1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * PowerPC version derived from arch/arm/mm/consistent.c 4 * Copyright (C) 2001 Dan Malek (dmalek@jlc.net) 5 * 6 * Copyright (C) 2000 Russell King 7 * 8 * Consistent memory allocators. Used for DMA devices that want to 9 * share uncached memory with the processor core. The function return 10 * is the virtual address and 'dma_handle' is the physical address. 11 * Mostly stolen from the ARM port, with some changes for PowerPC. 12 * -- Dan 13 * 14 * Reorganized to get rid of the arch-specific consistent_* functions 15 * and provide non-coherent implementations for the DMA API. -Matt 16 * 17 * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent() 18 * implementation. This is pulled straight from ARM and barely 19 * modified. -Matt 20 */ 21 22 #include <linux/sched.h> 23 #include <linux/slab.h> 24 #include <linux/kernel.h> 25 #include <linux/errno.h> 26 #include <linux/string.h> 27 #include <linux/types.h> 28 #include <linux/highmem.h> 29 #include <linux/dma-direct.h> 30 #include <linux/dma-noncoherent.h> 31 #include <linux/export.h> 32 33 #include <asm/tlbflush.h> 34 #include <asm/dma.h> 35 36 #include <mm/mmu_decl.h> 37 38 /* 39 * This address range defaults to a value that is safe for all 40 * platforms which currently set CONFIG_NOT_COHERENT_CACHE. It 41 * can be further configured for specific applications under 42 * the "Advanced Setup" menu. -Matt 43 */ 44 #define CONSISTENT_BASE (IOREMAP_TOP) 45 #define CONSISTENT_END (CONSISTENT_BASE + CONFIG_CONSISTENT_SIZE) 46 #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT) 47 48 /* 49 * This is the page table (2MB) covering uncached, DMA consistent allocations 50 */ 51 static DEFINE_SPINLOCK(consistent_lock); 52 53 /* 54 * VM region handling support. 55 * 56 * This should become something generic, handling VM region allocations for 57 * vmalloc and similar (ioremap, module space, etc). 58 * 59 * I envisage vmalloc()'s supporting vm_struct becoming: 60 * 61 * struct vm_struct { 62 * struct vm_region region; 63 * unsigned long flags; 64 * struct page **pages; 65 * unsigned int nr_pages; 66 * unsigned long phys_addr; 67 * }; 68 * 69 * get_vm_area() would then call vm_region_alloc with an appropriate 70 * struct vm_region head (eg): 71 * 72 * struct vm_region vmalloc_head = { 73 * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list), 74 * .vm_start = VMALLOC_START, 75 * .vm_end = VMALLOC_END, 76 * }; 77 * 78 * However, vmalloc_head.vm_start is variable (typically, it is dependent on 79 * the amount of RAM found at boot time.) I would imagine that get_vm_area() 80 * would have to initialise this each time prior to calling vm_region_alloc(). 81 */ 82 struct ppc_vm_region { 83 struct list_head vm_list; 84 unsigned long vm_start; 85 unsigned long vm_end; 86 }; 87 88 static struct ppc_vm_region consistent_head = { 89 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list), 90 .vm_start = CONSISTENT_BASE, 91 .vm_end = CONSISTENT_END, 92 }; 93 94 static struct ppc_vm_region * 95 ppc_vm_region_alloc(struct ppc_vm_region *head, size_t size, gfp_t gfp) 96 { 97 unsigned long addr = head->vm_start, end = head->vm_end - size; 98 unsigned long flags; 99 struct ppc_vm_region *c, *new; 100 101 new = kmalloc(sizeof(struct ppc_vm_region), gfp); 102 if (!new) 103 goto out; 104 105 spin_lock_irqsave(&consistent_lock, flags); 106 107 list_for_each_entry(c, &head->vm_list, vm_list) { 108 if ((addr + size) < addr) 109 goto nospc; 110 if ((addr + size) <= c->vm_start) 111 goto found; 112 addr = c->vm_end; 113 if (addr > end) 114 goto nospc; 115 } 116 117 found: 118 /* 119 * Insert this entry _before_ the one we found. 