1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Page table handling routines for radix page table. 4 * 5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 6 */ 7 8 #define pr_fmt(fmt) "radix-mmu: " fmt 9 10 #include <linux/io.h> 11 #include <linux/kernel.h> 12 #include <linux/sched/mm.h> 13 #include <linux/memblock.h> 14 #include <linux/of_fdt.h> 15 #include <linux/mm.h> 16 #include <linux/hugetlb.h> 17 #include <linux/string_helpers.h> 18 #include <linux/memory.h> 19 20 #include <asm/pgalloc.h> 21 #include <asm/mmu_context.h> 22 #include <asm/dma.h> 23 #include <asm/machdep.h> 24 #include <asm/mmu.h> 25 #include <asm/firmware.h> 26 #include <asm/powernv.h> 27 #include <asm/sections.h> 28 #include <asm/smp.h> 29 #include <asm/trace.h> 30 #include <asm/uaccess.h> 31 #include <asm/ultravisor.h> 32 33 #include <trace/events/thp.h> 34 35 unsigned int mmu_pid_bits; 36 unsigned int mmu_base_pid; 37 unsigned long radix_mem_block_size __ro_after_init; 38 39 static __ref void *early_alloc_pgtable(unsigned long size, int nid, 40 unsigned long region_start, unsigned long region_end) 41 { 42 phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT; 43 phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE; 44 void *ptr; 45 46 if (region_start) 47 min_addr = region_start; 48 if (region_end) 49 max_addr = region_end; 50 51 ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid); 52 53 if (!ptr) 54 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n", 55 __func__, size, size, nid, &min_addr, &max_addr); 56 57 return ptr; 58 } 59 60 /* 61 * When allocating pud or pmd pointers, we allocate a complete page 62 * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This 63 * is to ensure that the page obtained from the memblock allocator 64 * can be completely used as page table page and can be freed 65 * correctly when the page table entries are removed. 66 */ 67 static int early_map_kernel_page(unsigned long ea, unsigned long pa, 68 pgprot_t flags, 69 unsigned int map_page_size, 70 int nid, 71 unsigned long region_start, unsigned long region_end) 72 { 73 unsigned long pfn = pa >> PAGE_SHIFT; 74 pgd_t *pgdp; 75 p4d_t *p4dp; 76 pud_t *pudp; 77 pmd_t *pmdp; 78 pte_t *ptep; 79 80 pgdp = pgd_offset_k(ea); 81 p4dp = p4d_offset(pgdp, ea); 82 if (p4d_none(*p4dp)) { 83 pudp = early_alloc_pgtable(PAGE_SIZE, nid, 84 region_start, region_end); 85 p4d_populate(&init_mm, p4dp, pudp); 86 } 87 pudp = pud_offset(p4dp, ea); 88 if (map_page_size == PUD_SIZE) { 89 ptep = (pte_t *)pudp; 90 goto set_the_pte; 91 } 92 if (pud_none(*pudp)) { 93 pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start, 94 region_end); 95 pud_populate(&init_mm, pudp, pmdp); 96 } 97 pmdp = pmd_offset(pudp, ea); 98 if (map_page_size == PMD_SIZE) { 99 ptep = pmdp_ptep(pmdp); 100 goto set_the_pte; 101 } 102 if (!pmd_present(*pmdp)) { 103 ptep = early_alloc_pgtable(PAGE_SIZE, nid, 104 region_start, region_end); 105 pmd_populate_kernel(&init_mm, pmdp, ptep); 106 } 107 ptep = pte_offset_kernel(pmdp, ea); 108 109 set_the_pte: 110 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags)); 111 asm volatile("ptesync": : :"memory"); 112 return 0; 113 } 114 115 /* 116 * nid, region_start, and region_end are hints to try to place the page 117 * table memory in the same node or region. 118 */ 119 static int __map_kernel_page(unsigned long ea, unsigned long pa, 120 pgprot_t flags, 121 unsigned int map_page_size, 122 int nid, 123 unsigned long region_start, unsigned long region_end) 124 { 125 unsigned long pfn = pa >> PAGE_SHIFT; 126 pgd_t *pgdp; 127 p4d_t *p4dp; 128 pud_t *pudp; 129 pmd_t *pmdp; 130 pte_t *ptep; 131 /* 132 * Make sure task size is correct as per the max adddr 133 */ 134 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE); 135 136 #ifdef CONFIG_PPC_64K_PAGES 137 BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT)); 138 #endif 139 140 if (unlikely(!slab_is_available())) 141 return early_map_kernel_page(ea, pa, flags, map_page_size, 142 nid, region_start, region_end); 143 144 /* 145 * Should make page table allocation functions be able to take a 146 * node, so we can place kernel page tables on the right nodes after 147 * boot. 148 */ 149 pgdp = pgd_offset_k(ea); 150 p4dp = p4d_offset(pgdp, ea); 151 pudp = pud_alloc(&init_mm, p4dp, ea); 152 if (!pudp) 153 return -ENOMEM; 154 if (map_page_size == PUD_SIZE) { 155 ptep = (pte_t *)pudp; 156 goto set_the_pte; 157 } 158 pmdp = pmd_alloc(&init_mm, pudp, ea); 159 if (!pmdp) 160 return -ENOMEM; 161 if (map_page_size == PMD_SIZE) { 162 ptep = pmdp_ptep(pmdp); 163 goto set_the_pte; 164 } 165 ptep = pte_alloc_kernel(pmdp, ea); 166 if (!ptep) 167 return -ENOMEM; 168 169 set_the_pte: 170 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags)); 171 asm volatile("ptesync": : :"memory"); 172 return 0; 173 } 174 175 int radix__map_kernel_page(unsigned long ea, unsigned long pa, 176 pgprot_t flags, 177 unsigned int map_page_size) 178 { 179 return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0); 180 } 181 182 #ifdef CONFIG_STRICT_KERNEL_RWX 183 void radix__change_memory_range(unsigned long start, unsigned long end, 184 unsigned long clear) 185 { 186 unsigned long idx; 187 pgd_t *pgdp; 188 p4d_t *p4dp; 189 pud_t *pudp; 190 pmd_t *pmdp; 191 pte_t *ptep; 192 193 start = ALIGN_DOWN(start, PAGE_SIZE); 194 end = PAGE_ALIGN(end); // aligns up 195 196 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n", 197 start, end, clear); 198 199 for (idx = start; idx < end; idx += PAGE_SIZE) { 200 pgdp = pgd_offset_k(idx); 201 p4dp = p4d_offset(pgdp, idx); 202 pudp = pud_alloc(&init_mm, p4dp, idx); 203 if (!pudp) 204 continue; 205 if (pud_is_leaf(*pudp)) { 206 ptep = (pte_t *)pudp; 207 goto update_the_pte; 208 } 209 pmdp = pmd_alloc(&init_mm, pudp, idx); 210 if (!pmdp) 211 continue; 212 if (pmd_is_leaf(*pmdp)) { 213 ptep = pmdp_ptep(pmdp); 214 goto update_the_pte; 215 } 216 ptep = pte_alloc_kernel(pmdp, idx); 217 if (!ptep) 218 continue; 219 update_the_pte: 220 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0); 221 } 222 223 radix__flush_tlb_kernel_range(start, end); 224 } 225 226 void radix__mark_rodata_ro(void) 227 { 228 unsigned long start, end; 229 230 start = (unsigned long)_stext; 231 end = (unsigned long)__init_begin; 232 233 radix__change_memory_range(start, end, _PAGE_WRITE); 234 } 235 236 void radix__mark_initmem_nx(void) 237 { 238 unsigned long start = (unsigned long)__init_begin; 239 unsigned long end = (unsigned long)__init_end; 240 241 radix__change_memory_range(start, end, _PAGE_EXEC); 242 } 243 #endif /* CONFIG_STRICT_KERNEL_RWX */ 244 245 static inline void __meminit 246 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec) 247 { 248 char buf[10]; 249 250 if (end <= start) 251 return; 252 253 string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf)); 254 255 pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf, 256 exec ? " (exec)" : ""); 257 } 258 259 static unsigned long next_boundary(unsigned long addr, unsigned long end) 260 { 261 #ifdef CONFIG_STRICT_KERNEL_RWX 262 if (addr < __pa_symbol(__init_begin)) 263 return __pa_symbol(__init_begin); 264 #endif 265 return end; 266 } 267 268 static int __meminit create_physical_mapping(unsigned long start, 269 unsigned long end, 270 unsigned long max_mapping_size, 271 int nid, pgprot_t _prot) 272 { 273 unsigned long vaddr, addr, mapping_size = 0; 274 bool prev_exec, exec = false; 275 pgprot_t prot; 276 int psize; 277 278 start = ALIGN(start, PAGE_SIZE); 279 end = ALIGN_DOWN(end, PAGE_SIZE); 280 for (addr = start; addr < end; addr += mapping_size) { 281 unsigned long gap, previous_size; 282 int rc; 283 284 gap = next_boundary(addr, end) - addr; 285 if (gap > max_mapping_size) 286 gap = max_mapping_size; 287 previous_size = mapping_size; 288 prev_exec = exec; 