1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * PowerPC Memory Protection Keys management 4 * 5 * Copyright 2017, Ram Pai, IBM Corporation. 6 */ 7 8 #include <asm/mman.h> 9 #include <asm/mmu_context.h> 10 #include <asm/mmu.h> 11 #include <asm/setup.h> 12 #include <asm/smp.h> 13 #include <asm/firmware.h> 14 15 #include <linux/pkeys.h> 16 #include <linux/of_fdt.h> 17 18 19 int num_pkey; /* Max number of pkeys supported */ 20 /* 21 * Keys marked in the reservation list cannot be allocated by userspace 22 */ 23 u32 reserved_allocation_mask __ro_after_init; 24 25 /* Bits set for the initially allocated keys */ 26 static u32 initial_allocation_mask __ro_after_init; 27 28 /* 29 * Even if we allocate keys with sys_pkey_alloc(), we need to make sure 30 * other thread still find the access denied using the same keys. 31 */ 32 u64 default_amr __ro_after_init = ~0x0UL; 33 u64 default_iamr __ro_after_init = 0x5555555555555555UL; 34 u64 default_uamor __ro_after_init; 35 EXPORT_SYMBOL(default_amr); 36 /* 37 * Key used to implement PROT_EXEC mmap. Denies READ/WRITE 38 * We pick key 2 because 0 is special key and 1 is reserved as per ISA. 39 */ 40 static int execute_only_key = 2; 41 static bool pkey_execute_disable_supported; 42 43 44 #define AMR_BITS_PER_PKEY 2 45 #define AMR_RD_BIT 0x1UL 46 #define AMR_WR_BIT 0x2UL 47 #define IAMR_EX_BIT 0x1UL 48 #define PKEY_REG_BITS (sizeof(u64) * 8) 49 #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY)) 50 51 static int __init dt_scan_storage_keys(unsigned long node, 52 const char *uname, int depth, 53 void *data) 54 { 55 const char *type = of_get_flat_dt_prop(node, "device_type", NULL); 56 const __be32 *prop; 57 int *pkeys_total = (int *) data; 58 59 /* We are scanning "cpu" nodes only */ 60 if (type == NULL || strcmp(type, "cpu") != 0) 61 return 0; 62 63 prop = of_get_flat_dt_prop(node, "ibm,processor-storage-keys", NULL); 64 if (!prop) 65 return 0; 66 *pkeys_total = be32_to_cpu(prop[0]); 67 return 1; 68 } 69 70 static int __init scan_pkey_feature(void) 71 { 72 int ret; 73 int pkeys_total = 0; 74 75 /* 76 * Pkey is not supported with Radix translation. 77 */ 78 if (early_radix_enabled()) 79 return 0; 80 81 ret = of_scan_flat_dt(dt_scan_storage_keys, &pkeys_total); 82 if (ret == 0) { 83 /* 84 * Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device 85 * tree. We make this exception since some version of skiboot forgot to 86 * expose this property on power8/9. 87 */ 88 if (!firmware_has_feature(FW_FEATURE_LPAR)) { 89 unsigned long pvr = mfspr(SPRN_PVR); 90 91 if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E || 92 PVR_VER(pvr) == PVR_POWER8NVL || PVR_VER(pvr) == PVR_POWER9 || 93 PVR_VER(pvr) == PVR_HX_C2000) 94 pkeys_total = 32; 95 } 96 } 97 98 #ifdef CONFIG_PPC_MEM_KEYS 99 /* 100 * Adjust the upper limit, based on the number of bits supported by 101 * arch-neutral code. 102 */ 103 pkeys_total = min_t(int, pkeys_total, 104 ((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + 1)); 105 #endif 106 return pkeys_total; 107 } 108 109 void __init pkey_early_init_devtree(void) 110 { 111 int pkeys_total, i; 112 113 #ifdef CONFIG_PPC_MEM_KEYS 114 /* 115 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral 116 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE. 117 * Ensure that the bits a distinct. 