xref: /linux/arch/powerpc/mm/book3s64/slb.c (revision 8ca4fc323d2e4ab9dabbdd57633af40b0c7e6af9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 SLB support.
4  *
5  * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
6  * Based on earlier code written by:
7  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
8  *    Copyright (c) 2001 Dave Engebretsen
9  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
10  */
11 
12 #include <asm/interrupt.h>
13 #include <asm/mmu.h>
14 #include <asm/mmu_context.h>
15 #include <asm/paca.h>
16 #include <asm/ppc-opcode.h>
17 #include <asm/cputable.h>
18 #include <asm/cacheflush.h>
19 #include <asm/smp.h>
20 #include <linux/compiler.h>
21 #include <linux/context_tracking.h>
22 #include <linux/mm_types.h>
23 #include <linux/pgtable.h>
24 
25 #include <asm/udbg.h>
26 #include <asm/code-patching.h>
27 
28 #include "internal.h"
29 
30 
31 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
32 
33 bool stress_slb_enabled __initdata;
34 
35 static int __init parse_stress_slb(char *p)
36 {
37 	stress_slb_enabled = true;
38 	return 0;
39 }
40 early_param("stress_slb", parse_stress_slb);
41 
42 __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_slb_key);
43 
44 static void assert_slb_presence(bool present, unsigned long ea)
45 {
46 #ifdef CONFIG_DEBUG_VM
47 	unsigned long tmp;
48 
49 	WARN_ON_ONCE(mfmsr() & MSR_EE);
50 
51 	if (!cpu_has_feature(CPU_FTR_ARCH_206))
52 		return;
53 
54 	/*
55 	 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
56 	 * ignores all other bits from 0-27, so just clear them all.
57 	 */
58 	ea &= ~((1UL << SID_SHIFT) - 1);
59 	asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
60 
61 	WARN_ON(present == (tmp == 0));
62 #endif
63 }
64 
65 static inline void slb_shadow_update(unsigned long ea, int ssize,
66 				     unsigned long flags,
67 				     enum slb_index index)
68 {
69 	struct slb_shadow *p = get_slb_shadow();
70 
71 	/*
72 	 * Clear the ESID first so the entry is not valid while we are
73 	 * updating it.  No write barriers are needed here, provided
74 	 * we only update the current CPU's SLB shadow buffer.
75 	 */
76 	WRITE_ONCE(p->save_area[index].esid, 0);
77 	WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
78 	WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
79 }
80 
81 static inline void slb_shadow_clear(enum slb_index index)
82 {
83 	WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
84 }
85 
86 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
87 					unsigned long flags,
88 					enum slb_index index)
89 {
90 	/*
91 	 * Updating the shadow buffer before writing the SLB ensures
92 	 * we don't get a stale entry here if we get preempted by PHYP
93 	 * between these two statements.
94 	 */
95 	slb_shadow_update(ea, ssize, flags, index);
96 
97 	assert_slb_presence(false, ea);
98 	asm volatile("slbmte  %0,%1" :
99 		     : "r" (mk_vsid_data(ea, ssize, flags)),
100 		       "r" (mk_esid_data(ea, ssize, index))
101 		     : "memory" );
102 }
103 
104 /*
105  * Insert bolted entries into SLB (which may not be empty, so don't clear
106  * slb_cache_ptr).
107  */
108 void __slb_restore_bolted_realmode(void)
109 {
110 	struct slb_shadow *p = get_slb_shadow();
111 	enum slb_index index;
112 
113 	 /* No isync needed because realmode. */
114 	for (index = 0; index < SLB_NUM_BOLTED; index++) {
115 		asm volatile("slbmte  %0,%1" :
116 		     : "r" (be64_to_cpu(p->save_area[index].vsid)),
117 		       "r" (be64_to_cpu(p->save_area[index].esid)));
118 	}
119 
120 	assert_slb_presence(true, local_paca->kstack);
121 }
122 
123 /*
124  * Insert the bolted entries into an empty SLB.
