1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PowerPC64 SLB support. 4 * 5 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM 6 * Based on earlier code written by: 7 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com 8 * Copyright (c) 2001 Dave Engebretsen 9 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 10 */ 11 12 #include <asm/asm-prototypes.h> 13 #include <asm/pgtable.h> 14 #include <asm/mmu.h> 15 #include <asm/mmu_context.h> 16 #include <asm/paca.h> 17 #include <asm/ppc-opcode.h> 18 #include <asm/cputable.h> 19 #include <asm/cacheflush.h> 20 #include <asm/smp.h> 21 #include <linux/compiler.h> 22 #include <linux/context_tracking.h> 23 #include <linux/mm_types.h> 24 25 #include <asm/udbg.h> 26 #include <asm/code-patching.h> 27 28 enum slb_index { 29 LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */ 30 KSTACK_INDEX = 1, /* Kernel stack map */ 31 }; 32 33 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea); 34 35 #define slb_esid_mask(ssize) \ 36 (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T) 37 38 static inline unsigned long mk_esid_data(unsigned long ea, int ssize, 39 enum slb_index index) 40 { 41 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index; 42 } 43 44 static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize, 45 unsigned long flags) 46 { 47 return (vsid << slb_vsid_shift(ssize)) | flags | 48 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT); 49 } 50 51 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize, 52 unsigned long flags) 53 { 54 return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags); 55 } 56 57 static void assert_slb_presence(bool present, unsigned long ea) 58 { 59 #ifdef CONFIG_DEBUG_VM 60 unsigned long tmp; 61 62 WARN_ON_ONCE(mfmsr() & MSR_EE); 63 64 if (!cpu_has_feature(CPU_FTR_ARCH_206)) 65 return; 66 67 /* 68 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware 69 * ignores all other bits from 0-27, so just clear them all. 70 */ 71 ea &= ~((1UL << 28) - 1); 72 asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0"); 73 74 WARN_ON(present == (tmp == 0)); 75 #endif 76 } 77 78 static inline void slb_shadow_update(unsigned long ea, int ssize, 79 unsigned long flags, 80 enum slb_index index) 81 { 82 struct slb_shadow *p = get_slb_shadow(); 83 84 /* 85 * Clear the ESID first so the entry is not valid while we are 86 * updating it. No write barriers are needed here, provided 87 * we only update the current CPU's SLB shadow buffer. 88 */ 89 WRITE_ONCE(p->save_area[index].esid, 0); 90 WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags))); 91 WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index))); 92 } 93 94 static inline void slb_shadow_clear(enum slb_index index) 95 { 96 WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index)); 97 } 98 99 static inline void create_shadowed_slbe(unsigned long ea, int ssize, 100 unsigned long flags, 101 enum slb_index index) 102 { 103 /* 104 * Updating the shadow buffer before writing the SLB ensures 105 * we don't get a stale entry here if we get preempted by PHYP 106 * between these two statements. 107 */ 108 slb_shadow_update(ea, ssize, flags, index); 109 110 assert_slb_presence(false, ea); 111 asm volatile("slbmte %0,%1" : 112 : "r" (mk_vsid_data(ea, ssize, flags)), 113 "r" (mk_esid_data(ea, ssize, index)) 114 : "memory" ); 115 } 116 117 /* 118 * Insert bolted entries into SLB (which may not be empty, so don't clear 119 * slb_cache_ptr). 120 */ 121 void __slb_restore_bolted_realmode(void) 122 { 123 struct slb_shadow *p = get_slb_shadow(); 124 enum slb_index index; 125 126 /* No isync needed because realmode. */ 127 for (index = 0; index < SLB_NUM_BOLTED; index++) { 128 asm volatile("slbmte %0,%1" : 129 : "r" (be64_to_cpu(p->save_area[index].vsid)), 130 "r" (be64_to_cpu(p->save_area[index].esid))); 131 } 132 133 assert_slb_presence(true, local_paca->kstack); 134 } 135 136 /* 137 * Insert the bolted entries into an empty SLB. 138 */ 139 void slb_restore_bolted_realmode(void) 140 { 141 __slb_restore_bolted_realmode(); 142 get_paca()->slb_cache_ptr = 0; 143 144 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 145 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 146 } 147 148 /* 149 * This flushes all SLB entries including 0, so it must be realmode. 