xref: /linux/arch/powerpc/mm/book3s64/radix_pgtable.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Page table handling routines for radix page table.
4  *
5  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6  */
7 
8 #define pr_fmt(fmt) "radix-mmu: " fmt
9 
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/mm.h>
13 #include <linux/memblock.h>
14 #include <linux/of.h>
15 #include <linux/of_fdt.h>
16 #include <linux/mm.h>
17 #include <linux/hugetlb.h>
18 #include <linux/string_helpers.h>
19 #include <linux/memory.h>
20 #include <linux/kfence.h>
21 
22 #include <asm/pgalloc.h>
23 #include <asm/mmu_context.h>
24 #include <asm/dma.h>
25 #include <asm/machdep.h>
26 #include <asm/mmu.h>
27 #include <asm/firmware.h>
28 #include <asm/powernv.h>
29 #include <asm/sections.h>
30 #include <asm/smp.h>
31 #include <asm/trace.h>
32 #include <asm/uaccess.h>
33 #include <asm/ultravisor.h>
34 #include <asm/set_memory.h>
35 #include <asm/kfence.h>
36 
37 #include <trace/events/thp.h>
38 
39 #include <mm/mmu_decl.h>
40 
41 unsigned int mmu_base_pid;
42 
43 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
44 			unsigned long region_start, unsigned long region_end)
45 {
46 	phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
47 	phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
48 	void *ptr;
49 
50 	if (region_start)
51 		min_addr = region_start;
52 	if (region_end)
53 		max_addr = region_end;
54 
55 	ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
56 
57 	if (!ptr)
58 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
59 		      __func__, size, size, nid, &min_addr, &max_addr);
60 
61 	return ptr;
62 }
63 
64 /*
65  * When allocating pud or pmd pointers, we allocate a complete page
66  * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
67  * is to ensure that the page obtained from the memblock allocator
68  * can be completely used as page table page and can be freed
69  * correctly when the page table entries are removed.
70  */
71 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
72 			  pgprot_t flags,
73 			  unsigned int map_page_size,
74 			  int nid,
75 			  unsigned long region_start, unsigned long region_end)
76 {
77 	unsigned long pfn = pa >> PAGE_SHIFT;
78 	pgd_t *pgdp;
79 	p4d_t *p4dp;
80 	pud_t *pudp;
81 	pmd_t *pmdp;
82 	pte_t *ptep;
83 
84 	pgdp = pgd_offset_k(ea);
85 	p4dp = p4d_offset(pgdp, ea);
86 	if (p4d_none(*p4dp)) {
87 		pudp = early_alloc_pgtable(PAGE_SIZE, nid,
88 					   region_start, region_end);
89 		p4d_populate(&init_mm, p4dp, pudp);
90 	}
91 	pudp = pud_offset(p4dp, ea);
92 	if (map_page_size == PUD_SIZE) {
93 		ptep = (pte_t *)pudp;
94 		goto set_the_pte;
95 	}
96 	if (pud_none(*pudp)) {
97 		pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start,
98 					   region_end);
99 		pud_populate(&init_mm, pudp, pmdp);
100 	}
101 	pmdp = pmd_offset(pudp, ea);
102 	if (map_page_size == PMD_SIZE) {
103 		ptep = pmdp_ptep(pmdp);
104 		goto set_the_pte;
105 	}
106 	if (!pmd_present(*pmdp)) {
107 		ptep = early_alloc_pgtable(PAGE_SIZE, nid,
108 						region_start, region_end);
109 		pmd_populate_kernel(&init_mm, pmdp, ptep);
110 	}
111 	ptep = pte_offset_kernel(pmdp, ea);
112 
113 set_the_pte:
114 	set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
115 	asm volatile("ptesync": : :"memory");
116 	return 0;
117 }
118 
119 /*
120  * nid, region_start, and region_end are hints to try to place the page
121  * table memory in the same node or region.
122  */
123 static int __map_kernel_page(unsigned long ea, unsigned long pa,
124 			  pgprot_t flags,
125 			  unsigned int map_page_size,
126 			  int nid,
127 			  unsigned long region_start, unsigned long region_end)
128 {
129 	unsigned long pfn = pa >> PAGE_SHIFT;
130 	pgd_t *pgdp;
131 	p4d_t *p4dp;
132 	pud_t *pudp;
133 	pmd_t *pmdp;
134 	pte_t *ptep;
135 	/*
136 	 * Make sure task size is correct as per the max adddr
137 	 */
138 	BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
139 
140 #ifdef CONFIG_PPC_64K_PAGES
141 	BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
142 #endif
143 
144 	if (unlikely(!slab_is_available()))
145 		return early_map_kernel_page(ea, pa, flags, map_page_size,
146 						nid, region_start, region_end);
147 
148 	/*
149 	 * Should make page table allocation functions be able to take a
150 	 * node, so we can place kernel page tables on the right nodes after
151 	 * boot.
152 	 */
153 	pgdp = pgd_offset_k(ea);
154 	p4dp = p4d_offset(pgdp, ea);
155 	pudp = pud_alloc(&init_mm, p4dp, ea);
156 	if (!pudp)
157 		return -ENOMEM;
158 	if (map_page_size == PUD_SIZE) {
159 		ptep = (pte_t *)pudp;
160 		goto set_the_pte;
161 	}
162 	pmdp = pmd_alloc(&init_mm, pudp, ea);
163 	if (!pmdp)
164 		return -ENOMEM;
165 	if (map_page_size == PMD_SIZE) {
166 		ptep = pmdp_ptep(pmdp);
167 		goto set_the_pte;
168 	}
169 	ptep = pte_alloc_kernel(pmdp, ea);
170 	if (!ptep)
171 		return -ENOMEM;
172 
173 set_the_pte:
174 	set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
175 	asm volatile("ptesync": : :"memory");
176 	return 0;
177 }
178 
179 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
180 			  pgprot_t flags,
181 			  unsigned int map_page_size)
182 {
183 	return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
184 }
185 
186 #ifdef CONFIG_STRICT_KERNEL_RWX
187 static void radix__change_memory_range(unsigned long start, unsigned long end,
188 				       unsigned long clear)
189 {
190 	unsigned long idx;
191 	pgd_t *pgdp;
192 	p4d_t *p4dp;
193 	pud_t *pudp;
194 	pmd_t *pmdp;
195 	pte_t *ptep;
196 
197 	start = ALIGN_DOWN(start, PAGE_SIZE);
198 	end = PAGE_ALIGN(end); // aligns up
199 
200 	pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
201 		 start, end, clear);
202 
203 	for (idx = start; idx < end; idx += PAGE_SIZE) {
204 		pgdp = pgd_offset_k(idx);
205 		p4dp = p4d_offset(pgdp, idx);
206 		pudp = pud_alloc(&init_mm, p4dp, idx);
207 		if (!pudp)
208 			continue;
209 		if (pud_leaf(*pudp)) {
210 			ptep = (pte_t *)pudp;
211 			goto update_the_pte;
212 		}
213 		pmdp = pmd_alloc(&init_mm, pudp, idx);
214 		if (!pmdp)
215 			continue;
216 		if (pmd_leaf(*pmdp)) {
217 			ptep = pmdp_ptep(pmdp);
218 			goto update_the_pte;
219 		}
220 		ptep = pte_alloc_kernel(pmdp, idx);
