DST)
358 #define page_fault_is_bad(__err)	(0)
359 #else
360 #define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
361 #if defined(CONFIG_PPC_8xx)
362 #define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
363 #elif defined(CONFIG_PPC64)
364 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
365 #else
366 #define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
367 #endif
368 #endif
369 
370 /*
371  * For 600- and 800-family processors, the error_code parameter is DSISR
372  * for a data fault, SRR1 for an instruction fault. For 400-family processors
373  * the error_code parameter is ESR for a data fault, 0 for an instruction
374  * fault.
375  * For 64-bit processors, the error_code parameter is
376  *  - DSISR for a non-SLB data access fault,
377  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
378  *  - 0 any SLB fault.
379  *
380  * The return value is 0 if the fault was handled, or the signal
381  * number if this is a kernel fault that can't be handled here.
382  */
383 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
384 			   unsigned long error_code)
385 {
386 	struct vm_area_struct * vma;
387 	struct mm_struct *mm = current->mm;
388 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
389  	int is_exec = TRAP(regs) == 0x400;
390 	int is_user = user_mode(regs);
391 	int is_write = page_fault_is_write(error_code);
392 	int fault, major = 0;
393 	bool store_update_sp = false;
394 
395 	if (notify_page_fault(regs))
396 		return 0;
397 
398 	if (unlikely(page_fault_is_bad(error_code))) {
399 		if (is_user) {
400 			_exception(SIGBUS, regs, BUS_OBJERR, address);
401 			return 0;
402 		}
403 		return SIGBUS;
404 	}
405 
406 	/* Additional sanity check(s) */
407 	sanity_check_fault(is_write, error_code);
408 
409 	/*
410 	 * The kernel should never take an execute fault nor should it
411 	 * take a page fault to a kernel address.
412 	 */
413 	if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
414 		return SIGSEGV;
415 
416 	/*
417 	 * If we're in an interrupt, have no user context or are running
418 	 * in a region with pagefaults disabled then we must not take the fault
419 	 */
420 	if (unlikely(faulthandler_disabled() || !mm)) {
421 		if (is_user)
422 			printk_ratelimited(KERN_ERR "Page fault in user mode"
423 					   " with faulthandler_disabled()=%d"
424 					   " mm=%p\n",
425 					   faulthandler_disabled(), mm);
426 		return bad_area_nosemaphore(regs, address);
427 	}
428 
429 	/* We restore the interrupt state now */
430 	if (!arch_irq_disabled_regs(regs))
431 		local_irq_enable();
432 
433 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
434 
435 	/*
436 	 * We want to do this outside mmap_sem, because reading code around nip
437 	 * can result in fault, which will cause a deadlock when called with
438 	 * mmap_sem held
439 	 */
440 	if (is_write && is_user)
441 		store_update_sp = store_updates_sp(regs);
442 
443 	if (is_user)
444 		flags |= FAULT_FLAG_USER;
445 	if (is_write)
446 		flags |= FAULT_FLAG_WRITE;
447 	if (is_exec)
448 		flags |= FAULT_FLAG_INSTRUCTION;
449 
450 	/* When running in the kernel we expect faults to occur only to
451 	 * addresses in user space.  All other faults represent errors in the
452 	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
453 	 * erroneous fault occurring in a code path which already holds mmap_sem
454 	 * we will deadlock attempting to validate the fault against the
455 	 * address space.  Luckily the kernel only validly references user
456 	 * space from well defined areas of code, which are listed in the
457 	 * exceptions table.
458 	 *
459 	 * As the vast majority of faults will be valid we will only perform
460 	 * the source reference check when there is a possibility of a deadlock.
461 	 * Attempt to lock the address space, if we cannot we then validate the
462 	 * source.  If this is invalid we can skip the address space check,
463 	 * thus avoiding the deadlock.