289 290 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE && 291 mmu_psize_defs[MMU_PAGE_1G].shift) { 292 mapping_size = PUD_SIZE; 293 psize = MMU_PAGE_1G; 294 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE && 295 mmu_psize_defs[MMU_PAGE_2M].shift) { 296 mapping_size = PMD_SIZE; 297 psize = MMU_PAGE_2M; 298 } else { 299 mapping_size = PAGE_SIZE; 300 psize = mmu_virtual_psize; 301 } 302 303 vaddr = (unsigned long)__va(addr); 304 305 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) || 306 overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) { 307 prot = PAGE_KERNEL_X; 308 exec = true; 309 } else { 310 prot = _prot; 311 exec = false; 312 } 313 314 if (mapping_size != previous_size || exec != prev_exec) { 315 print_mapping(start, addr, previous_size, prev_exec); 316 start = addr; 317 } 318 319 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end); 320 if (rc) 321 return rc; 322 323 update_page_count(psize, 1); 324 } 325 326 print_mapping(start, addr, mapping_size, exec); 327 return 0; 328 } 329 330 static void __init radix_init_pgtable(void) 331 { 332 unsigned long rts_field; 333 phys_addr_t start, end; 334 u64 i; 335 336 /* We don't support slb for radix */ 337 mmu_slb_size = 0; 338 339 /* 340 * Create the linear mapping 341 */ 342 for_each_mem_range(i, &start, &end) { 343 /* 344 * The memblock allocator is up at this point, so the 345 * page tables will be allocated within the range. No 346 * need or a node (which we don't have yet). 347 */ 348 349 if (end >= RADIX_VMALLOC_START) { 350 pr_warn("Outside the supported range\n"); 351 continue; 352 } 353 354 WARN_ON(create_physical_mapping(start, end, 355 radix_mem_block_size, 356 -1, PAGE_KERNEL)); 357 } 358 359 /* Find out how many PID bits are supported */ 360 if (!cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) { 361 if (!mmu_pid_bits) 362 mmu_pid_bits = 20; 363 mmu_base_pid = 1; 364 } else if (cpu_has_feature(CPU_FTR_HVMODE)) { 365 if (!mmu_pid_bits) 366 mmu_pid_bits = 20; 367 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 368 /* 369 * When KVM is possible, we only use the top half of the 370 * PID space to avoid collisions between host and guest PIDs 371 * which can cause problems due to prefetch when exiting the 372 * guest with AIL=3 373 */ 374 mmu_base_pid = 1 << (mmu_pid_bits - 1); 375 #else 376 mmu_base_pid = 1; 377 #endif 378 } else { 379 /* The guest uses the bottom half of the PID space */ 380 if (!mmu_pid_bits) 381 mmu_pid_bits = 19; 382 mmu_base_pid = 1; 383 } 384 385 /* 386 * Allocate Partition table and process table for the 387 * host. 388 */ 389 BUG_ON(PRTB_SIZE_SHIFT > 36); 390 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0); 391 /* 392 * Fill in the process table. 393 */ 394 rts_field = radix__get_tree_size(); 395 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE); 396 397 /* 398 * The init_mm context is given the first available (non-zero) PID, 399 * which is the "guard PID" and contains no page table. PIDR should 400 * never be set to zero because that duplicates the kernel address 401 * space at the 0x0... offset (quadrant 0)! 402 * 403 * An arbitrary PID that may later be allocated by the PID allocator 404 * for userspace processes must not be used either, because that 405 * would cause stale user mappings for that PID on CPUs outside of 406 * the TLB invalidation scheme (because it won't be in mm_cpumask). 