221 		if (!ptep)
222 			continue;
223 update_the_pte:
224 		radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
225 	}
226 
227 	radix__flush_tlb_kernel_range(start, end);
228 }
229 
230 void radix__mark_rodata_ro(void)
231 {
232 	unsigned long start, end;
233 
234 	start = (unsigned long)_stext;
235 	end = (unsigned long)__end_rodata;
236 
237 	radix__change_memory_range(start, end, _PAGE_WRITE);
238 
239 	for (start = PAGE_OFFSET; start < (unsigned long)_stext; start += PAGE_SIZE) {
240 		end = start + PAGE_SIZE;
241 		if (overlaps_interrupt_vector_text(start, end))
242 			radix__change_memory_range(start, end, _PAGE_WRITE);
243 		else
244 			break;
245 	}
246 }
247 
248 void radix__mark_initmem_nx(void)
249 {
250 	unsigned long start = (unsigned long)__init_begin;
251 	unsigned long end = (unsigned long)__init_end;
252 
253 	radix__change_memory_range(start, end, _PAGE_EXEC);
254 }
255 #endif /* CONFIG_STRICT_KERNEL_RWX */
256 
257 static inline void __meminit
258 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
259 {
260 	char buf[10];
261 
262 	if (end <= start)
263 		return;
264 
265 	string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
266 
267 	pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
268 		exec ? " (exec)" : "");
269 }
270 
271 static unsigned long next_boundary(unsigned long addr, unsigned long end)
272 {
273 #ifdef CONFIG_STRICT_KERNEL_RWX
274 	unsigned long stext_phys;
275 
276 	stext_phys = __pa_symbol(_stext);
277 
278 	// Relocatable kernel running at non-zero real address
279 	if (stext_phys != 0) {
280 		// The end of interrupts code at zero is a rodata boundary
281 		unsigned long end_intr = __pa_symbol(__end_interrupts) - stext_phys;
282 		if (addr < end_intr)
283 			return end_intr;
284 
285 		// Start of relocated kernel text is a rodata boundary
286 		if (addr < stext_phys)
287 			return stext_phys;
288 	}
289 
290 	if (addr < __pa_symbol(__srwx_boundary))
291 		return __pa_symbol(__srwx_boundary);
292 #endif
293 	return end;
294 }
295 
296 static int __meminit create_physical_mapping(unsigned long start,
297 					     unsigned long end,
298 					     int nid, pgprot_t _prot,
299 					     unsigned long mapping_sz_limit)
300 {
301 	unsigned long vaddr, addr, mapping_size = 0;
302 	bool prev_exec, exec = false;
303 	pgprot_t prot;
304 	int psize;
305 	unsigned long max_mapping_size = memory_block_size;
306 
307 	if (mapping_sz_limit < max_mapping_size)
308 		max_mapping_size = mapping_sz_limit;
309 
310 	if (debug_pagealloc_enabled())
311 		max_mapping_size = PAGE_SIZE;
312 
313 	start = ALIGN(start, PAGE_SIZE);
314 	end   = ALIGN_DOWN(end, PAGE_SIZE);
315 	for (addr = start; addr < end; addr += mapping_size) {
316 		unsigned long gap, previous_size;
317 		int rc;
318 
319 		gap = next_boundary(addr, end) - addr;
320 		if (gap > max_mapping_size)
321 			gap = max_mapping_size;
322 		previous_size = mapping_size;
323 		prev_exec = exec;
324 
325 		if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
326 		    mmu_psize_defs[MMU_PAGE_1G].shift) {
327 			mapping_size = PUD_SIZE;
328 			psize = MMU_PAGE_1G;
329 		} else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
330 			   mmu_psize_defs[MMU_PAGE_2M].shift) {
331 			mapping_size = PMD_SIZE;
332 			psize = MMU_PAGE_2M;
333 		} else {
334 			mapping_size = PAGE_SIZE;
335 			psize = mmu_virtual_psize;
336 		}
337 
338 		vaddr = (unsigned long)__va(addr);
339 
340 		if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
341 		    overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
342 			prot = PAGE_KERNEL_X;
343 			exec = true;
344 		} else {
345 			prot = _prot;
346 			exec = false;
347 		}
348 
349 		if (mapping_size != previous_size || exec != prev_exec) {
350 			print_mapping(start, addr, previous_size, prev_exec);
351 			start = addr;
352 		}
353 
354 		rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
355 		if (rc)
356 			return rc;
357 
358 		update_page_count(psize, 1);
359 	}
360 
361 	print_mapping(start, addr, mapping_size, exec);
362 	return 0;
363 }
364 
365 #ifdef CONFIG_KFENCE
366 static inline phys_addr_t alloc_kfence_pool(void)
367 {
368 	phys_addr_t kfence_pool;
369 
370 	/*
371 	 * TODO: Support to enable KFENCE after bootup depends on the ability to
372 	 *       split page table mappings. As such support is not currently
373 	 *       implemented for radix pagetables, support enabling KFENCE
374 	 *       only at system startup for now.
375 	 *
376 	 *       After support for splitting mappings is available on radix,
377 	 *       alloc_kfence_pool() & map_kfence_pool() can be dropped and
378 	 *       mapping for __kfence_pool memory can be
379 	 *       split during arch_kfence_init_pool().
380 	 */
381 	if (!kfence_early_init)
382 		goto no_kfence;
383 
384 	kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
385 	if (!kfence_pool)
386 		goto no_kfence;
387 
388 	memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
389 	return kfence_pool;
390 
391 no_kfence:
392 	disable_kfence();
393 	return 0;
394 }
395 
396 static inline void map_kfence_pool(phys_addr_t kfence_pool)
397 {
398 	if (!kfence_pool)
399 		return;
400 
401 	if (create_physical_mapping(kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
402 				    -1, PAGE_KERNEL, PAGE_SIZE))
403 		goto err;
404 
405 	memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
406 	__kfence_pool = __va(kfence_pool);
407 	return;
408 
409 err:
410 	memblock_phys_free(kfence_pool, KFENCE_POOL_SIZE);
411 	disable_kfence();
412 }
413 #else
414 static inline phys_addr_t alloc_kfence_pool(void) { return 0; }
415 static inline void map_kfence_pool(phys_addr_t kfence_pool) { }
416 #endif
417 
418 static void __init radix_init_pgtable(void)
419 {
420 	phys_addr_t kfence_pool;
421 	unsigned long rts_field;
422 	phys_addr_t start, end;
423 	u64 i;
424 
425 	/* We don't support slb for radix */
426 	slb_set_size(0);
427 
428 	kfence_pool = alloc_kfence_pool();
429 
430 	/*
431 	 * Create the linear mapping
432 	 */
433 	for_each_mem_range(i, &start, &end) {
434 		/*
435 		 * The memblock allocator  is up at this point, so the
436 		 * page tables will be allocated within the range. No
437 		 * need or a node (which we don't have yet).
