xref: /linux/arch/powerpc/mm/book3s64/pkeys.c (revision 48a8ab4eeb8271f2a0e2ca3cf80844a59acca153)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * PowerPC Memory Protection Keys management
4  *
5  * Copyright 2017, Ram Pai, IBM Corporation.
6  */
7 
8 #include <asm/mman.h>
9 #include <asm/mmu_context.h>
10 #include <asm/mmu.h>
11 #include <asm/setup.h>
12 #include <asm/smp.h>
13 
14 #include <linux/pkeys.h>
15 #include <linux/of_fdt.h>
16 
17 
18 int  num_pkey;		/* Max number of pkeys supported */
19 /*
20  *  Keys marked in the reservation list cannot be allocated by  userspace
21  */
22 u32 reserved_allocation_mask __ro_after_init;
23 
24 /* Bits set for the initially allocated keys */
25 static u32 initial_allocation_mask __ro_after_init;
26 
27 /*
28  * Even if we allocate keys with sys_pkey_alloc(), we need to make sure
29  * other thread still find the access denied using the same keys.
30  */
31 u64 default_amr __ro_after_init  = ~0x0UL;
32 u64 default_iamr __ro_after_init = 0x5555555555555555UL;
33 u64 default_uamor __ro_after_init;
34 /*
35  * Key used to implement PROT_EXEC mmap. Denies READ/WRITE
36  * We pick key 2 because 0 is special key and 1 is reserved as per ISA.
37  */
38 static int execute_only_key = 2;
39 static bool pkey_execute_disable_supported;
40 
41 
42 #define AMR_BITS_PER_PKEY 2
43 #define AMR_RD_BIT 0x1UL
44 #define AMR_WR_BIT 0x2UL
45 #define IAMR_EX_BIT 0x1UL
46 #define PKEY_REG_BITS (sizeof(u64) * 8)
47 #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
48 
49 static int __init dt_scan_storage_keys(unsigned long node,
50 				       const char *uname, int depth,
51 				       void *data)
52 {
53 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
54 	const __be32 *prop;
55 	int *pkeys_total = (int *) data;
56 
57 	/* We are scanning "cpu" nodes only */
58 	if (type == NULL || strcmp(type, "cpu") != 0)
59 		return 0;
60 
61 	prop = of_get_flat_dt_prop(node, "ibm,processor-storage-keys", NULL);
62 	if (!prop)
63 		return 0;
64 	*pkeys_total = be32_to_cpu(prop[0]);
65 	return 1;
66 }
67 
68 static int scan_pkey_feature(void)
69 {
70 	int ret;
71 	int pkeys_total = 0;
72 
73 	/*
74 	 * Pkey is not supported with Radix translation.
75 	 */
76 	if (early_radix_enabled())
77 		return 0;
78 
79 	ret = of_scan_flat_dt(dt_scan_storage_keys, &pkeys_total);
80 	if (ret == 0) {
81 		/*
82 		 * Let's assume 32 pkeys on P8/P9 bare metal, if its not defined by device
83 		 * tree. We make this exception since some version of skiboot forgot to
84 		 * expose this property on power8/9.
85 		 */
86 		if (!firmware_has_feature(FW_FEATURE_LPAR)) {
87 			unsigned long pvr = mfspr(SPRN_PVR);
88 
89 			if (PVR_VER(pvr) == PVR_POWER8 || PVR_VER(pvr) == PVR_POWER8E ||
90 			    PVR_VER(pvr) == PVR_POWER8NVL || PVR_VER(pvr) == PVR_POWER9)
91 				pkeys_total = 32;
92 		}
93 	}
94 
95 #ifdef CONFIG_PPC_MEM_KEYS
96 	/*
97 	 * Adjust the upper limit, based on the number of bits supported by
98 	 * arch-neutral code.
99 	 */
100 	pkeys_total = min_t(int, pkeys_total,
101 			    ((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + 1));
102 #endif
103 	return pkeys_total;
104 }
105 
106 void __init pkey_early_init_devtree(void)
107 {
108 	int pkeys_total, i;
109 
110 #ifdef CONFIG_PPC_MEM_KEYS
111 	/*
112 	 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral
113 	 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE.