407 * 408 * So permanently carve out one PID for the purpose of a guard PID. 409 */ 410 init_mm.context.id = mmu_base_pid; 411 mmu_base_pid++; 412 } 413 414 static void __init radix_init_partition_table(void) 415 { 416 unsigned long rts_field, dw0, dw1; 417 418 mmu_partition_table_init(); 419 rts_field = radix__get_tree_size(); 420 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR; 421 dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR; 422 mmu_partition_table_set_entry(0, dw0, dw1, false); 423 424 pr_info("Initializing Radix MMU\n"); 425 } 426 427 static int __init get_idx_from_shift(unsigned int shift) 428 { 429 int idx = -1; 430 431 switch (shift) { 432 case 0xc: 433 idx = MMU_PAGE_4K; 434 break; 435 case 0x10: 436 idx = MMU_PAGE_64K; 437 break; 438 case 0x15: 439 idx = MMU_PAGE_2M; 440 break; 441 case 0x1e: 442 idx = MMU_PAGE_1G; 443 break; 444 } 445 return idx; 446 } 447 448 static int __init radix_dt_scan_page_sizes(unsigned long node, 449 const char *uname, int depth, 450 void *data) 451 { 452 int size = 0; 453 int shift, idx; 454 unsigned int ap; 455 const __be32 *prop; 456 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 457 458 /* We are scanning "cpu" nodes only */ 459 if (type == NULL || strcmp(type, "cpu") != 0) 460 return 0; 461 462 /* Find MMU PID size */ 463 prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size); 464 if (prop && size == 4) 465 mmu_pid_bits = be32_to_cpup(prop); 466 467 /* Grab page size encodings */ 468 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size); 469 if (!prop) 470 return 0; 471 472 pr_info("Page sizes from device-tree:\n"); 473 for (; size >= 4; size -= 4, ++prop) { 474 475 struct mmu_psize_def *def; 476 477 /* top 3 bit is AP encoding */ 478 shift = be32_to_cpu(prop[0]) & ~(0xe << 28); 479 ap = be32_to_cpu(prop[0]) >> 29; 480 pr_info("Page size shift = %d AP=0x%x\n", shift, ap); 481 482 idx = get_idx_from_shift(shift); 483 if (idx < 0) 484 continue; 485 486 def = &mmu_psize_defs[idx]; 487 def->shift = shift; 488 def->ap = ap; 489 } 490 491 /* needed ? */ 492 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; 493 return 1; 494 } 495 496 #ifdef CONFIG_MEMORY_HOTPLUG 497 static int __init probe_memory_block_size(unsigned long node, const char *uname, int 498 depth, void *data) 499 { 500 unsigned long *mem_block_size = (unsigned long *)data; 501 const __be32 *prop; 502 int len; 503 504 if (depth != 1) 505 return 0; 506 507 if (strcmp(uname, "ibm,dynamic-reconfiguration-memory")) 508 return 0; 509 510 prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &len); 511 512 if (!prop || len < dt_root_size_cells * sizeof(__be32)) 513 /* 514 * Nothing in the device tree 515 */ 516 *mem_block_size = MIN_MEMORY_BLOCK_SIZE; 517 else 518 *mem_block_size = of_read_number(prop, dt_root_size_cells); 519 return 1; 520 } 521 522 static unsigned long radix_memory_block_size(void) 523 { 524 unsigned long mem_block_size = MIN_MEMORY_BLOCK_SIZE; 525 526 /* 527 * OPAL firmware feature is set by now. Hence we are ok 528 * to test OPAL feature. 529 */ 530 if (firmware_has_feature(FW_FEATURE_OPAL)) 531 mem_block_size = 1UL * 1024 * 1024 * 1024; 532 else 533 of_scan_flat_dt(probe_memory_block_size, &mem_block_size); 534 535 return mem_block_size; 536 } 537 538 #else /* CONFIG_MEMORY_HOTPLUG */ 539 540 static unsigned long radix_memory_block_size(void) 541 { 542 return 1UL * 1024 * 1024 * 1024; 543 } 544 545 #endif /* CONFIG_MEMORY_HOTPLUG */ 546 547 548 void __init radix__early_init_devtree(void) 549 { 550 int rc; 551 552 /* 553 * Try to find the available page sizes in the device-tree 554 */ 555 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL); 556 if (!rc) { 557 /* 558 * No page size details found in device tree. 559 * Let's assume we have page 4k and 64k support 560 */ 561 mmu_psize_defs[MMU_PAGE_4K].shift = 12; 562 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0; 563 564 mmu_psize_defs[MMU_PAGE_64K].shift = 16; 565 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5; 566 } 567 568 /* 569 * Max mapping size used when mapping pages. We don't use 570 * ppc_md.memory_block_size() here because this get called 571 * early and we don't have machine probe called yet. Also 572 * the pseries implementation only check for ibm,lmb-size. 573 * All hypervisor supporting radix do expose that device 574 * tree node. 575 */ 576 radix_mem_block_size = radix_memory_block_size(); 577 return; 578 } 579 580 static void radix_init_amor(void) 581 { 582 /* 583 * In HV mode, we init AMOR (Authority Mask Override Register) so that 584 * the hypervisor and guest can setup IAMR (Instruction Authority Mask 585 * Register), enable key 0 and set it to 1. 