438 		 */
439 
440 		if (end >= RADIX_VMALLOC_START) {
441 			pr_warn("Outside the supported range\n");
442 			continue;
443 		}
444 
445 		WARN_ON(create_physical_mapping(start, end,
446 						-1, PAGE_KERNEL, ~0UL));
447 	}
448 
449 	map_kfence_pool(kfence_pool);
450 
451 	if (!cpu_has_feature(CPU_FTR_HVMODE) &&
452 			cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
453 		/*
454 		 * Older versions of KVM on these machines prefer if the
455 		 * guest only uses the low 19 PID bits.
456 		 */
457 		mmu_pid_bits = 19;
458 	}
459 	mmu_base_pid = 1;
460 
461 	/*
462 	 * Allocate Partition table and process table for the
463 	 * host.
464 	 */
465 	BUG_ON(PRTB_SIZE_SHIFT > 36);
466 	process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
467 	/*
468 	 * Fill in the process table.
469 	 */
470 	rts_field = radix__get_tree_size();
471 	process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
472 
473 	/*
474 	 * The init_mm context is given the first available (non-zero) PID,
475 	 * which is the "guard PID" and contains no page table. PIDR should
476 	 * never be set to zero because that duplicates the kernel address
477 	 * space at the 0x0... offset (quadrant 0)!
478 	 *
479 	 * An arbitrary PID that may later be allocated by the PID allocator
480 	 * for userspace processes must not be used either, because that
481 	 * would cause stale user mappings for that PID on CPUs outside of
482 	 * the TLB invalidation scheme (because it won't be in mm_cpumask).
483 	 *
484 	 * So permanently carve out one PID for the purpose of a guard PID.
485 	 */
486 	init_mm.context.id = mmu_base_pid;
487 	mmu_base_pid++;
488 }
489 
490 static void __init radix_init_partition_table(void)
491 {
492 	unsigned long rts_field, dw0, dw1;
493 
494 	mmu_partition_table_init();
495 	rts_field = radix__get_tree_size();
496 	dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
497 	dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
498 	mmu_partition_table_set_entry(0, dw0, dw1, false);
499 
500 	pr_info("Initializing Radix MMU\n");
501 }
502 
503 static int __init get_idx_from_shift(unsigned int shift)
504 {
505 	int idx = -1;
506 
507 	switch (shift) {
508 	case 0xc:
509 		idx = MMU_PAGE_4K;
510 		break;
511 	case 0x10:
512 		idx = MMU_PAGE_64K;
513 		break;
514 	case 0x15:
515 		idx = MMU_PAGE_2M;
516 		break;
517 	case 0x1e:
518 		idx = MMU_PAGE_1G;
519 		break;
520 	}
521 	return idx;
522 }
523 
524 static int __init radix_dt_scan_page_sizes(unsigned long node,
525 					   const char *uname, int depth,
526 					   void *data)
527 {
528 	int size = 0;
529 	int shift, idx;
530 	unsigned int ap;
531 	const __be32 *prop;
532 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
533 
534 	/* We are scanning "cpu" nodes only */
535 	if (type == NULL || strcmp(type, "cpu") != 0)
536 		return 0;
537 
538 	/* Grab page size encodings */
539 	prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
540 	if (!prop)
541 		return 0;
542 
543 	pr_info("Page sizes from device-tree:\n");
544 	for (; size >= 4; size -= 4, ++prop) {
545 
546 		struct mmu_psize_def *def;
547 
548 		/* top 3 bit is AP encoding */
549 		shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
550 		ap = be32_to_cpu(prop[0]) >> 29;
551 		pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
552 
553 		idx = get_idx_from_shift(shift);
554 		if (idx < 0)
555 			continue;
556 
557 		def = &mmu_psize_defs[idx];
558 		def->shift = shift;
559 		def->ap  = ap;
560 		def->h_rpt_pgsize = psize_to_rpti_pgsize(idx);
561 	}
562 
563 	/* needed ? */
564 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
565 	return 1;
566 }
567 
568 void __init radix__early_init_devtree(void)
569 {
570 	int rc;
571 
572 	/*
573 	 * Try to find the available page sizes in the device-tree
574 	 */
575 	rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
576 	if (!rc) {
577 		/*
578 		 * No page size details found in device tree.
579 		 * Let's assume we have page 4k and 64k support
580 		 */
581 		mmu_psize_defs[MMU_PAGE_4K].shift = 12;
582 		mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
583 		mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize =
584 			psize_to_rpti_pgsize(MMU_PAGE_4K);
585 
586 		mmu_psize_defs[MMU_PAGE_64K].shift = 16;
587 		mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
588 		mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize =
589 			psize_to_rpti_pgsize(MMU_PAGE_64K);
590 	}
591 	return;
592 }
593 
594 void __init radix__early_init_mmu(void)
595 {
596 	unsigned long lpcr;
597 
598 #ifdef CONFIG_PPC_64S_HASH_MMU
599 #ifdef CONFIG_PPC_64K_PAGES
600 	/* PAGE_SIZE mappings */
601 	mmu_virtual_psize = MMU_PAGE_64K;
602 #else
603 	mmu_virtual_psize = MMU_PAGE_4K;
604 #endif
605 #endif
606 	/*
607 	 * initialize page table size
608 	 */
609 	__pte_index_size = RADIX_PTE_INDEX_SIZE;
610 	__pmd_index_size = RADIX_PMD_INDEX_SIZE;
611 	__pud_index_size = RADIX_PUD_INDEX_SIZE;
612 	__pgd_index_size = RADIX_PGD_INDEX_SIZE;
613 	__pud_cache_index = RADIX_PUD_INDEX_SIZE;
614 	__pte_table_size = RADIX_PTE_TABLE_SIZE;
615 	__pmd_table_size = RADIX_PMD_TABLE_SIZE;
616 	__pud_table_size = RADIX_PUD_TABLE_SIZE;
617 	__pgd_table_size = RADIX_PGD_TABLE_SIZE;
618 
619 	__pmd_val_bits = RADIX_PMD_VAL_BITS;
620 	__pud_val_bits = RADIX_PUD_VAL_BITS;
621 	__pgd_val_bits = RADIX_PGD_VAL_BITS;
622 
623 	__kernel_virt_start = RADIX_KERN_VIRT_START;
624 	__vmalloc_start = RADIX_VMALLOC_START;
625 	__vmalloc_end = RADIX_VMALLOC_END;
626 	__kernel_io_start = RADIX_KERN_IO_START;
627 	__kernel_io_end = RADIX_KERN_IO_END;
628 	vmemmap = (struct page *)RADIX_VMEMMAP_START;
629 	ioremap_bot = IOREMAP_BASE;
630 
631 #ifdef CONFIG_PCI
632 	pci_io_base = ISA_IO_BASE;
633 #endif