150 */ 151 void slb_flush_all_realmode(void) 152 { 153 asm volatile("slbmte %0,%0; slbia" : : "r" (0)); 154 } 155 156 /* 157 * This flushes non-bolted entries, it can be run in virtual mode. Must 158 * be called with interrupts disabled. 159 */ 160 void slb_flush_and_restore_bolted(void) 161 { 162 struct slb_shadow *p = get_slb_shadow(); 163 164 BUILD_BUG_ON(SLB_NUM_BOLTED != 2); 165 166 WARN_ON(!irqs_disabled()); 167 168 /* 169 * We can't take a PMU exception in the following code, so hard 170 * disable interrupts. 171 */ 172 hard_irq_disable(); 173 174 asm volatile("isync\n" 175 "slbia\n" 176 "slbmte %0, %1\n" 177 "isync\n" 178 :: "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].vsid)), 179 "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].esid)) 180 : "memory"); 181 assert_slb_presence(true, get_paca()->kstack); 182 183 get_paca()->slb_cache_ptr = 0; 184 185 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 186 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 187 } 188 189 void slb_save_contents(struct slb_entry *slb_ptr) 190 { 191 int i; 192 unsigned long e, v; 193 194 /* Save slb_cache_ptr value. */ 195 get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr; 196 197 if (!slb_ptr) 198 return; 199 200 for (i = 0; i < mmu_slb_size; i++) { 201 asm volatile("slbmfee %0,%1" : "=r" (e) : "r" (i)); 202 asm volatile("slbmfev %0,%1" : "=r" (v) : "r" (i)); 203 slb_ptr->esid = e; 204 slb_ptr->vsid = v; 205 slb_ptr++; 206 } 207 } 208 209 void slb_dump_contents(struct slb_entry *slb_ptr) 210 { 211 int i, n; 212 unsigned long e, v; 213 unsigned long llp; 214 215 if (!slb_ptr) 216 return; 217 218 pr_err("SLB contents of cpu 0x%x\n", smp_processor_id()); 219 pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr); 220 221 for (i = 0; i < mmu_slb_size; i++) { 222 e = slb_ptr->esid; 223 v = slb_ptr->vsid; 224 slb_ptr++; 225 226 if (!e && !v) 227 continue; 228 229 pr_err("%02d %016lx %016lx\n", i, e, v); 230 231 if (!(e & SLB_ESID_V)) { 232 pr_err("\n"); 233 continue; 234 } 235 llp = v & SLB_VSID_LLP; 236 if (v & SLB_VSID_B_1T) { 237 pr_err(" 1T ESID=%9lx VSID=%13lx LLP:%3lx\n", 238 GET_ESID_1T(e), 239 (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp); 240 } else { 241 pr_err(" 256M ESID=%9lx VSID=%13lx LLP:%3lx\n", 242 GET_ESID(e), 243 (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp); 244 } 245 } 246 pr_err("----------------------------------\n"); 247 248 /* Dump slb cache entires as well. */ 249 pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr); 250 pr_err("Valid SLB cache entries:\n"); 251 n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES); 252 for (i = 0; i < n; i++) 253 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); 254 pr_err("Rest of SLB cache entries:\n"); 255 for (i = n; i < SLB_CACHE_ENTRIES; i++) 256 pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]); 257 } 258 259 void slb_vmalloc_update(void) 260 { 261 /* 262 * vmalloc is not bolted, so just have to flush non-bolted. 263 */ 264 slb_flush_and_restore_bolted(); 265 } 266 267 static bool preload_hit(struct thread_info *ti, unsigned long esid) 268 { 269 unsigned char i; 270 271 for (i = 0; i < ti->slb_preload_nr; i++) { 272 unsigned char idx; 273 274 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; 275 if (esid == ti->slb_preload_esid[idx]) 276 return true; 277 } 278 return false; 279 } 280 281 static bool preload_add(struct thread_info *ti, unsigned long ea) 282 { 283 unsigned char idx; 284 unsigned long esid; 285 286 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) { 287 /* EAs are stored >> 28 so 256MB segments