xref: /linux/arch/powerpc/mm/book3s64/pgtable.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <misc/cxl-base.h>
10 
11 #include <asm/debugfs.h>
12 #include <asm/pgalloc.h>
13 #include <asm/tlb.h>
14 #include <asm/trace.h>
15 #include <asm/powernv.h>
16 #include <asm/firmware.h>
17 #include <asm/ultravisor.h>
18 #include <asm/kexec.h>
19 
20 #include <mm/mmu_decl.h>
21 #include <trace/events/thp.h>
22 
23 unsigned long __pmd_frag_nr;
24 EXPORT_SYMBOL(__pmd_frag_nr);
25 unsigned long __pmd_frag_size_shift;
26 EXPORT_SYMBOL(__pmd_frag_size_shift);
27 
28 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
29 /*
30  * This is called when relaxing access to a hugepage. It's also called in the page
31  * fault path when we don't hit any of the major fault cases, ie, a minor
32  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
33  * handled those two for us, we additionally deal with missing execute
34  * permission here on some processors
35  */
36 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
37 			  pmd_t *pmdp, pmd_t entry, int dirty)
38 {
39 	int changed;
40 #ifdef CONFIG_DEBUG_VM
41 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
42 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
43 #endif
44 	changed = !pmd_same(*(pmdp), entry);
45 	if (changed) {
46 		/*
47 		 * We can use MMU_PAGE_2M here, because only radix
48 		 * path look at the psize.
49 		 */
50 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
51 					pmd_pte(entry), address, MMU_PAGE_2M);
52 	}
53 	return changed;
54 }
55 
56 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
57 			      unsigned long address, pmd_t *pmdp)
58 {
59 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
60 }
61 /*
62  * set a new huge pmd. We should not be called for updating
63  * an existing pmd entry. That should go via pmd_hugepage_update.
64  */
65 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
66 		pmd_t *pmdp, pmd_t pmd)
67 {
68 #ifdef CONFIG_DEBUG_VM
69 	/*
70 	 * Make sure hardware valid bit is not set. We don't do
71 	 * tlb flush for this update.
72 	 */
73 
74 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
75 	assert_spin_locked(pmd_lockptr(mm, pmdp));
76 	WARN_ON(!(pmd_large(pmd)));
77 #endif
78 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
79 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
80 }
81 
82 static void do_nothing(void *unused)
83 {
84 
85 }
86 /*
87  * Serialize against find_current_mm_pte which does lock-less
88  * lookup in page tables with local interrupts disabled. For huge pages
89  * it casts pmd_t to pte_t. Since format of pte_t is different from
90  * pmd_t we want to prevent transit from pmd pointing to page table
91  * to pmd pointing to huge page (and back) while interrupts are disabled.
92  * We clear pmd to possibly replace it with page table pointer in
93  * different code paths. So make sure we wait for the parallel
94  * find_current_mm_pte to finish.
95  */
96 void serialize_against_pte_lookup(struct mm_struct *mm)
97 {
98 	smp_mb();
99 	smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
100 }
101 
102 /*
103  * We use this to invalidate a pmdp entry before switching from a
104  * hugepte to regular pmd entry.
105  */
106 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
107 		     pmd_t *pmdp)
108 {
109 	unsigned long old_pmd;
110 
111 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
112 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
113 	return __pmd(old_pmd);
114 }
115 
116 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
117 				   unsigned long addr, pmd_t *pmdp, int full)
118 {
119 	pmd_t pmd;
120 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
121 	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
122 		   !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
123 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
124 	/*
125 	 * if it not a fullmm flush, then we can possibly end up converting
126 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
127 	 * Make sure we flush the tlb in this case.
128 	 */
129 	if (!full)
130 		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
131 	return pmd;
132 }
133 
134 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
135 {
136 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
137 }
138 
139 /*
140  * At some point we should be able to get rid of
141  * pmd_mkhuge() and mk_huge_pmd() when we update all the
142  * other archs to mark the pmd huge in pfn_pmd()
143  */
144 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
145 {
146 	unsigned long pmdv;
147 
148 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
149 
150 	return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
151 }
152 
153 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
154 {
155 	return pfn_pmd(page_to_pfn(page), pgprot);
156 }
157 
158 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
159 {
160 	unsigned long pmdv;
161 
162 	pmdv = pmd_val(pmd);
163 	pmdv &= _HPAGE_CHG_MASK;
164 	return pmd_set_protbits(__pmd(pmdv), newprot);
165 }
166 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
167 
168 /* For use by kexec */
169 void mmu_cleanup_all(void)
170 {
171 	if (radix_enabled())
172 		radix__mmu_cleanup_all();
173 	else if (mmu_hash_ops.hpte_clear_all)
174 		mmu_hash_ops.hpte_clear_all();
175 
176 	reset_sprs();
177 }
178 
179 #ifdef CONFIG_MEMORY_HOTPLUG
180 int __meminit create_section_mapping(unsigned long start, unsigned long end,
181 				     int nid, pgprot_t prot)
182 {
183 	if (radix_enabled())
184 		return radix__create_section_mapping(start, end, nid, prot);
185 
186 	return hash__create_section_mapping(start, end, nid, prot);
187 }
188 
189 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
190 {
191 	if (radix_enabled())
192 		return radix__remove_section_mapping(start, end);
193 
194 	return hash__remove_section_mapping(start, end);
195 }
196 #endif /* CONFIG_MEMORY_HOTPLUG */
197 
198 void __init mmu_partition_table_init(void)
199 {
200 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
201 	unsigned long ptcr;
202 
203 	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
204 	/* Initialize the Partition Table with no entries */
205 	partition_tb = memblock_alloc(patb_size, patb_size);
206 	if (!partition_tb)
207 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
208 		      __func__, patb_size, patb_size);
209 
210 	/*
211 	 * update partition table control register,
212 	 * 64 K size.