114 	 * Ensure that the bits a distinct.
115 	 */
116 	BUILD_BUG_ON(PKEY_DISABLE_EXECUTE &
117 		     (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
118 
119 	/*
120 	 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous
121 	 * in the vmaflag. Make sure that is really the case.
122 	 */
123 	BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) +
124 		     __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)
125 				!= (sizeof(u64) * BITS_PER_BYTE));
126 #endif
127 	/*
128 	 * Only P7 and above supports SPRN_AMR update with MSR[PR] = 1
129 	 */
130 	if (!early_cpu_has_feature(CPU_FTR_ARCH_206))
131 		return;
132 
133 	/* scan the device tree for pkey feature */
134 	pkeys_total = scan_pkey_feature();
135 	if (!pkeys_total)
136 		goto out;
137 
138 	/* Allow all keys to be modified by default */
139 	default_uamor = ~0x0UL;
140 
141 	cur_cpu_spec->mmu_features |= MMU_FTR_PKEY;
142 
143 	/*
144 	 * The device tree cannot be relied to indicate support for
145 	 * execute_disable support. Instead we use a PVR check.
146 	 */
147 	if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p))
148 		pkey_execute_disable_supported = false;
149 	else
150 		pkey_execute_disable_supported = true;
151 
152 #ifdef CONFIG_PPC_4K_PAGES
153 	/*
154 	 * The OS can manage only 8 pkeys due to its inability to represent them
155 	 * in the Linux 4K PTE. Mark all other keys reserved.
156 	 */
157 	num_pkey = min(8, pkeys_total);
158 #else
159 	num_pkey = pkeys_total;
160 #endif
161 
162 	if (unlikely(num_pkey <= execute_only_key) || !pkey_execute_disable_supported) {
163 		/*
164 		 * Insufficient number of keys to support
165 		 * execute only key. Mark it unavailable.
166 		 */
167 		execute_only_key = -1;
168 	} else {
169 		/*
170 		 * Mark the execute_only_pkey as not available for
171 		 * user allocation via pkey_alloc.
172 		 */
173 		reserved_allocation_mask |= (0x1 << execute_only_key);
174 
175 		/*
176 		 * Deny READ/WRITE for execute_only_key.
177 		 * Allow execute in IAMR.
178 		 */
179 		default_amr  |= (0x3ul << pkeyshift(execute_only_key));
180 		default_iamr &= ~(0x1ul << pkeyshift(execute_only_key));
181 
182 		/*
183 		 * Clear the uamor bits for this key.
184 		 */
185 		default_uamor &= ~(0x3ul << pkeyshift(execute_only_key));
186 	}
187 
188 	/*
189 	 * Allow access for only key 0. And prevent any other modification.
190 	 */
191 	default_amr   &= ~(0x3ul << pkeyshift(0));
192 	default_iamr  &= ~(0x1ul << pkeyshift(0));
193 	default_uamor &= ~(0x3ul << pkeyshift(0));
194 	/*
195 	 * key 0 is special in that we want to consider it an allocated
196 	 * key which is preallocated. We don't allow changing AMR bits
197 	 * w.r.t key 0. But one can pkey_free(key0)
198 	 */
199 	initial_allocation_mask |= (0x1 << 0);
200 
201 	/*
202 	 * key 1 is recommended not to be used. PowerISA(3.0) page 1015,
203 	 * programming note.
204 	 */
205 	reserved_allocation_mask |= (0x1 << 1);
206 	default_uamor &= ~(0x3ul << pkeyshift(1));
207 
208 	/*  handle key which is used by kernel for KAUP */
209 	reserved_allocation_mask |= (0x1 << 3);
210 	/*
211 	 * Mark access for KUAP key in default amr so that
212 	 * we continue to operate with that AMR in
213 	 * copy_to/from_user().