125  */
126 void slb_restore_bolted_realmode(void)
127 {
128 	__slb_restore_bolted_realmode();
129 	get_paca()->slb_cache_ptr = 0;
130 
131 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
132 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
133 }
134 
135 /*
136  * This flushes all SLB entries including 0, so it must be realmode.
137  */
138 void slb_flush_all_realmode(void)
139 {
140 	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
141 }
142 
143 static __always_inline void __slb_flush_and_restore_bolted(bool preserve_kernel_lookaside)
144 {
145 	struct slb_shadow *p = get_slb_shadow();
146 	unsigned long ksp_esid_data, ksp_vsid_data;
147 	u32 ih;
148 
149 	/*
150 	 * SLBIA IH=1 on ISA v2.05 and newer processors may preserve lookaside
151 	 * information created with Class=0 entries, which we use for kernel
152 	 * SLB entries (the SLB entries themselves are still invalidated).
153 	 *
154 	 * Older processors will ignore this optimisation. Over-invalidation
155 	 * is fine because we never rely on lookaside information existing.
156 	 */
157 	if (preserve_kernel_lookaside)
158 		ih = 1;
159 	else
160 		ih = 0;
161 
162 	ksp_esid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
163 	ksp_vsid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
164 
165 	asm volatile(PPC_SLBIA(%0)"	\n"
166 		     "slbmte	%1, %2	\n"
167 		     :: "i" (ih),
168 			"r" (ksp_vsid_data),
169 			"r" (ksp_esid_data)
170 		     : "memory");
171 }
172 
173 /*
174  * This flushes non-bolted entries, it can be run in virtual mode. Must
175  * be called with interrupts disabled.
176  */
177 void slb_flush_and_restore_bolted(void)
178 {
179 	BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
180 
181 	WARN_ON(!irqs_disabled());
182 
183 	/*
184 	 * We can't take a PMU exception in the following code, so hard
185 	 * disable interrupts.
186 	 */
187 	hard_irq_disable();
188 
189 	isync();
190 	__slb_flush_and_restore_bolted(false);
191 	isync();
192 
193 	assert_slb_presence(true, get_paca()->kstack);
194 
195 	get_paca()->slb_cache_ptr = 0;
196 
197 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
198 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
199 }
200 
201 void slb_save_contents(struct slb_entry *slb_ptr)
202 {
203 	int i;
204 	unsigned long e, v;
205 
206 	/* Save slb_cache_ptr value. */
207 	get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
208 
209 	if (!slb_ptr)
210 		return;
211 
212 	for (i = 0; i < mmu_slb_size; i++) {
213 		asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i));
214 		asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i));
215 		slb_ptr->esid = e;
216 		slb_ptr->vsid = v;
217 		slb_ptr++;
218 	}
219 }
220 
221 void slb_dump_contents(struct slb_entry *slb_ptr)
222 {
223 	int i, n;
224 	unsigned long e, v;
225 	unsigned long llp;
226 
227 	if (!slb_ptr)
228 		return;
229 
230 	pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
231 
232 	for (i = 0; i < mmu_slb_size; i++) {
233 		e = slb_ptr->esid;
234 		v = slb_ptr->vsid;
235 		slb_ptr++;
236 
237 		if (!e && !v)
238 			continue;
239 
240 		pr_err("%02d %016lx %016lx %s\n", i, e, v,
241 				(e & SLB_ESID_V) ? "VALID" : "NOT VALID");
242 
243 		if (!(e & SLB_ESID_V))
244 			continue;
245 
246 		llp = v & SLB_VSID_LLP;
247 		if (v & SLB_VSID_B_1T) {
248 			pr_err("     1T ESID=%9lx VSID=%13lx LLP:%3lx\n",
249 			       GET_ESID_1T(e),
250 			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
251 		} else {
252 			pr_err("   256M ESID=%9lx VSID=%13lx LLP:%3lx\n",
253 			       GET_ESID(e),
254 			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
255 		}
256 	}
257 
258 	if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) {
259 		/* RR is not so useful as it's often not used for allocation */
260 		pr_err("SLB RR allocator index %d\n", get_paca()->stab_rr);
261 
262 		/* Dump slb cache entires as well. */
263 		pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
264 		pr_err("Valid SLB cache entries:\n");
265 		n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
266 		for (i = 0; i < n; i++)
267 			pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
268 		pr_err("Rest of SLB cache entries:\n");
269 		for (i = n; i < SLB_CACHE_ENTRIES; i++)
270 			pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
271 	}
272 }
273 
274 void slb_vmalloc_update(void)
275 {
276 	/*
277 	 * vmalloc is not bolted, so just have to flush non-bolted.