213 	 */
214 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
215 	set_ptcr_when_no_uv(ptcr);
216 	powernv_set_nmmu_ptcr(ptcr);
217 }
218 
219 static void flush_partition(unsigned int lpid, bool radix)
220 {
221 	if (radix) {
222 		radix__flush_all_lpid(lpid);
223 		radix__flush_all_lpid_guest(lpid);
224 	} else {
225 		asm volatile("ptesync" : : : "memory");
226 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
227 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
228 		/* do we need fixup here ?*/
229 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
230 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
231 	}
232 }
233 
234 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
235 				  unsigned long dw1, bool flush)
236 {
237 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
238 
239 	/*
240 	 * When ultravisor is enabled, the partition table is stored in secure
241 	 * memory and can only be accessed doing an ultravisor call. However, we
242 	 * maintain a copy of the partition table in normal memory to allow Nest
243 	 * MMU translations to occur (for normal VMs).
244 	 *
245 	 * Therefore, here we always update partition_tb, regardless of whether
246 	 * we are running under an ultravisor or not.
247 	 */
248 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
249 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
250 
251 	/*
252 	 * If ultravisor is enabled, we do an ultravisor call to register the
253 	 * partition table entry (PATE), which also do a global flush of TLBs
254 	 * and partition table caches for the lpid. Otherwise, just do the
255 	 * flush. The type of flush (hash or radix) depends on what the previous
256 	 * use of the partition ID was, not the new use.
257 	 */
258 	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
259 		uv_register_pate(lpid, dw0, dw1);
260 		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
261 			dw0, dw1);
262 	} else if (flush) {
263 		/*
264 		 * Boot does not need to flush, because MMU is off and each
265 		 * CPU does a tlbiel_all() before switching them on, which
266 		 * flushes everything.
267 		 */
268 		flush_partition(lpid, (old & PATB_HR));
269 	}
270 }
271 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
272 
273 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
274 {
275 	void *pmd_frag, *ret;
276 
277 	if (PMD_FRAG_NR == 1)
278 		return NULL;
279 
280 	spin_lock(&mm->page_table_lock);
281 	ret = mm->context.pmd_frag;
282 	if (ret) {
283 		pmd_frag = ret + PMD_FRAG_SIZE;
284 		/*
285 		 * If we have taken up all the fragments mark PTE page NULL
286 		 */
287 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
288 			pmd_frag = NULL;
289 		mm->context.pmd_frag = pmd_frag;
290 	}
291 	spin_unlock(&mm->page_table_lock);
292 	return (pmd_t *)ret;
293 }
294 
295 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
296 {
297 	void *ret = NULL;
298 	struct page *page;
299 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
300 
301 	if (mm == &init_mm)
302 		gfp &= ~__GFP_ACCOUNT;
303 	page = alloc_page(gfp);
304 	if (!page)
305 		return NULL;
306 	if (!pgtable_pmd_page_ctor(page)) {
307 		__free_pages(page, 0);
308 		return NULL;
309 	}
310 
311 	atomic_set(&page->pt_frag_refcount, 1);
312 
313 	ret = page_address(page);
314 	/*
315 	 * if we support only one fragment just return the
316 	 * allocated page.
317 	 */
318 	if (PMD_FRAG_NR == 1)
319 		return ret;
320 
321 	spin_lock(&mm->page_table_lock);
322 	/*
323 	 * If we find pgtable_page set, we return
324 	 * the allocated page with single fragement
325 	 * count.