586 * 587 * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11) 588 */ 589 mtspr(SPRN_AMOR, (3ul << 62)); 590 } 591 592 void __init radix__early_init_mmu(void) 593 { 594 unsigned long lpcr; 595 596 #ifdef CONFIG_PPC_64K_PAGES 597 /* PAGE_SIZE mappings */ 598 mmu_virtual_psize = MMU_PAGE_64K; 599 #else 600 mmu_virtual_psize = MMU_PAGE_4K; 601 #endif 602 603 #ifdef CONFIG_SPARSEMEM_VMEMMAP 604 /* vmemmap mapping */ 605 if (mmu_psize_defs[MMU_PAGE_2M].shift) { 606 /* 607 * map vmemmap using 2M if available 608 */ 609 mmu_vmemmap_psize = MMU_PAGE_2M; 610 } else 611 mmu_vmemmap_psize = mmu_virtual_psize; 612 #endif 613 /* 614 * initialize page table size 615 */ 616 __pte_index_size = RADIX_PTE_INDEX_SIZE; 617 __pmd_index_size = RADIX_PMD_INDEX_SIZE; 618 __pud_index_size = RADIX_PUD_INDEX_SIZE; 619 __pgd_index_size = RADIX_PGD_INDEX_SIZE; 620 __pud_cache_index = RADIX_PUD_INDEX_SIZE; 621 __pte_table_size = RADIX_PTE_TABLE_SIZE; 622 __pmd_table_size = RADIX_PMD_TABLE_SIZE; 623 __pud_table_size = RADIX_PUD_TABLE_SIZE; 624 __pgd_table_size = RADIX_PGD_TABLE_SIZE; 625 626 __pmd_val_bits = RADIX_PMD_VAL_BITS; 627 __pud_val_bits = RADIX_PUD_VAL_BITS; 628 __pgd_val_bits = RADIX_PGD_VAL_BITS; 629 630 __kernel_virt_start = RADIX_KERN_VIRT_START; 631 __vmalloc_start = RADIX_VMALLOC_START; 632 __vmalloc_end = RADIX_VMALLOC_END; 633 __kernel_io_start = RADIX_KERN_IO_START; 634 __kernel_io_end = RADIX_KERN_IO_END; 635 vmemmap = (struct page *)RADIX_VMEMMAP_START; 636 ioremap_bot = IOREMAP_BASE; 637 638 #ifdef CONFIG_PCI 639 pci_io_base = ISA_IO_BASE; 640 #endif 641 __pte_frag_nr = RADIX_PTE_FRAG_NR; 642 __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT; 643 __pmd_frag_nr = RADIX_PMD_FRAG_NR; 644 __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT; 645 646 radix_init_pgtable(); 647 648 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 649 lpcr = mfspr(SPRN_LPCR); 650 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); 651 radix_init_partition_table(); 652 radix_init_amor(); 653 } else { 654 radix_init_pseries(); 655 } 656 657 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); 658 659 /* Switch to the guard PID before turning on MMU */ 660 radix__switch_mmu_context(NULL, &init_mm); 661 tlbiel_all(); 662 } 663 664 void radix__early_init_mmu_secondary(void) 665 { 666 unsigned long lpcr; 667 /* 668 * update partition table control register and UPRT 669 */ 670 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 671 lpcr = mfspr(SPRN_LPCR); 672 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); 673 674 set_ptcr_when_no_uv(__pa(partition_tb) | 675 (PATB_SIZE_SHIFT - 12)); 676 677 radix_init_amor(); 678 } 679 680 radix__switch_mmu_context(NULL, &init_mm); 681 tlbiel_all(); 682 683 /* Make sure userspace can't change the AMR */ 684 mtspr(SPRN_UAMOR, 0); 685 } 686 687 void radix__mmu_cleanup_all(void) 688 { 689 unsigned long lpcr; 690 691 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 692 lpcr = mfspr(SPRN_LPCR); 693 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT); 694 set_ptcr_when_no_uv(0); 695 powernv_set_nmmu_ptcr(0); 696 radix__flush_tlb_all(); 697 } 698 } 699 700 #ifdef CONFIG_MEMORY_HOTPLUG 701 static void free_pte_table(pte_t *pte_start, pmd_t *pmd) 702 { 703 pte_t *pte; 704 int i; 705 706 for (i = 0; i < PTRS_PER_PTE; i++) { 707 pte = pte_start + i; 708 if (!pte_none(*pte)) 709 return; 710 } 711 712 pte_free_kernel(&init_mm, pte_start); 713 pmd_clear(pmd); 714 } 715 716 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud) 717 { 718 pmd_t *pmd; 719 int i; 720 721 for (i = 0; i < PTRS_PER_PMD; i++) { 722 pmd = pmd_start + i; 723 if (!pmd_none(*pmd)) 724 return; 725 } 726 727 pmd_free(&init_mm, pmd_start); 728 pud_clear(pud); 729 } 730 731 static void free_pud_table(pud_t *pud_start, p4d_t *p4d) 732 { 733 pud_t *pud; 734 int i; 735 736 for (i = 0; i < PTRS_PER_PUD; i++) { 737 pud = pud_start + i; 738 if (!pud_none(*pud)) 739 return; 740 } 741 742 pud_free(&init_mm, pud_start); 743 p4d_clear(p4d); 744 } 745 746 static void remove_pte_table(pte_t *pte_start, unsigned long addr, 747 unsigned long end) 748 { 749 unsigned long next; 750 pte_t *pte; 751 752 pte = pte_start + pte_index(addr); 753 for (; addr < end; addr = next, pte++) { 754 next = (addr + PAGE_SIZE) & PAGE_MASK; 755 if (next > end) 756 next = end; 757 758 if (!pte_present(*pte)) 759 continue; 760 761 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) { 762 /* 763 * The vmemmap_free() and remove_section_mapping() 764 * codepaths call us with aligned addresses. 765 */ 766 WARN_ONCE(1, "%s: unaligned range\n", __func__); 767 continue; 768 } 769 770 pte_clear(&init_mm, addr, pte); 771 } 772 } 773 774 static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr, 775 unsigned long end) 776 { 777 unsigned long next; 778 pte_t *pte_base; 779 pmd_t *pmd; 780 781 pmd = pmd_start + pmd_index(addr); 782 for (; addr < end; addr = next, pmd++) { 783 next = pmd_addr_end(addr, end); 784 785 if (!pmd_present(*pmd)) 786 continue; 787 788 if (pmd_is_leaf(*pmd)) { 789 if (!IS_ALIGNED(addr, PMD_SIZE) || 790 !IS_ALIGNED(next, PMD_SIZE)) { 791 WARN_ONCE(1, "%s: unaligned range\n", __func__); 792 continue; 793 } 794 pte_clear(&init_mm, addr, (pte_t *)pmd); 795 continue; 796 } 797 798 pte_base = (pte_t *)pmd_page_vaddr(*pmd); 799 remove_pte_table(pte_base, addr, next); 800 free_pte_table(pte_base, pmd); 801 } 802 } 803 804 static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr, 805 unsigned long end) 806 { 807 unsigned long next; 808 pmd_t *pmd_base; 809 pud_t *pud; 810 811 pud = pud_start + pud_index(addr); 812 for (; addr < end; addr = next, pud++) { 813 next = pud_addr_end(addr, end); 814 815 if (!pud_present(*pud)) 816 continue; 817 818 if (pud_is_leaf(*pud)) { 819 if (!IS_ALIGNED(addr, PUD_SIZE) || 820 !IS_ALIGNED(next, PUD_SIZE)) { 821 WARN_ONCE(1, "%s: unaligned range\n", __func__); 822 continue; 823 } 824 pte_clear(&init_mm, addr, (pte_t *)pud); 825 continue; 826 } 827 828 pmd_base = (pmd_t *)pud_page_vaddr(*pud); 829 remove_pmd_table(pmd_base, addr, next); 830 free_pmd_table(pmd_base, pud); 831 } 832 } 833 834 static void __meminit remove_pagetable(unsigned long start, unsigned long end) 835 { 836 unsigned long addr, next; 837 pud_t *pud_base; 838 pgd_t *pgd; 839 p4d_t *p4d; 840 841 spin_lock(&init_mm.page_table_lock); 842 843 for (addr = start; addr < end; addr = next) { 844 next = pgd_addr_end(addr, end); 845 846 pgd = pgd_offset_k(addr); 847 p4d = p4d_offset(pgd, addr); 848 if (!p4d_present(*p4d)) 849 continue; 850 851 if (p4d_is_leaf(*p4d)) { 852 if (!IS_ALIGNED(addr, P4D_SIZE) || 853 !IS_ALIGNED(next, P4D_SIZE)) { 854 WARN_ONCE(1, "%s: unaligned range\n", __func__); 855 continue; 856 } 857 858 pte_clear(&init_mm, addr, (pte_t *)pgd); 859 continue; 860 } 861 862 pud_base = (pud_t *)p4d_page_vaddr(*p4d); 863 remove_pud_table(pud_base, addr, next); 864 free_pud_table(pud_base, p4d); 865 } 866 867 spin_unlock(&init_mm.page_table_lock); 868 radix__flush_tlb_kernel_range(start, end); 869 } 870 871 int __meminit radix__create_section_mapping(unsigned long start, 872 unsigned long end, int nid, 873 pgprot_t prot) 874 { 875 if (end >= RADIX_VMALLOC_START) { 876 pr_warn("Outside the supported range\n"); 877 return -1; 878 } 879 880 return create_physical_mapping(__pa(start), __pa(end), 881 radix_mem_block_size, nid, prot); 882 } 883 884 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end) 885 { 886 remove_pagetable(start, end); 887 