634 	__pte_frag_nr = RADIX_PTE_FRAG_NR;
635 	__pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
636 	__pmd_frag_nr = RADIX_PMD_FRAG_NR;
637 	__pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
638 
639 	radix_init_pgtable();
640 
641 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
642 		lpcr = mfspr(SPRN_LPCR);
643 		mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
644 		radix_init_partition_table();
645 	} else {
646 		radix_init_pseries();
647 	}
648 
649 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
650 
651 	/* Switch to the guard PID before turning on MMU */
652 	radix__switch_mmu_context(NULL, &init_mm);
653 	tlbiel_all();
654 }
655 
656 void radix__early_init_mmu_secondary(void)
657 {
658 	unsigned long lpcr;
659 	/*
660 	 * update partition table control register and UPRT
661 	 */
662 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
663 		lpcr = mfspr(SPRN_LPCR);
664 		mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
665 
666 		set_ptcr_when_no_uv(__pa(partition_tb) |
667 				    (PATB_SIZE_SHIFT - 12));
668 	}
669 
670 	radix__switch_mmu_context(NULL, &init_mm);
671 	tlbiel_all();
672 
673 	/* Make sure userspace can't change the AMR */
674 	mtspr(SPRN_UAMOR, 0);
675 }
676 
677 /* Called during kexec sequence with MMU off */
678 notrace void radix__mmu_cleanup_all(void)
679 {
680 	unsigned long lpcr;
681 
682 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
683 		lpcr = mfspr(SPRN_LPCR);
684 		mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
685 		set_ptcr_when_no_uv(0);
686 		powernv_set_nmmu_ptcr(0);
687 		radix__flush_tlb_all();
688 	}
689 }
690 
691 #ifdef CONFIG_MEMORY_HOTPLUG
692 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
693 {
694 	pte_t *pte;
695 	int i;
696 
697 	for (i = 0; i < PTRS_PER_PTE; i++) {
698 		pte = pte_start + i;
699 		if (!pte_none(*pte))
700 			return;
701 	}
702 
703 	pte_free_kernel(&init_mm, pte_start);
704 	pmd_clear(pmd);
705 }
706 
707 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
708 {
709 	pmd_t *pmd;
710 	int i;
711 
712 	for (i = 0; i < PTRS_PER_PMD; i++) {
713 		pmd = pmd_start + i;
714 		if (!pmd_none(*pmd))
715 			return;
716 	}
717 
718 	pmd_free(&init_mm, pmd_start);
719 	pud_clear(pud);
720 }
721 
722 static void free_pud_table(pud_t *pud_start, p4d_t *p4d)
723 {
724 	pud_t *pud;
725 	int i;
726 
727 	for (i = 0; i < PTRS_PER_PUD; i++) {
728 		pud = pud_start + i;
729 		if (!pud_none(*pud))
730 			return;
731 	}
732 
733 	pud_free(&init_mm, pud_start);
734 	p4d_clear(p4d);
735 }
736 
737 #ifdef CONFIG_SPARSEMEM_VMEMMAP
738 static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
739 {
740 	unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
741 
742 	return !vmemmap_populated(start, PMD_SIZE);
743 }
744 
745 static bool __meminit vmemmap_page_is_unused(unsigned long addr, unsigned long end)
746 {
747 	unsigned long start = ALIGN_DOWN(addr, PAGE_SIZE);
748 
749 	return !vmemmap_populated(start, PAGE_SIZE);
750 
751 }
752 #endif
753 
754 static void __meminit free_vmemmap_pages(struct page *page,
755 					 struct vmem_altmap *altmap,
756 					 int order)
757 {
758 	unsigned int nr_pages = 1 << order;
759 
760 	if (altmap) {
761 		unsigned long alt_start, alt_end;
762 		unsigned long base_pfn = page_to_pfn(page);
763 
764 		/*
765 		 * with 2M vmemmap mmaping we can have things setup
766 		 * such that even though atlmap is specified we never
767 		 * used altmap.
768 		 */
769 		alt_start = altmap->base_pfn;
770 		alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
771 
772 		if (base_pfn >= alt_start && base_pfn < alt_end) {
773 			vmem_altmap_free(altmap, nr_pages);
774 			return;
775 		}
776 	}
777 
778 	if (PageReserved(page)) {
779 		/* allocated from memblock */
780 		while (nr_pages--)
781 			free_reserved_page(page++);
782 	} else
783 		free_pages((unsigned long)page_address(page), order);
784 }
785 
786 static void __meminit remove_pte_table(pte_t *pte_start, unsigned long addr,
787 				       unsigned long end, bool direct,
788 				       struct vmem_altmap *altmap)
789 {
790 	unsigned long next, pages = 0;
791 	pte_t *pte;
792 
793 	pte = pte_start + pte_index(addr);
794 	for (; addr < end; addr = next, pte++) {
795 		next = (addr + PAGE_SIZE) & PAGE_MASK;
796 		if (next > end)
797 			next = end;
798 
799 		if (!pte_present(*pte))
800 			continue;
801 
802 		if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
803 			if (!direct)
804 				free_vmemmap_pages(pte_page(*pte), altmap, 0);
805 			pte_clear(&init_mm, addr, pte);
806 			pages++;
807 		}
808 #ifdef CONFIG_SPARSEMEM_VMEMMAP
809 		else if (!direct && vmemmap_page_is_unused(addr, next)) {
810 			free_vmemmap_pages(pte_page(*pte), altmap, 0);
811 			pte_clear(&init_mm, addr, pte);
812 		}
813 #endif
814 	}
815 	if (direct)
816 		update_page_count(mmu_virtual_psize, -pages);
817 }
818 
819 static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
820 				       unsigned long end, bool direct,
821 				       struct vmem_altmap *altmap)
822 {
823 	unsigned long next, pages = 0;
824 	pte_t *pte_base;
825 	pmd_t *pmd;
826 
827 	pmd = pmd_start + pmd_index(addr);
828 	for (; addr < end; addr = next, pmd++) {
829 		next = pmd_addr_end(addr, end);
830 
831 		if (!pmd_present(*pmd))
832 			continue;
833 
834 		if (pmd_leaf(*pmd)) {
835 			if (IS_ALIGNED(addr, PMD_SIZE) &&
836 			    IS_ALIGNED(next, PMD_SIZE)) {
837 				if (!direct)
838 					free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE));
839 				pte_clear(&init_mm, addr, (pte_t *)pmd);
840 				pages++;
841 			}
842 #ifdef CONFIG_SPARSEMEM_VMEMMAP
843 			else if (!direct && vmemmap_pmd_is_unused(addr, next)) {
844 				free_vmemmap_pages(pmd_page(*pmd), altmap, get_order(PMD_SIZE));