278 	 */
279 	slb_flush_and_restore_bolted();
280 }
281 
282 static bool preload_hit(struct thread_info *ti, unsigned long esid)
283 {
284 	unsigned char i;
285 
286 	for (i = 0; i < ti->slb_preload_nr; i++) {
287 		unsigned char idx;
288 
289 		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
290 		if (esid == ti->slb_preload_esid[idx])
291 			return true;
292 	}
293 	return false;
294 }
295 
296 static bool preload_add(struct thread_info *ti, unsigned long ea)
297 {
298 	unsigned char idx;
299 	unsigned long esid;
300 
301 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
302 		/* EAs are stored >> 28 so 256MB segments don't need clearing */
303 		if (ea & ESID_MASK_1T)
304 			ea &= ESID_MASK_1T;
305 	}
306 
307 	esid = ea >> SID_SHIFT;
308 
309 	if (preload_hit(ti, esid))
310 		return false;
311 
312 	idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
313 	ti->slb_preload_esid[idx] = esid;
314 	if (ti->slb_preload_nr == SLB_PRELOAD_NR)
315 		ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
316 	else
317 		ti->slb_preload_nr++;
318 
319 	return true;
320 }
321 
322 static void preload_age(struct thread_info *ti)
323 {
324 	if (!ti->slb_preload_nr)
325 		return;
326 	ti->slb_preload_nr--;
327 	ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
328 }
329 
330 void slb_setup_new_exec(void)
331 {
332 	struct thread_info *ti = current_thread_info();
333 	struct mm_struct *mm = current->mm;
334 	unsigned long exec = 0x10000000;
335 
336 	WARN_ON(irqs_disabled());
337 
338 	/*
339 	 * preload cache can only be used to determine whether a SLB
340 	 * entry exists if it does not start to overflow.
341 	 */
342 	if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
343 		return;
344 
345 	hard_irq_disable();
346 
347 	/*
348 	 * We have no good place to clear the slb preload cache on exec,
349 	 * flush_thread is about the earliest arch hook but that happens
350 	 * after we switch to the mm and have already preloaded the SLBEs.
351 	 *
352 	 * For the most part that's probably okay to use entries from the
353 	 * previous exec, they will age out if unused. It may turn out to
354 	 * be an advantage to clear the cache before switching to it,
355 	 * however.
356 	 */
357 
358 	/*
359 	 * preload some userspace segments into the SLB.
360 	 * Almost all 32 and 64bit PowerPC executables are linked at
361 	 * 0x10000000 so it makes sense to preload this segment.