326 	 */
327 	if (likely(!mm->context.pmd_frag)) {
328 		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
329 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
330 	}
331 	spin_unlock(&mm->page_table_lock);
332 
333 	return (pmd_t *)ret;
334 }
335 
336 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
337 {
338 	pmd_t *pmd;
339 
340 	pmd = get_pmd_from_cache(mm);
341 	if (pmd)
342 		return pmd;
343 
344 	return __alloc_for_pmdcache(mm);
345 }
346 
347 void pmd_fragment_free(unsigned long *pmd)
348 {
349 	struct page *page = virt_to_page(pmd);
350 
351 	if (PageReserved(page))
352 		return free_reserved_page(page);
353 
354 	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
355 	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
356 		pgtable_pmd_page_dtor(page);
357 		__free_page(page);
358 	}
359 }
360 
361 static inline void pgtable_free(void *table, int index)
362 {
363 	switch (index) {
364 	case PTE_INDEX:
365 		pte_fragment_free(table, 0);
366 		break;
367 	case PMD_INDEX:
368 		pmd_fragment_free(table);
369 		break;
370 	case PUD_INDEX:
371 		__pud_free(table);
372 		break;
373 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
374 		/* 16M hugepd directory at pud level */
375 	case HTLB_16M_INDEX:
376 		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
377 		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
378 		break;
379 		/* 16G hugepd directory at the pgd level */
380 	case HTLB_16G_INDEX:
381 		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
382 		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
383 		break;
384 #endif
385 		/* We don't free pgd table via RCU callback */
386 	default:
387 		BUG();
388 	}
389 }
390 
391 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
392 {
393 	unsigned long pgf = (unsigned long)table;
394 
395 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
396 	pgf |= index;
397 	tlb_remove_table(tlb, (void *)pgf);
398 }
399 
400 void __tlb_remove_table(void *_table)
401 {
402 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
403 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
404 
405 	return pgtable_free(table, index);
406 }
407 
408 #ifdef CONFIG_PROC_FS
409 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
410 
411 void arch_report_meminfo(struct seq_file *m)
412 {
413 	/*
414 	 * Hash maps the memory with one size mmu_linear_psize.
415 	 * So don't bother to print these on hash
416 	 */
417 	if (!radix_enabled())
418 		return;
419 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
420 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
421 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
422 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
423 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
424 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
425 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
426 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
427 }
428 #endif /* CONFIG_PROC_FS */
429 
430 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
431 			     pte_t *ptep)
432 {
433 	unsigned long pte_val;
434 
435 	/*
436 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
437 	 * possible. Also keep the pte_present true so that we don't take
438 	 * wrong fault.
439 	 */
440 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
441 
442 	return __pte(pte_val);
443 
444 }
445 
446 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
447 			     pte_t *ptep, pte_t old_pte, pte_t pte)
448 {
449 	if (radix_enabled())
450 		return radix__ptep_modify_prot_commit(vma, addr,
451 						      ptep, old_pte, pte);
452 	set_pte_at(vma->vm_mm, addr, ptep, pte);
453 }
454 
455 /*
456  * For hash translation mode, we use the deposited table to store hash slot
457  * information and they are stored at PTRS_PER_PMD offset from related pmd
458  * location. Hence a pmd move requires deposit and withdraw.
459  *
460  * For radix translation with split pmd ptl, we store the deposited table in the
461  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
462  * move.
463  *
464  * With hash we use deposited table always irrespective of anon or not.
465  * With radix we use deposited table only for anonymous mapping.
466  */
467 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
468 			   struct spinlock *old_pmd_ptl,
469 			   struct vm_area_struct *vma)
470 {
471 	if (radix_enabled())
472 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
473 
474 	return true;
475 }
476 
477 /*
478  * Does the CPU support tlbie?
479  */
480 bool tlbie_capable __read_mostly = true;
481 EXPORT_SYMBOL(tlbie_capable);
482 
483 /*
484  * Should tlbie be used for management of CPU TLBs, for kernel and process
485  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
486  * guest address spaces.
487  */
488 bool tlbie_enabled __read_mostly = true;
489 
490 static int __init setup_disable_tlbie(char *str)
491 {
492 	if (!radix_enabled()) {
493 		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
494 		return 1;
495 	}
496 
497 	tlbie_capable = false;
498 	tlbie_enabled = false;
499 
500         return 1;
501 }
502 __setup("disable_tlbie", setup_disable_tlbie);
503 
504 static int __init pgtable_debugfs_setup(void)
505 {
506 	if (!tlbie_capable)
507 		return 0;
508 
509 	/*
510 	 * There is no locking vs tlb flushing when changing this value.
511 	 * The tlb flushers will see one value or another, and use either
512 	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
513 	 * invalidated as expected.
514 	 */
515 	debugfs_create_bool("tlbie_enabled", 0600,
516 			powerpc_debugfs_root,
517 			&tlbie_enabled);
518 
519 	return 0;
520 }
521 arch_initcall(pgtable_debugfs_setup);
522