don't need clearing */ 288 if (ea & ESID_MASK_1T) 289 ea &= ESID_MASK_1T; 290 } 291 292 esid = ea >> SID_SHIFT; 293 294 if (preload_hit(ti, esid)) 295 return false; 296 297 idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR; 298 ti->slb_preload_esid[idx] = esid; 299 if (ti->slb_preload_nr == SLB_PRELOAD_NR) 300 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; 301 else 302 ti->slb_preload_nr++; 303 304 return true; 305 } 306 307 static void preload_age(struct thread_info *ti) 308 { 309 if (!ti->slb_preload_nr) 310 return; 311 ti->slb_preload_nr--; 312 ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR; 313 } 314 315 void slb_setup_new_exec(void) 316 { 317 struct thread_info *ti = current_thread_info(); 318 struct mm_struct *mm = current->mm; 319 unsigned long exec = 0x10000000; 320 321 WARN_ON(irqs_disabled()); 322 323 /* 324 * preload cache can only be used to determine whether a SLB 325 * entry exists if it does not start to overflow. 326 */ 327 if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR) 328 return; 329 330 hard_irq_disable(); 331 332 /* 333 * We have no good place to clear the slb preload cache on exec, 334 * flush_thread is about the earliest arch hook but that happens 335 * after we switch to the mm and have aleady preloaded the SLBEs. 336 * 337 * For the most part that's probably okay to use entries from the 338 * previous exec, they will age out if unused. It may turn out to 339 * be an advantage to clear the cache before switching to it, 340 * however. 341 */ 342 343 /* 344 * preload some userspace segments into the SLB. 345 * Almost all 32 and 64bit PowerPC executables are linked at 346 * 0x10000000 so it makes sense to preload this segment. 347 */ 348 if (!is_kernel_addr(exec)) { 349 if (preload_add(ti, exec)) 350 slb_allocate_user(mm, exec); 351 } 352 353 /* Libraries and mmaps. */ 354 if (!is_kernel_addr(mm->mmap_base)) { 355 if (preload_add(ti, mm->mmap_base)) 356 slb_allocate_user(mm, mm->mmap_base); 357 } 358 359 /* see switch_slb */ 360 asm volatile("isync" : : : "memory"); 361 362 local_irq_enable(); 363 } 364 365 void preload_new_slb_context(unsigned long start, unsigned long sp) 366 { 367 struct thread_info *ti = current_thread_info(); 368 struct mm_struct *mm = current->mm; 369 unsigned long heap = mm->start_brk; 370 371 WARN_ON(irqs_disabled()); 372 373 /* see above */ 374 if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR) 375 return; 376 377 hard_irq_disable(); 378 379 /* Userspace entry address. */ 380 if (!is_kernel_addr(start)) { 381 if (preload_add(ti, start)) 382 slb_allocate_user(mm, start); 383 } 384 385 /* Top of stack, grows down. */ 386 if (!is_kernel_addr(sp)) { 387 if (preload_add(ti, sp)) 388 slb_allocate_user(mm, sp); 389 } 390 391 /* Bottom of heap, grows up. */ 392 if (heap && !is_kernel_addr(heap)) { 393 if (preload_add(ti, heap)) 394 slb_allocate_user(mm, heap); 395 } 396 397 /* see switch_slb */ 398 asm volatile("isync" : : : "memory"); 399 400 local_irq_enable(); 401 } 402 403 404 /* Flush all user entries from the segment table of the current processor. */ 405 void switch_slb(struct task_struct *tsk, struct mm_struct *mm) 406 { 407 struct thread_info *ti = task_thread_info(tsk); 408 unsigned char i; 409 410 /* 411 * We need interrupts hard-disabled here, not just soft-disabled, 412 * so that a PMU interrupt can't occur, which might try to access 413 * user memory (to get a stack trace) and possible cause an SLB miss 414 * which would update the slb_cache/slb_cache_ptr fields in the PACA. 415 */ 416 hard_irq_disable(); 417 asm volatile("isync" : : : "memory"); 418 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 419 /* 420 * SLBIA IH=3 invalidates all Class=1 SLBEs and their 421 * associated lookaside structures, which matches what 422 * switch_slb wants. So ARCH_300 does not use the slb 423 * cache. 