845 				pte_clear(&init_mm, addr, (pte_t *)pmd);
846 			}
847 #endif
848 			continue;
849 		}
850 
851 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
852 		remove_pte_table(pte_base, addr, next, direct, altmap);
853 		free_pte_table(pte_base, pmd);
854 	}
855 	if (direct)
856 		update_page_count(MMU_PAGE_2M, -pages);
857 }
858 
859 static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr,
860 				       unsigned long end, bool direct,
861 				       struct vmem_altmap *altmap)
862 {
863 	unsigned long next, pages = 0;
864 	pmd_t *pmd_base;
865 	pud_t *pud;
866 
867 	pud = pud_start + pud_index(addr);
868 	for (; addr < end; addr = next, pud++) {
869 		next = pud_addr_end(addr, end);
870 
871 		if (!pud_present(*pud))
872 			continue;
873 
874 		if (pud_leaf(*pud)) {
875 			if (!IS_ALIGNED(addr, PUD_SIZE) ||
876 			    !IS_ALIGNED(next, PUD_SIZE)) {
877 				WARN_ONCE(1, "%s: unaligned range\n", __func__);
878 				continue;
879 			}
880 			pte_clear(&init_mm, addr, (pte_t *)pud);
881 			pages++;
882 			continue;
883 		}
884 
885 		pmd_base = pud_pgtable(*pud);
886 		remove_pmd_table(pmd_base, addr, next, direct, altmap);
887 		free_pmd_table(pmd_base, pud);
888 	}
889 	if (direct)
890 		update_page_count(MMU_PAGE_1G, -pages);
891 }
892 
893 static void __meminit
894 remove_pagetable(unsigned long start, unsigned long end, bool direct,
895 		 struct vmem_altmap *altmap)
896 {
897 	unsigned long addr, next;
898 	pud_t *pud_base;
899 	pgd_t *pgd;
900 	p4d_t *p4d;
901 
902 	spin_lock(&init_mm.page_table_lock);
903 
904 	for (addr = start; addr < end; addr = next) {
905 		next = pgd_addr_end(addr, end);
906 
907 		pgd = pgd_offset_k(addr);
908 		p4d = p4d_offset(pgd, addr);
909 		if (!p4d_present(*p4d))
910 			continue;
911 
912 		if (p4d_leaf(*p4d)) {
913 			if (!IS_ALIGNED(addr, P4D_SIZE) ||
914 			    !IS_ALIGNED(next, P4D_SIZE)) {
915 				WARN_ONCE(1, "%s: unaligned range\n", __func__);
916 				continue;
917 			}
918 
919 			pte_clear(&init_mm, addr, (pte_t *)pgd);
920 			continue;
921 		}
922 
923 		pud_base = p4d_pgtable(*p4d);
924 		remove_pud_table(pud_base, addr, next, direct, altmap);
925 		free_pud_table(pud_base, p4d);
926 	}
927 
928 	spin_unlock(&init_mm.page_table_lock);
929 	radix__flush_tlb_kernel_range(start, end);
930 }
931 
932 int __meminit radix__create_section_mapping(unsigned long start,
933 					    unsigned long end, int nid,
934 					    pgprot_t prot)
935 {
936 	if (end >= RADIX_VMALLOC_START) {
937 		pr_warn("Outside the supported range\n");
938 		return -1;
939 	}
940 
941 	return create_physical_mapping(__pa(start), __pa(end),
942 				       nid, prot, ~0UL);
943 }
944 
945 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
946 {
947 	remove_pagetable(start, end, true, NULL);
948 	return 0;
949 }
950 #endif /* CONFIG_MEMORY_HOTPLUG */
951 
952 #ifdef CONFIG_SPARSEMEM_VMEMMAP
953 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
954 				 pgprot_t flags, unsigned int map_page_size,
955 				 int nid)
956 {
957 	return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
958 }
959 
960 int __meminit radix__vmemmap_create_mapping(unsigned long start,
961 				      unsigned long page_size,
962 				      unsigned long phys)
963 {
964 	/* Create a PTE encoding */
965 	int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
966 	int ret;
967 
968 	if ((start + page_size) >= RADIX_VMEMMAP_END) {
969 		pr_warn("Outside the supported range\n");
970 		return -1;
971 	}
972 
973 	ret = __map_kernel_page_nid(start, phys, PAGE_KERNEL, page_size, nid);
974 	BUG_ON(ret);
975 
976 	return 0;
977 }
978 
979 
980 bool vmemmap_can_optimize(struct vmem_altmap *altmap, struct dev_pagemap *pgmap)
981 {
982 	if (radix_enabled())
983 		return __vmemmap_can_optimize(altmap, pgmap);
984 
985 	return false;
986 }
987 
988 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
989 				unsigned long addr, unsigned long next)
990 {
991 	int large = pmd_leaf(*pmdp);
992 
993 	if (large)
994 		vmemmap_verify(pmdp_ptep(pmdp), node, addr, next);
995 
996 	return large;
997 }
998 
999 void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
1000 			       unsigned long addr, unsigned long next)
1001 {
1002 	pte_t entry;
1003 	pte_t *ptep = pmdp_ptep(pmdp);
1004 
1005 	VM_BUG_ON(!IS_ALIGNED(addr, PMD_SIZE));
1006 	entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
1007 	set_pte_at(&init_mm, addr, ptep, entry);
1008 	asm volatile("ptesync": : :"memory");
1009 
1010 	vmemmap_verify(ptep, node, addr, next);
1011 }
1012 
1013 static pte_t * __meminit radix__vmemmap_pte_populate(pmd_t *pmdp, unsigned long addr,
1014 						     int node,
1015 						     struct vmem_altmap *altmap,
1016 						     struct page *reuse)
1017 {
1018 	pte_t *pte = pte_offset_kernel(pmdp, addr);
1019 
1020 	if (pte_none(*pte)) {
1021 		pte_t entry;
1022 		void *p;
1023 
1024 		if (!reuse) {
1025 			/*
1026 			 * make sure we don't create altmap mappings
1027 			 * covering things outside the device.
1028 			 */
1029 			if (altmap && altmap_cross_boundary(altmap, addr, PAGE_SIZE))
1030 				altmap = NULL;
1031 
1032 			p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
1033 			if (!p && altmap)
1034 				p = vmemmap_alloc_block_buf(PAGE_SIZE, node, NULL);
1035 			if (!p)
1036 				return NULL;
1037 			pr_debug("PAGE_SIZE vmemmap mapping\n");
1038 		} else {
1039 			/*
1040 			 * When a PTE/PMD entry is freed from the init_mm
1041 			 * there's a free_pages() call to this page allocated
1042 			 * above. Thus this get_page() is paired with the
1043 			 * put_page_testzero() on the freeing path.
1044 			 * This can only called by certain ZONE_DEVICE path,
1045 			 * and through vmemmap_populate_compound_pages() when
1046 			 * slab is available.