464 	 */
465 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
466 		if (!is_user && !search_exception_tables(regs->nip))
467 			return bad_area_nosemaphore(regs, address);
468 
469 retry:
470 		down_read(&mm->mmap_sem);
471 	} else {
472 		/*
473 		 * The above down_read_trylock() might have succeeded in
474 		 * which case we'll have missed the might_sleep() from
475 		 * down_read():
476 		 */
477 		might_sleep();
478 	}
479 
480 	vma = find_vma(mm, address);
481 	if (unlikely(!vma))
482 		return bad_area(regs, address);
483 	if (likely(vma->vm_start <= address))
484 		goto good_area;
485 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
486 		return bad_area(regs, address);
487 
488 	/* The stack is being expanded, check if it's valid */
489 	if (unlikely(bad_stack_expansion(regs, address, vma, store_update_sp)))
490 		return bad_area(regs, address);
491 
492 	/* Try to expand it */
493 	if (unlikely(expand_stack(vma, address)))
494 		return bad_area(regs, address);
495 
496 good_area:
497 	if (unlikely(access_error(is_write, is_exec, vma)))
498 		return bad_access(regs, address);
499 
500 	/*
501 	 * If for any reason at all we couldn't handle the fault,
502 	 * make sure we exit gracefully rather than endlessly redo
503 	 * the fault.
504 	 */
505 	fault = handle_mm_fault(vma, address, flags);
506 	major |= fault & VM_FAULT_MAJOR;
507 
508 	/*
509 	 * Handle the retry right now, the mmap_sem has been released in that
510 	 * case.
511 	 */
512 	if (unlikely(fault & VM_FAULT_RETRY)) {
513 		/* We retry only once */
514 		if (flags & FAULT_FLAG_ALLOW_RETRY) {
515 			/*
516 			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
517 			 * of starvation.
518 			 */
519 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
520 			flags |= FAULT_FLAG_TRIED;
521 			if (!fatal_signal_pending(current))
522 				goto retry;
523 		}
524 
525 		/*
526 		 * User mode? Just return to handle the fatal exception otherwise
527 		 * return to bad_page_fault
528 		 */
529 		return is_user ? 0 : SIGBUS;
530 	}
531 
532 	up_read(&current->mm->mmap_sem);
533 
534 	if (unlikely(fault & VM_FAULT_ERROR))
535 		return mm_fault_error(regs, address, fault);
536 
537 	/*
538 	 * Major/minor page fault accounting.
539 	 */
540 	if (major) {
541 		current->maj_flt++;
542 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
543 		cmo_account_page_fault();
544 	} else {
545 		current->min_flt++;
546 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
547 	}
548 	return 0;
549 }
550 NOKPROBE_SYMBOL(__do_page_fault);
551 
552 int do_page_fault(struct pt_regs *regs, unsigned long address,
553 		  unsigned long error_code)
554 {
555 	enum ctx_state prev_state = exception_enter();
556 	int rc = __do_page_fault(regs, address, error_code);
557 	exception_exit(prev_state);
558 	return rc;
559 }
560 NOKPROBE_SYMBOL(do_page_fault);
561 
562 /*
563  * bad_page_fault is called when we have a bad access from the kernel.
564  * It is called from the DSI and ISI handlers in head.S and from some
565  * of the procedures in traps.c.
566  */
567 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
568 {
569 	const struct exception_table_entry *entry;
570 
571 	/* Are we prepared to handle this fault?  */
572 	if ((entry = search_exception_tables(regs->nip)) != NULL) {
573 		regs->nip = extable_fixup(entry);
574 		return;
575 	}
576 
577 	/* kernel has accessed a bad area */
578 
579 	switch (regs->trap) {
580 	case 0x300:
581 	case 0x380:
582 		printk(KERN_ALERT "Unable to handle kernel paging request for "
583 			"data at address 0x%08lx\n", regs->dar);
584 		break;
585 	case 0x400:
586 	case 0x480:
587 		printk(KERN_ALERT "Unable to handle kernel paging request for "
588 			"instruction fetch\n");
589 		break;
590 	case 0x600:
591 		printk(KERN_ALERT "Unable to handle kernel paging request for "
592 			"unaligned access at address 0x%08lx\n", regs->dar);
593 		break;
594 	default:
595 		printk(KERN_ALERT "Unable to handle kernel paging request for "
596 			"unknown fault\n");
597 		break;
598 	}
599 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
600 		regs->nip);
601 
602 	if (task_stack_end_corrupted(current))
603 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
604 
605 	die("Kernel access of bad area", regs, sig);
606 }
607