424 */ 425 asm volatile(PPC_SLBIA(3)); 426 } else { 427 unsigned long offset = get_paca()->slb_cache_ptr; 428 429 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) && 430 offset <= SLB_CACHE_ENTRIES) { 431 unsigned long slbie_data = 0; 432 433 for (i = 0; i < offset; i++) { 434 unsigned long ea; 435 436 ea = (unsigned long) 437 get_paca()->slb_cache[i] << SID_SHIFT; 438 /* 439 * Could assert_slb_presence(true) here, but 440 * hypervisor or machine check could have come 441 * in and removed the entry at this point. 442 */ 443 444 slbie_data = ea; 445 slbie_data |= user_segment_size(slbie_data) 446 << SLBIE_SSIZE_SHIFT; 447 slbie_data |= SLBIE_C; /* user slbs have C=1 */ 448 asm volatile("slbie %0" : : "r" (slbie_data)); 449 } 450 451 /* Workaround POWER5 < DD2.1 issue */ 452 if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1) 453 asm volatile("slbie %0" : : "r" (slbie_data)); 454 455 } else { 456 struct slb_shadow *p = get_slb_shadow(); 457 unsigned long ksp_esid_data = 458 be64_to_cpu(p->save_area[KSTACK_INDEX].esid); 459 unsigned long ksp_vsid_data = 460 be64_to_cpu(p->save_area[KSTACK_INDEX].vsid); 461 462 asm volatile(PPC_SLBIA(1) "\n" 463 "slbmte %0,%1\n" 464 "isync" 465 :: "r"(ksp_vsid_data), 466 "r"(ksp_esid_data)); 467 468 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 469 } 470 471 get_paca()->slb_cache_ptr = 0; 472 } 473 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 474 475 copy_mm_to_paca(mm); 476 477 /* 478 * We gradually age out SLBs after a number of context switches to 479 * reduce reload overhead of unused entries (like we do with FP/VEC 480 * reload). Each time we wrap 256 switches, take an entry out of the 481 * SLB preload cache. 482 */ 483 tsk->thread.load_slb++; 484 if (!tsk->thread.load_slb) { 485 unsigned long pc = KSTK_EIP(tsk); 486 487 preload_age(ti); 488 preload_add(ti, pc); 489 } 490 491 for (i = 0; i < ti->slb_preload_nr; i++) { 492 unsigned char idx; 493 unsigned long ea; 494 495 idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR; 496 ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT; 497 498 slb_allocate_user(mm, ea); 499 } 500 501 /* 502 * Synchronize slbmte preloads with possible subsequent user memory 503 * address accesses by the kernel (user mode won't happen until 504 * rfid, which is safe). 505 */ 506 asm volatile("isync" : : : "memory"); 507 } 508 509 void slb_set_size(u16 size) 510 { 511 mmu_slb_size = size; 512 } 513 514 void slb_initialize(void) 515 { 516 unsigned long linear_llp, vmalloc_llp, io_llp; 517 unsigned long lflags; 518 static int slb_encoding_inited; 519 #ifdef CONFIG_SPARSEMEM_VMEMMAP 520 unsigned long vmemmap_llp; 521 #endif 522 523 /* Prepare our SLB miss handler based on our page size */ 524 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; 525 io_llp = mmu_psize_defs[mmu_io_psize].sllp; 526 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; 527 get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp; 528 #ifdef CONFIG_SPARSEMEM_VMEMMAP 529 vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp; 530 #endif 531 if (!slb_encoding_inited) { 532 slb_encoding_inited = 1; 533 pr_devel("SLB: linear LLP = %04lx\n", linear_llp); 534 pr_devel("SLB: io LLP = %04lx\n", io_llp); 535 #ifdef CONFIG_SPARSEMEM_VMEMMAP 536 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp); 537 #endif 538 } 539 540 get_paca()->stab_rr = SLB_NUM_BOLTED - 1; 541 get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1; 542 get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap; 543 544 lflags = SLB_VSID_KERNEL | linear_llp; 545 546 /* Invalidate the entire SLB (even entry 0) & all the ERATS */ 547 asm volatile("isync":::"memory"); 548 asm volatile("slbmte %0,%0"::"r" (0) : "memory"); 549 asm volatile("isync; slbia; isync":::"memory"); 550 create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX); 551 552 /* 553 * For the boot cpu, we're running on the stack in init_thread_union, 554 * which is in the first segment of the linear mapping, and also 555 * get_paca()->kstack hasn't