362 	 */
363 	if (!is_kernel_addr(exec)) {
364 		if (preload_add(ti, exec))
365 			slb_allocate_user(mm, exec);
366 	}
367 
368 	/* Libraries and mmaps. */
369 	if (!is_kernel_addr(mm->mmap_base)) {
370 		if (preload_add(ti, mm->mmap_base))
371 			slb_allocate_user(mm, mm->mmap_base);
372 	}
373 
374 	/* see switch_slb */
375 	asm volatile("isync" : : : "memory");
376 
377 	local_irq_enable();
378 }
379 
380 void preload_new_slb_context(unsigned long start, unsigned long sp)
381 {
382 	struct thread_info *ti = current_thread_info();
383 	struct mm_struct *mm = current->mm;
384 	unsigned long heap = mm->start_brk;
385 
386 	WARN_ON(irqs_disabled());
387 
388 	/* see above */
389 	if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
390 		return;
391 
392 	hard_irq_disable();
393 
394 	/* Userspace entry address. */
395 	if (!is_kernel_addr(start)) {
396 		if (preload_add(ti, start))
397 			slb_allocate_user(mm, start);
398 	}
399 
400 	/* Top of stack, grows down. */
401 	if (!is_kernel_addr(sp)) {
402 		if (preload_add(ti, sp))
403 			slb_allocate_user(mm, sp);
404 	}
405 
406 	/* Bottom of heap, grows up. */
407 	if (heap && !is_kernel_addr(heap)) {
408 		if (preload_add(ti, heap))
409 			slb_allocate_user(mm, heap);
410 	}
411 
412 	/* see switch_slb */
413 	asm volatile("isync" : : : "memory");
414 
415 	local_irq_enable();
416 }
417 
418 static void slb_cache_slbie_kernel(unsigned int index)
419 {
420 	unsigned long slbie_data = get_paca()->slb_cache[index];
421 	unsigned long ksp = get_paca()->kstack;
422 
423 	slbie_data <<= SID_SHIFT;
424 	slbie_data |= 0xc000000000000000ULL;
425 	if ((ksp & slb_esid_mask(mmu_kernel_ssize)) == slbie_data)
426 		return;
427 	slbie_data |= mmu_kernel_ssize << SLBIE_SSIZE_SHIFT;
428 
429 	asm volatile("slbie %0" : : "r" (slbie_data));
430 }
431 
432 static void slb_cache_slbie_user(unsigned int index)
433 {
434 	unsigned long slbie_data = get_paca()->slb_cache[index];
435 
436 	slbie_data <<= SID_SHIFT;
437 	slbie_data |= user_segment_size(slbie_data) << SLBIE_SSIZE_SHIFT;
438 	slbie_data |= SLBIE_C; /* user slbs have C=1 */
439 
440 	asm volatile("slbie %0" : : "r" (slbie_data));
441 }
442 
443 /* Flush all user entries from the segment table of the current processor. */
444 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
445 {
446 	struct thread_info *ti = task_thread_info(tsk);
447 	unsigned char i;
448 
449 	/*
450 	 * We need interrupts hard-disabled here, not just soft-disabled,
451 	 * so that a PMU interrupt can't occur, which might try to access
452 	 * user memory (to get a stack trace) and possible cause an SLB miss
453 	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
454 	 */
455 	hard_irq_disable();
456 	isync();
457 	if (stress_slb()) {
458 		__slb_flush_and_restore_bolted(false);
459 		isync();
460 		get_paca()->slb_cache_ptr = 0;
461 		get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
462 
463 	} else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
464 		/*
465 		 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
466 		 * associated lookaside structures, which matches what
467 		 * switch_slb wants. So ARCH_300 does not use the slb
468 		 * cache.
469 		 */
470 		asm volatile(PPC_SLBIA(3));
471 
472 	} else {
473 		unsigned long offset = get_paca()->slb_cache_ptr;
474 
475 		if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
476 		    offset <= SLB_CACHE_ENTRIES) {
477 			/*
478 			 * Could assert_slb_presence(true) here, but
479 			 * hypervisor or machine check could have come
480 			 * in and removed the entry at this point.
481 			 */
482 
483 			for (i = 0; i < offset; i++)
484 				slb_cache_slbie_user(i);
485 
486 			/* Workaround POWER5 < DD2.1 issue */
487 			if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
488 				slb_cache_slbie_user(0);
489 
490 		} else {
491 			/* Flush but retain kernel lookaside information */
492 			__slb_flush_and_restore_bolted(true);
493 			isync();
494 
495 			get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
496 		}
497 
498 		get_paca()->slb_cache_ptr = 0;
499 	}
500 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
501 
502 	copy_mm_to_paca(mm);
503 
504 	/*
505 	 * We gradually age out SLBs after a number of context switches to
506 	 * reduce reload overhead of unused entries (like we do with FP/VEC
507 	 * reload). Each time we wrap 256 switches, take an entry out of the
508 	 * SLB preload cache.