1047 			 */
1048 			get_page(reuse);
1049 			p = page_to_virt(reuse);
1050 			pr_debug("Tail page reuse vmemmap mapping\n");
1051 		}
1052 
1053 		VM_BUG_ON(!PAGE_ALIGNED(addr));
1054 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
1055 		set_pte_at(&init_mm, addr, pte, entry);
1056 		asm volatile("ptesync": : :"memory");
1057 	}
1058 	return pte;
1059 }
1060 
1061 static inline pud_t *vmemmap_pud_alloc(p4d_t *p4dp, int node,
1062 				       unsigned long address)
1063 {
1064 	pud_t *pud;
1065 
1066 	/* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
1067 	if (unlikely(p4d_none(*p4dp))) {
1068 		if (unlikely(!slab_is_available())) {
1069 			pud = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
1070 			p4d_populate(&init_mm, p4dp, pud);
1071 			/* go to the pud_offset */
1072 		} else
1073 			return pud_alloc(&init_mm, p4dp, address);
1074 	}
1075 	return pud_offset(p4dp, address);
1076 }
1077 
1078 static inline pmd_t *vmemmap_pmd_alloc(pud_t *pudp, int node,
1079 				       unsigned long address)
1080 {
1081 	pmd_t *pmd;
1082 
1083 	/* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
1084 	if (unlikely(pud_none(*pudp))) {
1085 		if (unlikely(!slab_is_available())) {
1086 			pmd = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
1087 			pud_populate(&init_mm, pudp, pmd);
1088 		} else
1089 			return pmd_alloc(&init_mm, pudp, address);
1090 	}
1091 	return pmd_offset(pudp, address);
1092 }
1093 
1094 static inline pte_t *vmemmap_pte_alloc(pmd_t *pmdp, int node,
1095 				       unsigned long address)
1096 {
1097 	pte_t *pte;
1098 
1099 	/* All early vmemmap mapping to keep simple do it at PAGE_SIZE */
1100 	if (unlikely(pmd_none(*pmdp))) {
1101 		if (unlikely(!slab_is_available())) {
1102 			pte = early_alloc_pgtable(PAGE_SIZE, node, 0, 0);
1103 			pmd_populate(&init_mm, pmdp, pte);
1104 		} else
1105 			return pte_alloc_kernel(pmdp, address);
1106 	}
1107 	return pte_offset_kernel(pmdp, address);
1108 }
1109 
1110 
1111 
1112 int __meminit radix__vmemmap_populate(unsigned long start, unsigned long end, int node,
1113 				      struct vmem_altmap *altmap)
1114 {
1115 	unsigned long addr;
1116 	unsigned long next;
1117 	pgd_t *pgd;
1118 	p4d_t *p4d;
1119 	pud_t *pud;
1120 	pmd_t *pmd;
1121 	pte_t *pte;
1122 
1123 	for (addr = start; addr < end; addr = next) {
1124 		next = pmd_addr_end(addr, end);
1125 
1126 		pgd = pgd_offset_k(addr);
1127 		p4d = p4d_offset(pgd, addr);
1128 		pud = vmemmap_pud_alloc(p4d, node, addr);
1129 		if (!pud)
1130 			return -ENOMEM;
1131 		pmd = vmemmap_pmd_alloc(pud, node, addr);
1132 		if (!pmd)
1133 			return -ENOMEM;
1134 
1135 		if (pmd_none(READ_ONCE(*pmd))) {
1136 			void *p;
1137 
1138 			/*
1139 			 * keep it simple by checking addr PMD_SIZE alignment
1140 			 * and verifying the device boundary condition.
1141 			 * For us to use a pmd mapping, both addr and pfn should
1142 			 * be aligned. We skip if addr is not aligned and for
1143 			 * pfn we hope we have extra area in the altmap that
1144 			 * can help to find an aligned block. This can result
1145 			 * in altmap block allocation failures, in which case
1146 			 * we fallback to RAM for vmemmap allocation.
1147 			 */
1148 			if (altmap && (!IS_ALIGNED(addr, PMD_SIZE) ||
1149 				       altmap_cross_boundary(altmap, addr, PMD_SIZE))) {
1150 				/*
1151 				 * make sure we don't create altmap mappings
1152 				 * covering things outside the device.
1153 				 */
1154 				goto base_mapping;
1155 			}
1156 
1157 			p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1158 			if (p) {
1159 				vmemmap_set_pmd(pmd, p, node, addr, next);
1160 				pr_debug("PMD_SIZE vmemmap mapping\n");
1161 				continue;
1162 			} else if (altmap) {
1163 				/*
1164 				 * A vmemmap block allocation can fail due to
1165 				 * alignment requirements and we trying to align
1166 				 * things aggressively there by running out of
1167 				 * space. Try base mapping on failure.
1168 				 */
1169 				goto base_mapping;
1170 			}
1171 		} else if (vmemmap_check_pmd(pmd, node, addr, next)) {
1172 			/*
1173 			 * If a huge mapping exist due to early call to
1174 			 * vmemmap_populate, let's try to use that.
1175 			 */
1176 			continue;
1177 		}
1178 base_mapping:
1179 		/*
1180 		 * Not able allocate higher order memory to back memmap
1181 		 * or we found a pointer to pte page. Allocate base page
1182 		 * size vmemmap
1183 		 */
1184 		pte = vmemmap_pte_alloc(pmd, node, addr);
1185 		if (!pte)
1186 			return -ENOMEM;
1187 
1188 		pte = radix__vmemmap_pte_populate(pmd, addr, node, altmap, NULL);
1189 		if (!pte)
1190 			return -ENOMEM;
1191 
1192 		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1193 		next = addr + PAGE_SIZE;
1194 	}
1195 	return 0;
1196 }
1197 
1198 static pte_t * __meminit radix__vmemmap_populate_address(unsigned long addr, int node,
1199 							 struct vmem_altmap *altmap,
1200 							 struct page *reuse)
1201 {
1202 	pgd_t *pgd;
1203 	p4d_t *p4d;
1204 	pud_t *pud;
1205 	pmd_t *pmd;
1206 	pte_t *pte;
1207 
1208 	pgd = pgd_offset_k(addr);
1209 	p4d = p4d_offset(pgd, addr);
1210 	pud = vmemmap_pud_alloc(p4d, node, addr);
1211 	if (!pud)
1212 		return NULL;
1213 	pmd = vmemmap_pmd_alloc(pud, node, addr);
1214 	if (!pmd)
1215 		return NULL;
1216 	if (pmd_leaf(*pmd))
1217 		/*
1218 		 * The second page is mapped as a hugepage due to a nearby request.
1219 		 * Force our mapping to page size without deduplication
1220 		 */
1221 		return NULL;
1222 	pte = vmemmap_pte_alloc(pmd, node, addr);
1223 	if (!pte)
1224 		return NULL;
1225 	radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
1226 	vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1227 
1228 	return pte;
1229 }
1230 
1231 static pte_t * __meminit vmemmap_compound_tail_page(unsigned long addr,
1232 						    unsigned long pfn_offset, int node)
1233 {
1234 	pgd_t *pgd;
1235 	p4d_t *p4d;
1236 	pud_t *pud;
1237 	pmd_t *pmd;
1238 	pte_t *pte;
1239 	unsigned long map_addr;
1240 
1241 	/* the second vmemmap page which we use for duplication */
1242 	map_addr = addr - pfn_offset * sizeof(struct page) + PAGE_SIZE;
1243 	pgd = pgd_offset_k(map_addr);
1244 	p4d = p4d_offset(pgd, map_addr);
1245 	pud = vmemmap_pud_alloc(p4d, node, map_addr);
1246 	if (!pud)
1247 		return NULL;
1248 	pmd = vmemmap_pmd_alloc(pud, node, map_addr);
1249 	if (!pmd)
1250 		return NULL;
1251 	if (pmd_leaf(*pmd))
1252 		/*
1253 		 * The second page is mapped as a hugepage due to a nearby request.