return 0; 888 } 889 #endif /* CONFIG_MEMORY_HOTPLUG */ 890 891 #ifdef CONFIG_SPARSEMEM_VMEMMAP 892 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa, 893 pgprot_t flags, unsigned int map_page_size, 894 int nid) 895 { 896 return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0); 897 } 898 899 int __meminit radix__vmemmap_create_mapping(unsigned long start, 900 unsigned long page_size, 901 unsigned long phys) 902 { 903 /* Create a PTE encoding */ 904 unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW; 905 int nid = early_pfn_to_nid(phys >> PAGE_SHIFT); 906 int ret; 907 908 if ((start + page_size) >= RADIX_VMEMMAP_END) { 909 pr_warn("Outside the supported range\n"); 910 return -1; 911 } 912 913 ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid); 914 BUG_ON(ret); 915 916 return 0; 917 } 918 919 #ifdef CONFIG_MEMORY_HOTPLUG 920 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size) 921 { 922 remove_pagetable(start, start + page_size); 923 } 924 #endif 925 #endif 926 927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 928 929 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, 930 pmd_t *pmdp, unsigned long clr, 931 unsigned long set) 932 { 933 unsigned long old; 934 935 #ifdef CONFIG_DEBUG_VM 936 WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 937 assert_spin_locked(pmd_lockptr(mm, pmdp)); 938 #endif 939 940 old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1); 941 trace_hugepage_update(addr, old, clr, set); 942 943 return old; 944 } 945 946 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, 947 pmd_t *pmdp) 948 949 { 950 pmd_t pmd; 951 952 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 953 VM_BUG_ON(radix__pmd_trans_huge(*pmdp)); 954 VM_BUG_ON(pmd_devmap(*pmdp)); 955 /* 956 * khugepaged calls this for normal pmd 957 */ 958 pmd = *pmdp; 959 pmd_clear(pmdp); 960 961 /* 962 * pmdp collapse_flush need to ensure that there are no parallel gup 963 * walk after this call. This is needed so that we can have stable 964 * page ref count when collapsing a page. We don't allow a collapse page 965 * if we have gup taken on the page. We can ensure that by sending IPI 966 * because gup walk happens with IRQ disabled. 967 */ 968 serialize_against_pte_lookup(vma->vm_mm); 969 970 radix__flush_tlb_collapsed_pmd(vma->vm_mm, address); 971 972 return pmd; 973 } 974 975 /* 976 * For us pgtable_t is pte_t *. Inorder to save the deposisted 977 * page table, we consider the allocated page table as a list 978 * head. On withdraw we need to make sure we zero out the used 979 * list_head memory area. 980 */ 981 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 982 pgtable_t pgtable) 983 { 984 struct list_head *lh = (struct list_head *) pgtable; 985 986 assert_spin_locked(pmd_lockptr(mm, pmdp)); 987 988 /* FIFO */ 989 if (!pmd_huge_pte(mm, pmdp)) 990 INIT_LIST_HEAD(lh); 991 else 992 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); 993 pmd_huge_pte(mm, pmdp) = pgtable; 994 } 995 996 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) 997 { 998 pte_t *ptep; 999 pgtable_t pgtable; 1000 struct list_head *lh; 1001 1002 assert_spin_locked(pmd_lockptr(mm, pmdp)); 1003 1004 /* FIFO */ 1005 pgtable = pmd_huge_pte(mm, pmdp); 1006 lh = (struct list_head *) pgtable; 1007 if (list_empty(lh)) 1008 pmd_huge_pte(mm, pmdp) = NULL; 1009 else { 1010 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; 1011 list_del(lh); 1012 } 1013 ptep = (pte_t *) pgtable; 1014 *ptep = __pte(0); 1015 ptep++; 1016 *ptep = __pte(0); 1017 return pgtable; 1018 } 1019 1020 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm, 1021 unsigned long addr, pmd_t *pmdp) 1022 { 1023 pmd_t old_pmd; 1024 unsigned long old; 1025 1026 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0); 1027 old_pmd = __pmd(old); 1028 return old_pmd; 1029 } 1030 1031 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1032 1033 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, 1034 pte_t entry, unsigned long address, int psize) 1035 { 1036 struct mm_struct *mm = vma->vm_mm; 1037 unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | 1038 _PAGE_RW | _PAGE_EXEC); 1039 1040 unsigned long change = pte_val(entry) ^ pte_val(*ptep); 1041 /* 1042 * To avoid NMMU hang while relaxing access, we need mark 1043 * the pte invalid in between. 