509 	 */
510 	tsk->thread.load_slb++;
511 	if (!tsk->thread.load_slb) {
512 		unsigned long pc = KSTK_EIP(tsk);
513 
514 		preload_age(ti);
515 		preload_add(ti, pc);
516 	}
517 
518 	for (i = 0; i < ti->slb_preload_nr; i++) {
519 		unsigned char idx;
520 		unsigned long ea;
521 
522 		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
523 		ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
524 
525 		slb_allocate_user(mm, ea);
526 	}
527 
528 	/*
529 	 * Synchronize slbmte preloads with possible subsequent user memory
530 	 * address accesses by the kernel (user mode won't happen until
531 	 * rfid, which is safe).
532 	 */
533 	isync();
534 }
535 
536 void slb_set_size(u16 size)
537 {
538 	mmu_slb_size = size;
539 }
540 
541 void slb_initialize(void)
542 {
543 	unsigned long linear_llp, vmalloc_llp, io_llp;
544 	unsigned long lflags;
545 	static int slb_encoding_inited;
546 #ifdef CONFIG_SPARSEMEM_VMEMMAP
547 	unsigned long vmemmap_llp;
548 #endif
549 
550 	/* Prepare our SLB miss handler based on our page size */
551 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
552 	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
553 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
554 	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
555 #ifdef CONFIG_SPARSEMEM_VMEMMAP
556 	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
557 #endif
558 	if (!slb_encoding_inited) {
559 		slb_encoding_inited = 1;
560 		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
561 		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
562 #ifdef CONFIG_SPARSEMEM_VMEMMAP
563 		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
564 #endif
565 	}
566 
567 	get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
568 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
569 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
570 
571 	lflags = SLB_VSID_KERNEL | linear_llp;
572 
573 	/* Invalidate the entire SLB (even entry 0) & all the ERATS */
574 	asm volatile("isync":::"memory");
575 	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
576 	asm volatile("isync; slbia; isync":::"memory");
577 	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
578 
579 	/*
580 	 * For the boot cpu, we're running on the stack in init_thread_union,
581 	 * which is in the first segment of the linear mapping, and also
582 	 * get_paca()->kstack hasn't been initialized yet.
583 	 * For secondary cpus, we need to bolt the kernel stack entry now.
584 	 */
585 	slb_shadow_clear(KSTACK_INDEX);
586 	if (raw_smp_processor_id() != boot_cpuid &&
587 	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
588 		create_shadowed_slbe(get_paca()->kstack,
589 				     mmu_kernel_ssize, lflags, KSTACK_INDEX);
590 
591 	asm volatile("isync":::"memory");
592 }
593 
594 static void slb_cache_update(unsigned long esid_data)
595 {
596 	int slb_cache_index;
597 
598 	if (cpu_has_feature(CPU_FTR_ARCH_300))
599 		return; /* ISAv3.0B and later does not use slb_cache */
600 
601 	if (stress_slb())
602 		return;
603 
604 	/*
605 	 * Now update slb cache entries
606 	 */
607 	slb_cache_index = local_paca->slb_cache_ptr;
608 	if (slb_cache_index < SLB_CACHE_ENTRIES) {
609 		/*
610 		 * We have space in slb cache for optimized switch_slb().
611 		 * Top 36 bits from esid_data as per ISA
612 		 */
613 		local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
614 		local_paca->slb_cache_ptr++;
615 	} else {
616 		/*
617 		 * Our cache is full and the current cache content strictly
618 		 * doesn't indicate the active SLB contents. Bump the ptr
619 		 * so that switch_slb() will ignore the cache.
620 		 */
621 		local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
622 	}
623 }
624 
625 static enum slb_index alloc_slb_index(bool kernel)
626 {
627 	enum slb_index index;
628 
629 	/*
630 	 * The allocation bitmaps can become out of synch with the SLB
631 	 * when the _switch code does slbie when bolting a new stack
632 	 * segment and it must not be anywhere else in the SLB. This leaves
633 	 * a kernel allocated entry that is unused in the SLB. With very
634 	 * large systems or small segment sizes, the bitmaps could slowly
635 	 * fill with these entries. They will eventually be cleared out
636 	 * by the round robin allocator in that case, so it's probably not
637 	 * worth accounting for.