1254 		 * Force our mapping to page size without deduplication
1255 		 */
1256 		return NULL;
1257 	pte = vmemmap_pte_alloc(pmd, node, map_addr);
1258 	if (!pte)
1259 		return NULL;
1260 	/*
1261 	 * Check if there exist a mapping to the left
1262 	 */
1263 	if (pte_none(*pte)) {
1264 		/*
1265 		 * Populate the head page vmemmap page.
1266 		 * It can fall in different pmd, hence
1267 		 * vmemmap_populate_address()
1268 		 */
1269 		pte = radix__vmemmap_populate_address(map_addr - PAGE_SIZE, node, NULL, NULL);
1270 		if (!pte)
1271 			return NULL;
1272 		/*
1273 		 * Populate the tail pages vmemmap page
1274 		 */
1275 		pte = radix__vmemmap_pte_populate(pmd, map_addr, node, NULL, NULL);
1276 		if (!pte)
1277 			return NULL;
1278 		vmemmap_verify(pte, node, map_addr, map_addr + PAGE_SIZE);
1279 		return pte;
1280 	}
1281 	return pte;
1282 }
1283 
1284 int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
1285 					      unsigned long start,
1286 					      unsigned long end, int node,
1287 					      struct dev_pagemap *pgmap)
1288 {
1289 	/*
1290 	 * we want to map things as base page size mapping so that
1291 	 * we can save space in vmemmap. We could have huge mapping
1292 	 * covering out both edges.
1293 	 */
1294 	unsigned long addr;
1295 	unsigned long addr_pfn = start_pfn;
1296 	unsigned long next;
1297 	pgd_t *pgd;
1298 	p4d_t *p4d;
1299 	pud_t *pud;
1300 	pmd_t *pmd;
1301 	pte_t *pte;
1302 
1303 	for (addr = start; addr < end; addr = next) {
1304 
1305 		pgd = pgd_offset_k(addr);
1306 		p4d = p4d_offset(pgd, addr);
1307 		pud = vmemmap_pud_alloc(p4d, node, addr);
1308 		if (!pud)
1309 			return -ENOMEM;
1310 		pmd = vmemmap_pmd_alloc(pud, node, addr);
1311 		if (!pmd)
1312 			return -ENOMEM;
1313 
1314 		if (pmd_leaf(READ_ONCE(*pmd))) {
1315 			/* existing huge mapping. Skip the range */
1316 			addr_pfn += (PMD_SIZE >> PAGE_SHIFT);
1317 			next = pmd_addr_end(addr, end);
1318 			continue;
1319 		}
1320 		pte = vmemmap_pte_alloc(pmd, node, addr);
1321 		if (!pte)
1322 			return -ENOMEM;
1323 		if (!pte_none(*pte)) {
1324 			/*
1325 			 * This could be because we already have a compound
1326 			 * page whose VMEMMAP_RESERVE_NR pages were mapped and
1327 			 * this request fall in those pages.
1328 			 */
1329 			addr_pfn += 1;
1330 			next = addr + PAGE_SIZE;
1331 			continue;
1332 		} else {
1333 			unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
1334 			unsigned long pfn_offset = addr_pfn - ALIGN_DOWN(addr_pfn, nr_pages);
1335 			pte_t *tail_page_pte;
1336 
1337 			/*
1338 			 * if the address is aligned to huge page size it is the
1339 			 * head mapping.
1340 			 */
1341 			if (pfn_offset == 0) {
1342 				/* Populate the head page vmemmap page */
1343 				pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
1344 				if (!pte)
1345 					return -ENOMEM;
1346 				vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1347 
1348 				/*
1349 				 * Populate the tail pages vmemmap page
1350 				 * It can fall in different pmd, hence
1351 				 * vmemmap_populate_address()
1352 				 */
1353 				pte = radix__vmemmap_populate_address(addr + PAGE_SIZE, node, NULL, NULL);
1354 				if (!pte)
1355 					return -ENOMEM;
1356 
1357 				addr_pfn += 2;
1358 				next = addr + 2 * PAGE_SIZE;
1359 				continue;
1360 			}
1361 			/*
1362 			 * get the 2nd mapping details
1363 			 * Also create it if that doesn't exist
1364 			 */
1365 			tail_page_pte = vmemmap_compound_tail_page(addr, pfn_offset, node);
1366 			if (!tail_page_pte) {
1367 
1368 				pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, NULL);
1369 				if (!pte)
1370 					return -ENOMEM;
1371 				vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1372 
1373 				addr_pfn += 1;
1374 				next = addr + PAGE_SIZE;
1375 				continue;
1376 			}
1377 
1378 			pte = radix__vmemmap_pte_populate(pmd, addr, node, NULL, pte_page(*tail_page_pte));
1379 			if (!pte)
1380 				return -ENOMEM;
1381 			vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
1382 
1383 			addr_pfn += 1;
1384 			next = addr + PAGE_SIZE;
1385 			continue;
1386 		}
1387 	}
1388 	return 0;
1389 }
1390 
1391 
1392 #ifdef CONFIG_MEMORY_HOTPLUG
1393 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
1394 {
1395 	remove_pagetable(start, start + page_size, true, NULL);
1396 }
1397 
1398 void __ref radix__vmemmap_free(unsigned long start, unsigned long end,
1399 			       struct vmem_altmap *altmap)
1400 {
1401 	remove_pagetable(start, end, false, altmap);
1402 }
1403 #endif
1404 #endif
1405 
1406 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1407 
1408 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
1409 				  pmd_t *pmdp, unsigned long clr,
1410 				  unsigned long set)
1411 {
1412 	unsigned long old;
1413 
1414 #ifdef CONFIG_DEBUG_VM
1415 	WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
1416 	assert_spin_locked(pmd_lockptr(mm, pmdp));
1417 #endif
1418 
1419 	old = radix__pte_update(mm, addr, pmdp_ptep(pmdp), clr, set, 1);
1420 	trace_hugepage_update_pmd(addr, old, clr, set);
1421 
1422 	return old;
1423 }
1424 
1425 unsigned long radix__pud_hugepage_update(struct mm_struct *mm, unsigned long addr,
1426 					 pud_t *pudp, unsigned long clr,
1427 					 unsigned long set)
1428 {
1429 	unsigned long old;
1430 
1431 #ifdef CONFIG_DEBUG_VM
1432 	WARN_ON(!pud_devmap(*pudp));
1433 	assert_spin_locked(pud_lockptr(mm, pudp));
1434 #endif
1435 
1436 	old = radix__pte_update(mm, addr, pudp_ptep(pudp), clr, set, 1);
1437 	trace_hugepage_update_pud(addr, old, clr, set);
1438 
1439 	return old;
1440 }
1441 
1442 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
1443 			pmd_t *pmdp)
1444 
1445 {
1446 	pmd_t pmd;
1447 
1448 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1449 	VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
1450 	VM_BUG_ON(pmd_devmap(*pmdp));
1451 	/*
1452 	 * khugepaged calls this for normal pmd
1453 	 */
1454 	pmd = *pmdp;
1455 	pmd_clear(pmdp);
1456 
1457 	radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
1458 
1459 	return pmd;
1460 }
1461 
1462 /*
1463  * For us pgtable_t is pte_t *. Inorder to save the deposisted
1464  * page table, we consider the allocated page table as a list
1465  * head. On withdraw we need to make sure we zero out the used
1466  * list_head memory area.