1044 */ 1045 if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) { 1046 unsigned long old_pte, new_pte; 1047 1048 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID); 1049 /* 1050 * new value of pte 1051 */ 1052 new_pte = old_pte | set; 1053 radix__flush_tlb_page_psize(mm, address, psize); 1054 __radix_pte_update(ptep, _PAGE_INVALID, new_pte); 1055 } else { 1056 __radix_pte_update(ptep, 0, set); 1057 /* 1058 * Book3S does not require a TLB flush when relaxing access 1059 * restrictions when the address space is not attached to a 1060 * NMMU, because the core MMU will reload the pte after taking 1061 * an access fault, which is defined by the architecture. 1062 */ 1063 } 1064 /* See ptesync comment in radix__set_pte_at */ 1065 } 1066 1067 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma, 1068 unsigned long addr, pte_t *ptep, 1069 pte_t old_pte, pte_t pte) 1070 { 1071 struct mm_struct *mm = vma->vm_mm; 1072 1073 /* 1074 * To avoid NMMU hang while relaxing access we need to flush the tlb before 1075 * we set the new value. We need to do this only for radix, because hash 1076 * translation does flush when updating the linux pte. 1077 */ 1078 if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) && 1079 (atomic_read(&mm->context.copros) > 0)) 1080 radix__flush_tlb_page(vma, addr); 1081 1082 set_pte_at(mm, addr, ptep, pte); 1083 } 1084 1085 int __init arch_ioremap_pud_supported(void) 1086 { 1087 /* HPT does not cope with large pages in the vmalloc area */ 1088 return radix_enabled(); 1089 } 1090 1091 int __init arch_ioremap_pmd_supported(void) 1092 { 1093 return radix_enabled(); 1094 } 1095 1096 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1097 { 1098 return 0; 1099 } 1100 1101 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1102 { 1103 pte_t *ptep = (pte_t *)pud; 1104 pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot); 1105 1106 if (!radix_enabled()) 1107 return 0; 1108 1109 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud); 1110 1111 return 1; 1112 } 1113 1114 int pud_clear_huge(pud_t *pud) 1115 { 1116 if (pud_huge(*pud)) { 1117 pud_clear(pud); 1118 return 1; 1119 } 1120 1121 return 0; 1122 } 1123 1124 int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1125 { 1126 pmd_t *pmd; 1127 int i; 1128 1129 pmd = (pmd_t *)pud_page_vaddr(*pud); 1130 pud_clear(pud); 1131 1132 flush_tlb_kernel_range(addr, addr + PUD_SIZE); 1133 1134 for (i = 0; i < PTRS_PER_PMD; i++) { 1135 if (!pmd_none(pmd[i])) { 1136 pte_t *pte; 1137 pte = (pte_t *)pmd_page_vaddr(pmd[i]); 1138 1139 pte_free_kernel(&init_mm, pte); 1140 } 1141 } 1142 1143 pmd_free(&init_mm, pmd); 1144 1145 return 1; 1146 } 1147 1148 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1149 { 1150 pte_t *ptep = (pte_t *)pmd; 1151 pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot); 1152 1153 if (!radix_enabled()) 1154 return 0; 1155 1156 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd); 1157 1158 return 1; 1159 } 1160 1161 int pmd_clear_huge(pmd_t *pmd) 1162 { 1163 if (pmd_huge(*pmd)) { 1164 pmd_clear(pmd); 1165 return 1; 1166 } 1167 1168 return 0; 1169 } 1170 1171 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1172 { 1173 pte_t *pte; 1174 1175 pte = (pte_t *)pmd_page_vaddr(*pmd); 1176 pmd_clear(pmd); 1177 1178 flush_tlb_kernel_range(addr, addr + PMD_SIZE); 1179 1180 pte_free_kernel(&init_mm, pte); 1181 1182 return 1; 1183 } 1184 1185 int __init arch_ioremap_p4d_supported(void) 1186 { 1187 return 0; 1188 } 1189