638 	 */
639 
640 	/*
641 	 * SLBs beyond 32 entries are allocated with stab_rr only
642 	 * POWER7/8/9 have 32 SLB entries, this could be expanded if a
643 	 * future CPU has more.
644 	 */
645 	if (local_paca->slb_used_bitmap != U32_MAX) {
646 		index = ffz(local_paca->slb_used_bitmap);
647 		local_paca->slb_used_bitmap |= 1U << index;
648 		if (kernel)
649 			local_paca->slb_kern_bitmap |= 1U << index;
650 	} else {
651 		/* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
652 		index = local_paca->stab_rr;
653 		if (index < (mmu_slb_size - 1))
654 			index++;
655 		else
656 			index = SLB_NUM_BOLTED;
657 		local_paca->stab_rr = index;
658 		if (index < 32) {
659 			if (kernel)
660 				local_paca->slb_kern_bitmap |= 1U << index;
661 			else
662 				local_paca->slb_kern_bitmap &= ~(1U << index);
663 		}
664 	}
665 	BUG_ON(index < SLB_NUM_BOLTED);
666 
667 	return index;
668 }
669 
670 static long slb_insert_entry(unsigned long ea, unsigned long context,
671 				unsigned long flags, int ssize, bool kernel)
672 {
673 	unsigned long vsid;
674 	unsigned long vsid_data, esid_data;
675 	enum slb_index index;
676 
677 	vsid = get_vsid(context, ea, ssize);
678 	if (!vsid)
679 		return -EFAULT;
680 
681 	/*
682 	 * There must not be a kernel SLB fault in alloc_slb_index or before
683 	 * slbmte here or the allocation bitmaps could get out of whack with
684 	 * the SLB.
685 	 *
686 	 * User SLB faults or preloads take this path which might get inlined
687 	 * into the caller, so add compiler barriers here to ensure unsafe
688 	 * memory accesses do not come between.
689 	 */
690 	barrier();
691 
692 	index = alloc_slb_index(kernel);
693 
694 	vsid_data = __mk_vsid_data(vsid, ssize, flags);
695 	esid_data = mk_esid_data(ea, ssize, index);
696 
697 	/*
698 	 * No need for an isync before or after this slbmte. The exception
699 	 * we enter with and the rfid we exit with are context synchronizing.
700 	 * User preloads should add isync afterwards in case the kernel
701 	 * accesses user memory before it returns to userspace with rfid.
702 	 */
703 	assert_slb_presence(false, ea);
704 	if (stress_slb()) {
705 		int slb_cache_index = local_paca->slb_cache_ptr;
706 
707 		/*
708 		 * stress_slb() does not use slb cache, repurpose as a
709 		 * cache of inserted (non-bolted) kernel SLB entries. All
710 		 * non-bolted kernel entries are flushed on any user fault,
711 		 * or if there are already 3 non-boled kernel entries.