been initialized yet. 556 * For secondary cpus, we need to bolt the kernel stack entry now. 557 */ 558 slb_shadow_clear(KSTACK_INDEX); 559 if (raw_smp_processor_id() != boot_cpuid && 560 (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET) 561 create_shadowed_slbe(get_paca()->kstack, 562 mmu_kernel_ssize, lflags, KSTACK_INDEX); 563 564 asm volatile("isync":::"memory"); 565 } 566 567 static void slb_cache_update(unsigned long esid_data) 568 { 569 int slb_cache_index; 570 571 if (cpu_has_feature(CPU_FTR_ARCH_300)) 572 return; /* ISAv3.0B and later does not use slb_cache */ 573 574 /* 575 * Now update slb cache entries 576 */ 577 slb_cache_index = local_paca->slb_cache_ptr; 578 if (slb_cache_index < SLB_CACHE_ENTRIES) { 579 /* 580 * We have space in slb cache for optimized switch_slb(). 581 * Top 36 bits from esid_data as per ISA 582 */ 583 local_paca->slb_cache[slb_cache_index++] = esid_data >> 28; 584 local_paca->slb_cache_ptr++; 585 } else { 586 /* 587 * Our cache is full and the current cache content strictly 588 * doesn't indicate the active SLB conents. Bump the ptr 589 * so that switch_slb() will ignore the cache. 590 */ 591 local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1; 592 } 593 } 594 595 static enum slb_index alloc_slb_index(bool kernel) 596 { 597 enum slb_index index; 598 599 /* 600 * The allocation bitmaps can become out of synch with the SLB 601 * when the _switch code does slbie when bolting a new stack 602 * segment and it must not be anywhere else in the SLB. This leaves 603 * a kernel allocated entry that is unused in the SLB. With very 604 * large systems or small segment sizes, the bitmaps could slowly 605 * fill with these entries. They will eventually be cleared out 606 * by the round robin allocator in that case, so it's probably not 607 * worth accounting for. 608 */ 609 610 /* 611 * SLBs beyond 32 entries are allocated with stab_rr only 612 * POWER7/8/9 have 32 SLB entries, this could be expanded if a 613 * future CPU has more. 614 */ 615 if (local_paca->slb_used_bitmap != U32_MAX) { 616 index = ffz(local_paca->slb_used_bitmap); 617 local_paca->slb_used_bitmap |= 1U << index; 618 if (kernel) 619 local_paca->slb_kern_bitmap |= 1U << index; 620 } else { 621 /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */ 622 index = local_paca->stab_rr; 623 if (index < (mmu_slb_size - 1)) 624 index++; 625 else 626 index = SLB_NUM_BOLTED; 627 local_paca->stab_rr = index; 628 if (index < 32) { 629 if (kernel) 630 local_paca->slb_kern_bitmap |= 1U << index; 631 else 632 local_paca->slb_kern_bitmap &= ~(1U << index); 633 } 634 } 635 BUG_ON(index < SLB_NUM_BOLTED); 636 637 return index; 638 } 639 640 static long slb_insert_entry(unsigned long ea, unsigned long context, 641 unsigned long flags, int ssize, bool kernel) 642 { 643 unsigned long vsid; 644 unsigned long vsid_data, esid_data; 645 enum slb_index index; 646 647 vsid = get_vsid(context, ea, ssize); 648 if (!vsid) 649 return -EFAULT; 650 651 /* 652 * There must not be a kernel SLB fault in alloc_slb_index or before 653 * slbmte here or the allocation bitmaps could get out of whack with 654 * the SLB. 655 * 656 * User SLB faults or preloads take this path which might get inlined 657 * into the caller, so add compiler barriers here to ensure unsafe 658 * memory accesses do not come between. 659 */ 660 barrier(); 661 662 index = alloc_slb_index(kernel); 663 664 vsid_data = __mk_vsid_data(vsid, ssize, flags); 665 esid_data = mk_esid_data(ea, ssize, index); 666 667 /* 668 * No need for an isync before or after this slbmte. The exception 669 * we enter with and the rfid we exit with are context synchronizing. 