214 	 */
215 	default_amr   &= ~(0x3ul << pkeyshift(3));
216 	default_iamr  &= ~(0x1ul << pkeyshift(3));
217 	default_uamor &= ~(0x3ul << pkeyshift(3));
218 
219 
220 	/*
221 	 * Prevent the usage of OS reserved keys. Update UAMOR
222 	 * for those keys. Also mark the rest of the bits in the
223 	 * 32 bit mask as reserved.
224 	 */
225 	for (i = num_pkey; i < 32 ; i++) {
226 		reserved_allocation_mask |= (0x1 << i);
227 		default_uamor &= ~(0x3ul << pkeyshift(i));
228 	}
229 	/*
230 	 * Prevent the allocation of reserved keys too.
231 	 */
232 	initial_allocation_mask |= reserved_allocation_mask;
233 
234 	pr_info("Enabling pkeys with max key count %d\n", num_pkey);
235 out:
236 	/*
237 	 * Setup uamor on boot cpu
238 	 */
239 	mtspr(SPRN_UAMOR, default_uamor);
240 
241 	return;
242 }
243 
244 #ifdef CONFIG_PPC_KUEP
245 void __init setup_kuep(bool disabled)
246 {
247 	if (disabled || !early_radix_enabled())
248 		return;
249 
250 	if (smp_processor_id() == boot_cpuid) {
251 		pr_info("Activating Kernel Userspace Execution Prevention\n");
252 		cur_cpu_spec->mmu_features |= MMU_FTR_BOOK3S_KUEP;
253 	}
254 
255 	/*
256 	 * Radix always uses key0 of the IAMR to determine if an access is
257 	 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
258 	 * fetch.
259 	 */
260 	mtspr(SPRN_IAMR, AMR_KUEP_BLOCKED);
261 	isync();
262 }
263 #endif
264 
265 #ifdef CONFIG_PPC_KUAP
266 void __init setup_kuap(bool disabled)
267 {
268 	if (disabled || !early_radix_enabled())
269 		return;
270 
271 	if (smp_processor_id() == boot_cpuid) {
272 		pr_info("Activating Kernel Userspace Access Prevention\n");
273 		cur_cpu_spec->mmu_features |= MMU_FTR_BOOK3S_KUAP;
274 	}
275 
276 	/*
277 	 * Set the default kernel AMR values on all cpus.
278 	 */
279 	mtspr(SPRN_AMR, AMR_KUAP_BLOCKED);
280 	isync();
281 }
282 #endif
283 
284 static inline void update_current_thread_amr(u64 value)
285 {
286 	current->thread.regs->amr = value;
287 }
288 
289 static inline void update_current_thread_iamr(u64 value)
290 {
291 	if (!likely(pkey_execute_disable_supported))
292 		return;
293 
294 	current->thread.regs->iamr = value;
295 }
296 
297 #ifdef CONFIG_PPC_MEM_KEYS
298 void pkey_mm_init(struct mm_struct *mm)
299 {
300 	if (!mmu_has_feature(MMU_FTR_PKEY))
301 		return;
302 	mm_pkey_allocation_map(mm) = initial_allocation_mask;
303 	mm->context.execute_only_pkey = execute_only_key;
304 }
305 
306 static inline void init_amr(int pkey, u8 init_bits)
307 {
308 	u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey));
309 	u64 old_amr = current_thread_amr() & ~((u64)(0x3ul) << pkeyshift(pkey));
310 
311 	update_current_thread_amr(old_amr | new_amr_bits);
312 }
313 
314 static inline void init_iamr(int pkey, u8 init_bits)
315 {
316 	u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey));
317 	u64 old_iamr = current_thread_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey));
318 
319 	update_current_thread_iamr(old_iamr | new_iamr_bits);
320 }
321 
322 /*
323  * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that
324  * specified in @init_val.
325  */
326 int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
327 				unsigned long init_val)
328 {
329 	u64 new_amr_bits = 0x0ul;
330 	u64 new_iamr_bits = 0x0ul;
331 	u64 pkey_bits, uamor_pkey_bits;
332 
333 	/*
334 	 * Check whether the key is disabled by UAMOR.