1467  */
1468 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1469 				 pgtable_t pgtable)
1470 {
1471 	struct list_head *lh = (struct list_head *) pgtable;
1472 
1473 	assert_spin_locked(pmd_lockptr(mm, pmdp));
1474 
1475 	/* FIFO */
1476 	if (!pmd_huge_pte(mm, pmdp))
1477 		INIT_LIST_HEAD(lh);
1478 	else
1479 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1480 	pmd_huge_pte(mm, pmdp) = pgtable;
1481 }
1482 
1483 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1484 {
1485 	pte_t *ptep;
1486 	pgtable_t pgtable;
1487 	struct list_head *lh;
1488 
1489 	assert_spin_locked(pmd_lockptr(mm, pmdp));
1490 
1491 	/* FIFO */
1492 	pgtable = pmd_huge_pte(mm, pmdp);
1493 	lh = (struct list_head *) pgtable;
1494 	if (list_empty(lh))
1495 		pmd_huge_pte(mm, pmdp) = NULL;
1496 	else {
1497 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1498 		list_del(lh);
1499 	}
1500 	ptep = (pte_t *) pgtable;
1501 	*ptep = __pte(0);
1502 	ptep++;
1503 	*ptep = __pte(0);
1504 	return pgtable;
1505 }
1506 
1507 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1508 				     unsigned long addr, pmd_t *pmdp)
1509 {
1510 	pmd_t old_pmd;
1511 	unsigned long old;
1512 
1513 	old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1514 	old_pmd = __pmd(old);
1515 	return old_pmd;
1516 }
1517 
1518 pud_t radix__pudp_huge_get_and_clear(struct mm_struct *mm,
1519 				     unsigned long addr, pud_t *pudp)
1520 {
1521 	pud_t old_pud;
1522 	unsigned long old;
1523 
1524 	old = radix__pud_hugepage_update(mm, addr, pudp, ~0UL, 0);
1525 	old_pud = __pud(old);
1526 	return old_pud;
1527 }
1528 
1529 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1530 
1531 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1532 				  pte_t entry, unsigned long address, int psize)
1533 {
1534 	struct mm_struct *mm = vma->vm_mm;
1535 	unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_SOFT_DIRTY |
1536 					      _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
1537 
1538 	unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1539 	/*
1540 	 * On POWER9, the NMMU is not able to relax PTE access permissions
1541 	 * for a translation with a TLB. The PTE must be invalidated, TLB
1542 	 * flushed before the new PTE is installed.
1543 	 *
1544 	 * This only needs to be done for radix, because hash translation does
1545 	 * flush when updating the linux pte (and we don't support NMMU
1546 	 * accelerators on HPT on POWER9 anyway XXX: do we?).
1547 	 *
1548 	 * POWER10 (and P9P) NMMU does behave as per ISA.
1549 	 */
1550 	if (!cpu_has_feature(CPU_FTR_ARCH_31) && (change & _PAGE_RW) &&
1551 	    atomic_read(&mm->context.copros) > 0) {
1552 		unsigned long old_pte, new_pte;
1553 
1554 		old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1555 		new_pte = old_pte | set;
1556 		radix__flush_tlb_page_psize(mm, address, psize);
1557 		__radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1558 	} else {
1559 		__radix_pte_update(ptep, 0, set);
1560 		/*
1561 		 * Book3S does not require a TLB flush when relaxing access
1562 		 * restrictions when the address space (modulo the POWER9 nest
1563 		 * MMU issue above) because the MMU will reload the PTE after
1564 		 * taking an access fault, as defined by the architecture. See
1565 		 * "Setting a Reference or Change Bit or Upgrading Access
1566 		 *  Authority (PTE Subject to Atomic Hardware Updates)" in
1567 		 *  Power ISA Version 3.1B.
1568 		 */
1569 	}
1570 	/* See ptesync comment in radix__set_pte_at */
1571 }
1572 
1573 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1574 				    unsigned long addr, pte_t *ptep,
1575 				    pte_t old_pte, pte_t pte)
1576 {
1577 	struct mm_struct *mm = vma->vm_mm;
1578 
1579 	/*
1580 	 * POWER9 NMMU must flush the TLB after clearing the PTE before
1581 	 * installing a PTE with more relaxed access permissions, see
1582 	 * radix__ptep_set_access_flags.
1583 	 */
1584 	if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
1585 	    is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1586 	    (atomic_read(&mm->context.copros) > 0))
1587 		radix__flush_tlb_page(vma, addr);
1588 
1589 	set_pte_at(mm, addr, ptep, pte);
1590 }
1591 
1592 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1593 {
1594 	pte_t *ptep = (pte_t *)pud;
1595 	pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1596 
1597 	if (!radix_enabled())
1598 		return 0;
1599 
1600 	set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1601 
1602 	return 1;
1603 }
1604 
1605 int pud_clear_huge(pud_t *pud)
1606 {
1607 	if (pud_leaf(*pud)) {
1608 		pud_clear(pud);
1609 		return 1;
1610 	}
1611 
1612 	return 0;
1613 }
1614 
1615 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1616 {
1617 	pmd_t *pmd;
1618 	int i;
1619 
1620 	pmd = pud_pgtable(*pud);
1621 	pud_clear(pud);
1622 
1623 	flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1624 
1625 	for (i = 0; i < PTRS_PER_PMD; i++) {
1626 		if (!pmd_none(pmd[i])) {
1627 			pte_t *pte;
1628 			pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1629 
1630 			pte_free_kernel(&init_mm, pte);
1631 		}
1632 	}
1633 
1634 	pmd_free(&init_mm, pmd);
1635 
1636 	return 1;
1637 }
1638 
1639 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1640 {
1641 	pte_t *ptep = (pte_t *)pmd;
1642 	pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1643 
1644 	if (!radix_enabled())
1645 		return 0;
1646 
1647 	set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1648 
1649 	return 1;
1650 }
1651 
1652 int pmd_clear_huge(pmd_t *pmd)
1653 {
1654 	if (pmd_leaf(*pmd)) {
1655 		pmd_clear(pmd);
1656 		return 1;
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1663 {
1664 	pte_t *pte;
1665 
1666 	pte = (pte_t *)pmd_page_vaddr(*pmd);
1667 	pmd_clear(pmd);
1668 
1669 	flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1670 
1671 	pte_free_kernel(&init_mm, pte);
1672 
1673 	return 1;
1674 }
1675