712 		 */
713 		BUILD_BUG_ON(SLB_CACHE_ENTRIES < 3);
714 		if (!kernel || slb_cache_index == 3) {
715 			int i;
716 
717 			for (i = 0; i < slb_cache_index; i++)
718 				slb_cache_slbie_kernel(i);
719 			slb_cache_index = 0;
720 		}
721 
722 		if (kernel)
723 			local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
724 		local_paca->slb_cache_ptr = slb_cache_index;
725 	}
726 	asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
727 
728 	barrier();
729 
730 	if (!kernel)
731 		slb_cache_update(esid_data);
732 
733 	return 0;
734 }
735 
736 static long slb_allocate_kernel(unsigned long ea, unsigned long id)
737 {
738 	unsigned long context;
739 	unsigned long flags;
740 	int ssize;
741 
742 	if (id == LINEAR_MAP_REGION_ID) {
743 
744 		/* We only support upto H_MAX_PHYSMEM_BITS */
745 		if ((ea & EA_MASK) > (1UL << H_MAX_PHYSMEM_BITS))
746 			return -EFAULT;
747 
748 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
749 
750 #ifdef CONFIG_SPARSEMEM_VMEMMAP
751 	} else if (id == VMEMMAP_REGION_ID) {
752 
753 		if (ea >= H_VMEMMAP_END)
754 			return -EFAULT;
755 
756 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
757 #endif
758 	} else if (id == VMALLOC_REGION_ID) {
759 
760 		if (ea >= H_VMALLOC_END)
761 			return -EFAULT;
762 
763 		flags = local_paca->vmalloc_sllp;
764 
765 	} else if (id == IO_REGION_ID) {
766 
767 		if (ea >= H_KERN_IO_END)
768 			return -EFAULT;
769 
770 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
771 
772 	} else {
773 		return -EFAULT;
774 	}
775 
776 	ssize = MMU_SEGSIZE_1T;
777 	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
778 		ssize = MMU_SEGSIZE_256M;
779 
780 	context = get_kernel_context(ea);
781 
782 	return slb_insert_entry(ea, context, flags, ssize, true);
783 }
784 
785 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
786 {
787 	unsigned long context;
788 	unsigned long flags;
789 	int bpsize;
790 	int ssize;
791 
792 	/*
793 	 * consider this as bad access if we take a SLB miss
794 	 * on an address above addr limit.
795 	 */
796 	if (ea >= mm_ctx_slb_addr_limit(&mm->context))
797 		return -EFAULT;
798 
799 	context = get_user_context(&mm->context, ea);
800 	if (!context)
801 		return -EFAULT;
802 
803 	if (unlikely(ea >= H_PGTABLE_RANGE)) {
804 		WARN_ON(1);
805 		return -EFAULT;
806 	}
807 
808 	ssize = user_segment_size(ea);
809 
810 	bpsize = get_slice_psize(mm, ea);
811 	flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
812 
813 	return slb_insert_entry(ea, context, flags, ssize, false);
814 }
815 
816 DEFINE_INTERRUPT_HANDLER_RAW(do_slb_fault)
817 {
818 	unsigned long ea = regs->dar;
819 	unsigned long id = get_region_id(ea);
820 
821 	/* IRQs are not reconciled here, so can't check irqs_disabled */
822 	VM_WARN_ON(mfmsr() & MSR_EE);
823 
824 	if (regs_is_unrecoverable(regs))
825 		return -EINVAL;
826 
827 	/*
828 	 * SLB kernel faults must be very careful not to touch anything that is
829 	 * not bolted. E.g., PACA and global variables are okay, mm->context
830 	 * stuff is not. SLB user faults may access all of memory (and induce
831 	 * one recursive SLB kernel fault), so the kernel fault must not
832 	 * trample on the user fault state at those points.
833 	 */
834 
835 	/*
836 	 * This is a raw interrupt handler, for performance, so that
837 	 * fast_interrupt_return can be used. The handler must not touch local
838 	 * irq state, or schedule. We could test for usermode and upgrade to a
839 	 * normal process context (synchronous) interrupt for those, which
840 	 * would make them first-class kernel code and able to be traced and
841 	 * instrumented, although performance would suffer a bit, it would
842 	 * probably be a good tradeoff.
843 	 */
844 	if (id >= LINEAR_MAP_REGION_ID) {
845 		long err;
846 #ifdef CONFIG_DEBUG_VM
847 		/* Catch recursive kernel SLB faults. */
848 		BUG_ON(local_paca->in_kernel_slb_handler);
849 		local_paca->in_kernel_slb_handler = 1;
850 #endif
851 		err = slb_allocate_kernel(ea, id);
852 #ifdef CONFIG_DEBUG_VM
853 		local_paca->in_kernel_slb_handler = 0;
854 #endif
855 		return err;
856 	} else {
857 		struct mm_struct *mm = current->mm;
858 		long err;
859 
860 		if (unlikely(!mm))
861 			return -EFAULT;
862 
863 		err = slb_allocate_user(mm, ea);
864 		if (!err)
865 			preload_add(current_thread_info(), ea);
866 
867 		return err;
868 	}
869 }
870