120 */ 121 list_add_tail(&new->vm_list, &c->vm_list); 122 new->vm_start = addr; 123 new->vm_end = addr + size; 124 125 spin_unlock_irqrestore(&consistent_lock, flags); 126 return new; 127 128 nospc: 129 spin_unlock_irqrestore(&consistent_lock, flags); 130 kfree(new); 131 out: 132 return NULL; 133 } 134 135 static struct ppc_vm_region *ppc_vm_region_find(struct ppc_vm_region *head, unsigned long addr) 136 { 137 struct ppc_vm_region *c; 138 139 list_for_each_entry(c, &head->vm_list, vm_list) { 140 if (c->vm_start == addr) 141 goto out; 142 } 143 c = NULL; 144 out: 145 return c; 146 } 147 148 /* 149 * Allocate DMA-coherent memory space and return both the kernel remapped 150 * virtual and bus address for that space. 151 */ 152 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, 153 gfp_t gfp, unsigned long attrs) 154 { 155 struct page *page; 156 struct ppc_vm_region *c; 157 unsigned long order; 158 u64 mask = ISA_DMA_THRESHOLD, limit; 159 160 if (dev) { 161 mask = dev->coherent_dma_mask; 162 163 /* 164 * Sanity check the DMA mask - it must be non-zero, and 165 * must be able to be satisfied by a DMA allocation. 166 */ 167 if (mask == 0) { 168 dev_warn(dev, "coherent DMA mask is unset\n"); 169 goto no_page; 170 } 171 172 if ((~mask) & ISA_DMA_THRESHOLD) { 173 dev_warn(dev, "coherent DMA mask %#llx is smaller " 174 "than system GFP_DMA mask %#llx\n", 175 mask, (unsigned long long)ISA_DMA_THRESHOLD); 176 goto no_page; 177 } 178 } 179 180 181 size = PAGE_ALIGN(size); 182 limit = (mask + 1) & ~mask; 183 if ((limit && size >= limit) || 184 size >= (CONSISTENT_END - CONSISTENT_BASE)) { 185 printk(KERN_WARNING "coherent allocation too big (requested %#x mask %#Lx)\n", 186 size, mask); 187 return NULL; 188 } 189 190 order = get_order(size); 191 192 /* Might be useful if we ever have a real legacy DMA zone... */ 193 if (mask != 0xffffffff) 194 gfp |= GFP_DMA; 195 196 page = alloc_pages(gfp, order); 197 if (!page) 198 goto no_page; 199 200 /* 201 * Invalidate any data that might be lurking in the 202 * kernel direct-mapped region for device DMA. 203 */ 204 { 205 unsigned long kaddr = (unsigned long)page_address(page); 206 memset(page_address(page), 0, size); 207 flush_dcache_range(kaddr, kaddr + size); 208 } 209 210 /* 211 * Allocate a virtual address in the consistent mapping region. 212 */ 213 c = ppc_vm_region_alloc(&consistent_head, size, 214 gfp & ~(__GFP_DMA | __GFP_HIGHMEM)); 215 if (c) { 216 unsigned long vaddr = c->vm_start; 217 struct page *end = page + (1 << order); 218 219 split_page(page, order); 220 221 /* 222 * Set the "dma handle" 223 */ 224 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 225 226 do { 227 SetPageReserved(page); 228 map_kernel_page(vaddr, page_to_phys(page), 229 pgprot_noncached(PAGE_KERNEL)); 230 page++; 231 vaddr += PAGE_SIZE; 232 } while (size -= PAGE_SIZE); 233 234 /* 235 * Free the otherwise unused pages. 236 */ 237 while (page < end) { 238 __free_page(page); 239 page++; 240 } 241 242 return (void *)c->vm_start; 243 } 244 245 if (page) 246 __free_pages(page, order); 247 no_page: 248 return NULL; 249 } 250 251 /* 252 * free a page as defined by the above mapping. 253 */ 254 void arch_dma_free(struct device *dev, size_t size, void *vaddr, 255 dma_addr_t dma_handle, unsigned long attrs) 256 { 257 struct ppc_vm_region *c; 258 unsigned long flags, addr; 259 260 size = PAGE_ALIGN(size); 261 262 spin_lock_irqsave(&consistent_lock, flags); 263 264 c = ppc_vm_region_find(&consistent_head, (unsigned long)vaddr); 265 if (!c) 266 goto no_area; 267 268 if ((c->vm_end - c->vm_start) != size) { 269 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n", 270 __func__, c->vm_end - c->vm_start, size); 271 dump_stack(); 272 size = c->vm_end - c->vm_start; 273 } 274 275 addr = c->vm_start; 276 do { 277 pte_t *ptep; 278 unsigned long pfn; 279 280 ptep = pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(addr), 281 addr), 282 addr), 283 addr); 284 if (!pte_none(*ptep) && pte_present(*ptep)) { 285 pfn = pte_pfn(*ptep); 286 pte_clear(&init_mm, addr, ptep); 287 if (pfn_valid(pfn)) { 288 struct page *page = pfn_to_page(pfn); 289 __free_reserved_page(page); 290 } 291 } 292 addr += PAGE_SIZE; 293 } while (size -= PAGE_SIZE); 294 295 flush_tlb_kernel_range(c->vm_start, c->vm_end); 296 297 list_del(&c->vm_list); 298 299 spin_unlock_irqrestore(&consistent_lock, flags); 300 301 kfree(c); 302 return; 303 304 no_area: 305 spin_unlock_irqrestore(&consistent_lock, flags); 306 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n", 307 __func__, vaddr); 308 dump_stack(); 309 } 310 311 /* 312 * make an area consistent. 