118 */ 119 BUILD_BUG_ON(PKEY_DISABLE_EXECUTE & 120 (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE)); 121 122 /* 123 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous 124 * in the vmaflag. Make sure that is really the case. 125 */ 126 BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + 127 __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) 128 != (sizeof(u64) * BITS_PER_BYTE)); 129 #endif 130 /* 131 * Only P7 and above supports SPRN_AMR update with MSR[PR] = 1 132 */ 133 if (!early_cpu_has_feature(CPU_FTR_ARCH_206)) 134 return; 135 136 /* scan the device tree for pkey feature */ 137 pkeys_total = scan_pkey_feature(); 138 if (!pkeys_total) 139 goto out; 140 141 /* Allow all keys to be modified by default */ 142 default_uamor = ~0x0UL; 143 144 cur_cpu_spec->mmu_features |= MMU_FTR_PKEY; 145 146 /* 147 * The device tree cannot be relied to indicate support for 148 * execute_disable support. Instead we use a PVR check. 149 */ 150 if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p)) 151 pkey_execute_disable_supported = false; 152 else 153 pkey_execute_disable_supported = true; 154 155 #ifdef CONFIG_PPC_4K_PAGES 156 /* 157 * The OS can manage only 8 pkeys due to its inability to represent them 158 * in the Linux 4K PTE. Mark all other keys reserved. 159 */ 160 num_pkey = min(8, pkeys_total); 161 #else 162 num_pkey = pkeys_total; 163 #endif 164 165 if (unlikely(num_pkey <= execute_only_key) || !pkey_execute_disable_supported) { 166 /* 167 * Insufficient number of keys to support 168 * execute only key. Mark it unavailable. 169 */ 170 execute_only_key = -1; 171 } else { 172 /* 173 * Mark the execute_only_pkey as not available for 174 * user allocation via pkey_alloc. 175 */ 176 reserved_allocation_mask |= (0x1 << execute_only_key); 177 178 /* 179 * Deny READ/WRITE for execute_only_key. 180 * Allow execute in IAMR. 181 */ 182 default_amr |= (0x3ul << pkeyshift(execute_only_key)); 183 default_iamr &= ~(0x1ul << pkeyshift(execute_only_key)); 184 185 /* 186 * Clear the uamor bits for this key. 187 */ 188 default_uamor &= ~(0x3ul << pkeyshift(execute_only_key)); 189 } 190 191 if (unlikely(num_pkey <= 3)) { 192 /* 193 * Insufficient number of keys to support 194 * KUAP/KUEP feature. 195 */ 196 disable_kuep = true; 197 disable_kuap = true; 198 WARN(1, "Disabling kernel user protection due to low (%d) max supported keys\n", num_pkey); 199 } else { 200 /* handle key which is used by kernel for KAUP */ 201 reserved_allocation_mask |= (0x1 << 3); 202 /* 203 * Mark access for kup_key in default amr so that 204 * we continue to operate with that AMR in 205 * copy_to/from_user(). 206 */ 207 default_amr &= ~(0x3ul << pkeyshift(3)); 208 default_iamr &= ~(0x1ul << pkeyshift(3)); 209 default_uamor &= ~(0x3ul << pkeyshift(3)); 210 } 211 212 /* 213 * Allow access for only key 0. And prevent any other modification. 214 */ 215 default_amr &= ~(0x3ul << pkeyshift(0)); 216 default_iamr &= ~(0x1ul << pkeyshift(0)); 217 default_uamor &= ~(0x3ul << pkeyshift(0)); 218 /* 219 * key 0 is special in that we want to consider it an allocated 220 * key which is preallocated. We don't allow changing AMR bits 221 * w.r.t key 0. But one can pkey_free(key0) 222 */ 223 initial_allocation_mask |= (0x1 << 0); 224 225 /* 226 * key 1 is recommended not to be used. PowerISA(3.0) page 1015, 227 * programming note. 228 */ 229 reserved_allocation_mask |= (0x1 << 1); 230 default_uamor &= ~(0x3ul << pkeyshift(1)); 231 232 /* 233 * Prevent the usage of OS reserved keys. Update UAMOR 234 * for those keys. Also mark the rest of the bits in the 235 * 32 bit mask as reserved. 