335 	 */
336 	pkey_bits = 0x3ul << pkeyshift(pkey);
337 	uamor_pkey_bits = (default_uamor & pkey_bits);
338 
339 	/*
340 	 * Both the bits in UAMOR corresponding to the key should be set
341 	 */
342 	if (uamor_pkey_bits != pkey_bits)
343 		return -EINVAL;
344 
345 	if (init_val & PKEY_DISABLE_EXECUTE) {
346 		if (!pkey_execute_disable_supported)
347 			return -EINVAL;
348 		new_iamr_bits |= IAMR_EX_BIT;
349 	}
350 	init_iamr(pkey, new_iamr_bits);
351 
352 	/* Set the bits we need in AMR: */
353 	if (init_val & PKEY_DISABLE_ACCESS)
354 		new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT;
355 	else if (init_val & PKEY_DISABLE_WRITE)
356 		new_amr_bits |= AMR_WR_BIT;
357 
358 	init_amr(pkey, new_amr_bits);
359 	return 0;
360 }
361 
362 int execute_only_pkey(struct mm_struct *mm)
363 {
364 	return mm->context.execute_only_pkey;
365 }
366 
367 static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma)
368 {
369 	/* Do this check first since the vm_flags should be hot */
370 	if ((vma->vm_flags & VM_ACCESS_FLAGS) != VM_EXEC)
371 		return false;
372 
373 	return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey);
374 }
375 
376 /*
377  * This should only be called for *plain* mprotect calls.
378  */
379 int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot,
380 				  int pkey)
381 {
382 	/*
383 	 * If the currently associated pkey is execute-only, but the requested
384 	 * protection is not execute-only, move it back to the default pkey.
385 	 */
386 	if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC))
387 		return 0;
388 
389 	/*
390 	 * The requested protection is execute-only. Hence let's use an
391 	 * execute-only pkey.
392 	 */
393 	if (prot == PROT_EXEC) {
394 		pkey = execute_only_pkey(vma->vm_mm);
395 		if (pkey > 0)
396 			return pkey;
397 	}
398 
399 	/* Nothing to override. */
400 	return vma_pkey(vma);
401 }
402 
403 static bool pkey_access_permitted(int pkey, bool write, bool execute)
404 {
405 	int pkey_shift;
406 	u64 amr;
407 
408 	pkey_shift = pkeyshift(pkey);
409 	if (execute)
410 		return !(current_thread_iamr() & (IAMR_EX_BIT << pkey_shift));
411 
412 	amr = current_thread_amr();
413 	if (write)
414 		return !(amr & (AMR_WR_BIT << pkey_shift));
415 
416 	return !(amr & (AMR_RD_BIT << pkey_shift));
417 }
418 
419 bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
420 {
421 	if (!mmu_has_feature(MMU_FTR_PKEY))
422 		return true;
423 
424 	return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute);
425 }
426 
427 /*
428  * We only want to enforce protection keys on the current thread because we
429  * effectively have no access to AMR/IAMR for other threads or any way to tell
430  * which AMR/IAMR in a threaded process we could use.
431  *
432  * So do not enforce things if the VMA is not from the current mm, or if we are
433  * in a kernel thread.
434  */
435 bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write,
436 			       bool execute, bool foreign)
437 {
438 	if (!mmu_has_feature(MMU_FTR_PKEY))
439 		return true;
440 	/*
441 	 * Do not enforce our key-permissions on a foreign vma.
442 	 */
443 	if (foreign || vma_is_foreign(vma))
444 		return true;
445 
446 	return pkey_access_permitted(vma_pkey(vma), write, execute);
447 }
448 
449 void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm)
450 {
451 	if (!mmu_has_feature(MMU_FTR_PKEY))
452 		return;
453 
454 	/* Duplicate the oldmm pkey state in mm: */
455 	mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm);
456 	mm->context.execute_only_pkey = oldmm->context.execute_only_pkey;
457 }
458 
459 #endif /* CONFIG_PPC_MEM_KEYS */
460