313 */ 314 static void __dma_sync(void *vaddr, size_t size, int direction) 315 { 316 unsigned long start = (unsigned long)vaddr; 317 unsigned long end = start + size; 318 319 switch (direction) { 320 case DMA_NONE: 321 BUG(); 322 case DMA_FROM_DEVICE: 323 /* 324 * invalidate only when cache-line aligned otherwise there is 325 * the potential for discarding uncommitted data from the cache 326 */ 327 if ((start | end) & (L1_CACHE_BYTES - 1)) 328 flush_dcache_range(start, end); 329 else 330 invalidate_dcache_range(start, end); 331 break; 332 case DMA_TO_DEVICE: /* writeback only */ 333 clean_dcache_range(start, end); 334 break; 335 case DMA_BIDIRECTIONAL: /* writeback and invalidate */ 336 flush_dcache_range(start, end); 337 break; 338 } 339 } 340 341 #ifdef CONFIG_HIGHMEM 342 /* 343 * __dma_sync_page() implementation for systems using highmem. 344 * In this case, each page of a buffer must be kmapped/kunmapped 345 * in order to have a virtual address for __dma_sync(). This must 346 * not sleep so kmap_atomic()/kunmap_atomic() are used. 347 * 348 * Note: yes, it is possible and correct to have a buffer extend 349 * beyond the first page. 350 */ 351 static inline void __dma_sync_page_highmem(struct page *page, 352 unsigned long offset, size_t size, int direction) 353 { 354 size_t seg_size = min((size_t)(PAGE_SIZE - offset), size); 355 size_t cur_size = seg_size; 356 unsigned long flags, start, seg_offset = offset; 357 int nr_segs = 1 + ((size - seg_size) + PAGE_SIZE - 1)/PAGE_SIZE; 358 int seg_nr = 0; 359 360 local_irq_save(flags); 361 362 do { 363 start = (unsigned long)kmap_atomic(page + seg_nr) + seg_offset; 364 365 /* Sync this buffer segment */ 366 __dma_sync((void *)start, seg_size, direction); 367 kunmap_atomic((void *)start); 368 seg_nr++; 369 370 /* Calculate next buffer segment size */ 371 seg_size = min((size_t)PAGE_SIZE, size - cur_size); 372 373 /* Add the segment size to our running total */ 374 cur_size += seg_size; 375 seg_offset = 0; 376 } while (seg_nr < nr_segs); 377 378 local_irq_restore(flags); 379 } 380 #endif /* CONFIG_HIGHMEM */ 381 382 /* 383 * __dma_sync_page makes memory consistent. identical to __dma_sync, but 384 * takes a struct page instead of a virtual address 385 */ 386 static void __dma_sync_page(phys_addr_t paddr, size_t size, int dir) 387 { 388 struct page *page = pfn_to_page(paddr >> PAGE_SHIFT); 389 unsigned offset = paddr & ~PAGE_MASK; 390 391 #ifdef CONFIG_HIGHMEM 392 __dma_sync_page_highmem(page, offset, size, dir); 393 #else 394 unsigned long start = (unsigned long)page_address(page) + offset; 395 __dma_sync((void *)start, size, dir); 396 #endif 397 } 398 399 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, 400 size_t size, enum dma_data_direction dir) 401 { 402 __dma_sync_page(paddr, size, dir); 403 } 404 405 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, 406 size_t size, enum dma_data_direction dir) 407 { 408 __dma_sync_page(paddr, size, dir); 409 } 410 411 /* 412 * Return the PFN for a given cpu virtual address returned by arch_dma_alloc. 413 */ 414 long arch_dma_coherent_to_pfn(struct device *dev, void *vaddr, 415 dma_addr_t dma_addr) 416 { 417 /* This should always be populated, so we don't test every 418 * level. If that fails, we'll have a nice crash which 419 * will be as good as a BUG_ON() 420 */ 421 unsigned long cpu_addr = (unsigned long)vaddr; 422 pgd_t *pgd = pgd_offset_k(cpu_addr); 423 pud_t *pud = pud_offset(pgd, cpu_addr); 424 pmd_t *pmd = pmd_offset(pud, cpu_addr); 425 pte_t *ptep = pte_offset_kernel(pmd, cpu_addr); 426 427 if (pte_none(*ptep) || !pte_present(*ptep)) 428 return 0; 429 return pte_pfn(*ptep); 430 } 431