236 */ 237 for (i = num_pkey; i < 32 ; i++) { 238 reserved_allocation_mask |= (0x1 << i); 239 default_uamor &= ~(0x3ul << pkeyshift(i)); 240 } 241 /* 242 * Prevent the allocation of reserved keys too. 243 */ 244 initial_allocation_mask |= reserved_allocation_mask; 245 246 pr_info("Enabling pkeys with max key count %d\n", num_pkey); 247 out: 248 /* 249 * Setup uamor on boot cpu 250 */ 251 mtspr(SPRN_UAMOR, default_uamor); 252 253 return; 254 } 255 256 #ifdef CONFIG_PPC_KUEP 257 void setup_kuep(bool disabled) 258 { 259 if (disabled) 260 return; 261 /* 262 * On hash if PKEY feature is not enabled, disable KUAP too. 263 */ 264 if (!early_radix_enabled() && !early_mmu_has_feature(MMU_FTR_PKEY)) 265 return; 266 267 if (smp_processor_id() == boot_cpuid) { 268 pr_info("Activating Kernel Userspace Execution Prevention\n"); 269 cur_cpu_spec->mmu_features |= MMU_FTR_BOOK3S_KUEP; 270 } 271 272 /* 273 * Radix always uses key0 of the IAMR to determine if an access is 274 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction 275 * fetch. 276 */ 277 mtspr(SPRN_IAMR, AMR_KUEP_BLOCKED); 278 isync(); 279 } 280 #endif 281 282 #ifdef CONFIG_PPC_KUAP 283 void setup_kuap(bool disabled) 284 { 285 if (disabled) 286 return; 287 /* 288 * On hash if PKEY feature is not enabled, disable KUAP too. 289 */ 290 if (!early_radix_enabled() && !early_mmu_has_feature(MMU_FTR_PKEY)) 291 return; 292 293 if (smp_processor_id() == boot_cpuid) { 294 pr_info("Activating Kernel Userspace Access Prevention\n"); 295 cur_cpu_spec->mmu_features |= MMU_FTR_KUAP; 296 } 297 298 /* 299 * Set the default kernel AMR values on all cpus. 300 */ 301 mtspr(SPRN_AMR, AMR_KUAP_BLOCKED); 302 isync(); 303 } 304 #endif 305 306 #ifdef CONFIG_PPC_MEM_KEYS 307 void pkey_mm_init(struct mm_struct *mm) 308 { 309 if (!mmu_has_feature(MMU_FTR_PKEY)) 310 return; 311 mm_pkey_allocation_map(mm) = initial_allocation_mask; 312 mm->context.execute_only_pkey = execute_only_key; 313 } 314 315 static inline void init_amr(int pkey, u8 init_bits) 316 { 317 u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey)); 318 u64 old_amr = current_thread_amr() & ~((u64)(0x3ul) << pkeyshift(pkey)); 319 320 current->thread.regs->amr = old_amr | new_amr_bits; 321 } 322 323 static inline void init_iamr(int pkey, u8 init_bits) 324 { 325 u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey)); 326 u64 old_iamr = current_thread_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey)); 327 328 if (!likely(pkey_execute_disable_supported)) 329 return; 330 331 current->thread.regs->iamr = old_iamr | new_iamr_bits; 332 } 333 334 /* 335 * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that 336 * specified in @init_val. 337 */ 338 int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey, 339 unsigned long init_val) 340 { 341 u64 new_amr_bits = 0x0ul; 342 u64 new_iamr_bits = 0x0ul; 343 u64 pkey_bits, uamor_pkey_bits; 344 345 /* 346 * Check whether the key is disabled by UAMOR. 