670 * User preloads should add isync afterwards in case the kernel 671 * accesses user memory before it returns to userspace with rfid. 672 */ 673 assert_slb_presence(false, ea); 674 asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)); 675 676 barrier(); 677 678 if (!kernel) 679 slb_cache_update(esid_data); 680 681 return 0; 682 } 683 684 static long slb_allocate_kernel(unsigned long ea, unsigned long id) 685 { 686 unsigned long context; 687 unsigned long flags; 688 int ssize; 689 690 if (id == LINEAR_MAP_REGION_ID) { 691 692 /* We only support upto MAX_PHYSMEM_BITS */ 693 if ((ea & EA_MASK) > (1UL << MAX_PHYSMEM_BITS)) 694 return -EFAULT; 695 696 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp; 697 698 #ifdef CONFIG_SPARSEMEM_VMEMMAP 699 } else if (id == VMEMMAP_REGION_ID) { 700 701 if (ea >= H_VMEMMAP_END) 702 return -EFAULT; 703 704 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp; 705 #endif 706 } else if (id == VMALLOC_REGION_ID) { 707 708 if (ea >= H_VMALLOC_END) 709 return -EFAULT; 710 711 flags = local_paca->vmalloc_sllp; 712 713 } else if (id == IO_REGION_ID) { 714 715 if (ea >= H_KERN_IO_END) 716 return -EFAULT; 717 718 flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp; 719 720 } else { 721 return -EFAULT; 722 } 723 724 ssize = MMU_SEGSIZE_1T; 725 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT)) 726 ssize = MMU_SEGSIZE_256M; 727 728 context = get_kernel_context(ea); 729 730 return slb_insert_entry(ea, context, flags, ssize, true); 731 } 732 733 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea) 734 { 735 unsigned long context; 736 unsigned long flags; 737 int bpsize; 738 int ssize; 739 740 /* 741 * consider this as bad access if we take a SLB miss 742 * on an address above addr limit. 743 */ 744 if (ea >= mm_ctx_slb_addr_limit(&mm->context)) 745 return -EFAULT; 746 747 context = get_user_context(&mm->context, ea); 748 if (!context) 749 return -EFAULT; 750 751 if (unlikely(ea >= H_PGTABLE_RANGE)) { 752 WARN_ON(1); 753 return -EFAULT; 754 } 755 756 ssize = user_segment_size(ea); 757 758 bpsize = get_slice_psize(mm, ea); 759 flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp; 760 761 return slb_insert_entry(ea, context, flags, ssize, false); 762 } 763 764 long do_slb_fault(struct pt_regs *regs, unsigned long ea) 765 { 766 unsigned long id = get_region_id(ea); 767 768 /* IRQs are not reconciled here, so can't check irqs_disabled */ 769 VM_WARN_ON(mfmsr() & MSR_EE); 770 771 if (unlikely(!(regs->msr & MSR_RI))) 772 return -EINVAL; 773 774 /* 775 * SLB kernel faults must be very careful not to touch anything 776 * that is not bolted. E.g., PACA and global variables are okay, 777 * mm->context stuff is not. 778 * 779 * SLB user faults can access all of kernel memory, but must be 780 * careful not to touch things like IRQ state because it is not 781 * "reconciled" here. The difficulty is that we must use 782 * fast_exception_return to return from kernel SLB faults without 783 * looking at possible non-bolted memory. We could test user vs 784 * kernel faults in the interrupt handler asm and do a full fault, 785 * reconcile, ret_from_except for user faults which would make them 786 * first class kernel code. But for performance it's probably nicer 787 * if they go via fast_exception_return too. 788 */ 789 if (id >= LINEAR_MAP_REGION_ID) { 790 long err; 791 #ifdef CONFIG_DEBUG_VM 792 /* Catch recursive kernel SLB faults. */ 793 BUG_ON(local_paca->in_kernel_slb_handler); 794 local_paca->in_kernel_slb_handler = 1; 795 #endif 796 err = slb_allocate_kernel(ea, id); 797 #ifdef CONFIG_DEBUG_VM 798 local_paca->in_kernel_slb_handler = 0; 799 #endif 800 return err; 801 } else { 802 struct mm_struct *mm = current->mm; 803 long err; 804 805 if (unlikely(!mm)) 806 return -EFAULT; 807 808 err = slb_allocate_user(mm, ea); 809 if (!err) 810 preload_add(current_thread_info(), ea); 811 812 return err; 813 } 814 } 815 816 void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err) 817 { 818 if (err == -EFAULT) { 819 if (user_mode(regs)) 820 _exception(SIGSEGV, regs, SEGV_BNDERR, ea); 821 else 822 bad_page_fault(regs, ea, SIGSEGV); 823 } else if (err == -EINVAL) { 824 unrecoverable_exception(regs); 825 } else { 826 BUG(); 827 } 828 } 829