347 */ 348 pkey_bits = 0x3ul << pkeyshift(pkey); 349 uamor_pkey_bits = (default_uamor & pkey_bits); 350 351 /* 352 * Both the bits in UAMOR corresponding to the key should be set 353 */ 354 if (uamor_pkey_bits != pkey_bits) 355 return -EINVAL; 356 357 if (init_val & PKEY_DISABLE_EXECUTE) { 358 if (!pkey_execute_disable_supported) 359 return -EINVAL; 360 new_iamr_bits |= IAMR_EX_BIT; 361 } 362 init_iamr(pkey, new_iamr_bits); 363 364 /* Set the bits we need in AMR: */ 365 if (init_val & PKEY_DISABLE_ACCESS) 366 new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT; 367 else if (init_val & PKEY_DISABLE_WRITE) 368 new_amr_bits |= AMR_WR_BIT; 369 370 init_amr(pkey, new_amr_bits); 371 return 0; 372 } 373 374 int execute_only_pkey(struct mm_struct *mm) 375 { 376 return mm->context.execute_only_pkey; 377 } 378 379 static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma) 380 { 381 /* Do this check first since the vm_flags should be hot */ 382 if ((vma->vm_flags & VM_ACCESS_FLAGS) != VM_EXEC) 383 return false; 384 385 return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey); 386 } 387 388 /* 389 * This should only be called for *plain* mprotect calls. 390 */ 391 int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot, 392 int pkey) 393 { 394 /* 395 * If the currently associated pkey is execute-only, but the requested 396 * protection is not execute-only, move it back to the default pkey. 397 */ 398 if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC)) 399 return 0; 400 401 /* 402 * The requested protection is execute-only. Hence let's use an 403 * execute-only pkey. 404 */ 405 if (prot == PROT_EXEC) { 406 pkey = execute_only_pkey(vma->vm_mm); 407 if (pkey > 0) 408 return pkey; 409 } 410 411 /* Nothing to override. */ 412 return vma_pkey(vma); 413 } 414 415 static bool pkey_access_permitted(int pkey, bool write, bool execute) 416 { 417 int pkey_shift; 418 u64 amr; 419 420 pkey_shift = pkeyshift(pkey); 421 if (execute) 422 return !(current_thread_iamr() & (IAMR_EX_BIT << pkey_shift)); 423 424 amr = current_thread_amr(); 425 if (write) 426 return !(amr & (AMR_WR_BIT << pkey_shift)); 427 428 return !(amr & (AMR_RD_BIT << pkey_shift)); 429 } 430 431 bool arch_pte_access_permitted(u64 pte, bool write, bool execute) 432 { 433 if (!mmu_has_feature(MMU_FTR_PKEY)) 434 return true; 435 436 return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute); 437 } 438 439 /* 440 * We only want to enforce protection keys on the current thread because we 441 * effectively have no access to AMR/IAMR for other threads or any way to tell 442 * which AMR/IAMR in a threaded process we could use. 443 * 444 * So do not enforce things if the VMA is not from the current mm, or if we are 445 * in a kernel thread. 446 */ 447 bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write, 448 bool execute, bool foreign) 449 { 450 if (!mmu_has_feature(MMU_FTR_PKEY)) 451 return true; 452 /* 453 * Do not enforce our key-permissions on a foreign vma. 454 */ 455 if (foreign || vma_is_foreign(vma)) 456 return true; 457 458 return pkey_access_permitted(vma_pkey(vma), write, execute); 459 } 460 461 void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm) 462 { 463 if (!mmu_has_feature(MMU_FTR_PKEY)) 464 return; 465 466 /* Duplicate the oldmm pkey state in mm: */ 467 mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm); 468 mm->context.execute_only_pkey = oldmm->context.execute_only_pkey; 469 } 470 471 #endif /* CONFIG_PPC_MEM_KEYS */ 472