xref: /linux/arch/powerpc/mm/book3s64/pgtable.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <linux/memremap.h>
10 #include <linux/pkeys.h>
11 #include <linux/debugfs.h>
12 #include <linux/proc_fs.h>
13 #include <misc/cxl-base.h>
14 
15 #include <asm/pgalloc.h>
16 #include <asm/tlb.h>
17 #include <asm/trace.h>
18 #include <asm/powernv.h>
19 #include <asm/firmware.h>
20 #include <asm/ultravisor.h>
21 #include <asm/kexec.h>
22 
23 #include <mm/mmu_decl.h>
24 #include <trace/events/thp.h>
25 
26 #include "internal.h"
27 
28 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
29 EXPORT_SYMBOL_GPL(mmu_psize_defs);
30 
31 #ifdef CONFIG_SPARSEMEM_VMEMMAP
32 int mmu_vmemmap_psize = MMU_PAGE_4K;
33 #endif
34 
35 unsigned long __pmd_frag_nr;
36 EXPORT_SYMBOL(__pmd_frag_nr);
37 unsigned long __pmd_frag_size_shift;
38 EXPORT_SYMBOL(__pmd_frag_size_shift);
39 
40 #ifdef CONFIG_KFENCE
41 extern bool kfence_early_init;
42 static int __init parse_kfence_early_init(char *arg)
43 {
44 	int val;
45 
46 	if (get_option(&arg, &val))
47 		kfence_early_init = !!val;
48 	return 0;
49 }
50 early_param("kfence.sample_interval", parse_kfence_early_init);
51 #endif
52 
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
54 /*
55  * This is called when relaxing access to a hugepage. It's also called in the page
56  * fault path when we don't hit any of the major fault cases, ie, a minor
57  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
58  * handled those two for us, we additionally deal with missing execute
59  * permission here on some processors
60  */
61 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
62 			  pmd_t *pmdp, pmd_t entry, int dirty)
63 {
64 	int changed;
65 #ifdef CONFIG_DEBUG_VM
66 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
67 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
68 #endif
69 	changed = !pmd_same(*(pmdp), entry);
70 	if (changed) {
71 		/*
72 		 * We can use MMU_PAGE_2M here, because only radix
73 		 * path look at the psize.
74 		 */
75 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
76 					pmd_pte(entry), address, MMU_PAGE_2M);
77 	}
78 	return changed;
79 }
80 
81 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
82 			  pud_t *pudp, pud_t entry, int dirty)
83 {
84 	int changed;
85 #ifdef CONFIG_DEBUG_VM
86 	WARN_ON(!pud_devmap(*pudp));
87 	assert_spin_locked(pud_lockptr(vma->vm_mm, pudp));
88 #endif
89 	changed = !pud_same(*(pudp), entry);
90 	if (changed) {
91 		/*
92 		 * We can use MMU_PAGE_1G here, because only radix
93 		 * path look at the psize.
94 		 */
95 		__ptep_set_access_flags(vma, pudp_ptep(pudp),
96 					pud_pte(entry), address, MMU_PAGE_1G);
97 	}
98 	return changed;
99 }
100 
101 
102 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
103 			      unsigned long address, pmd_t *pmdp)
104 {
105 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
106 }
107 
108 int pudp_test_and_clear_young(struct vm_area_struct *vma,
109 			      unsigned long address, pud_t *pudp)
110 {
111 	return __pudp_test_and_clear_young(vma->vm_mm, address, pudp);
112 }
113 
114 /*
115  * set a new huge pmd. We should not be called for updating
116  * an existing pmd entry. That should go via pmd_hugepage_update.
117  */
118 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
119 		pmd_t *pmdp, pmd_t pmd)
120 {
121 #ifdef CONFIG_DEBUG_VM
122 	/*
123 	 * Make sure hardware valid bit is not set. We don't do
124 	 * tlb flush for this update.
125 	 */
126 
127 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
128 	assert_spin_locked(pmd_lockptr(mm, pmdp));
129 	WARN_ON(!(pmd_leaf(pmd)));
130 #endif
131 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
132 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
133 }
134 
135 void set_pud_at(struct mm_struct *mm, unsigned long addr,
136 		pud_t *pudp, pud_t pud)
137 {
138 #ifdef CONFIG_DEBUG_VM
139 	/*
140 	 * Make sure hardware valid bit is not set. We don't do
141 	 * tlb flush for this update.
142 	 */
143 
144 	WARN_ON(pte_hw_valid(pud_pte(*pudp)));
145 	assert_spin_locked(pud_lockptr(mm, pudp));
146 	WARN_ON(!(pud_leaf(pud)));
147 #endif
148 	trace_hugepage_set_pud(addr, pud_val(pud));
149 	return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud));
150 }
151 
152 static void do_serialize(void *arg)
153 {
154 	/* We've taken the IPI, so try to trim the mask while here */
155 	if (radix_enabled()) {
156 		struct mm_struct *mm = arg;
157 		exit_lazy_flush_tlb(mm, false);
158 	}
159 }
160 
161 /*
162  * Serialize against __find_linux_pte() which does lock-less
163  * lookup in page tables with local interrupts disabled. For huge pages
164  * it casts pmd_t to pte_t. Since format of pte_t is different from
165  * pmd_t we want to prevent transit from pmd pointing to page table
166  * to pmd pointing to huge page (and back) while interrupts are disabled.
167  * We clear pmd to possibly replace it with page table pointer in
168  * different code paths. So make sure we wait for the parallel
169  * __find_linux_pte() to finish.
170  */
171 void serialize_against_pte_lookup(struct mm_struct *mm)
172 {
173 	smp_mb();
174 	smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
175 }
176 
177 /*
178  * We use this to invalidate a pmdp entry before switching from a
179  * hugepte to regular pmd entry.
180  */
181 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
182 		     pmd_t *pmdp)
183 {
184 	unsigned long old_pmd;
185 
186 	VM_WARN_ON_ONCE(!pmd_present(*pmdp));
187 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
188 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
189 	return __pmd(old_pmd);
190 }
191 
192 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
193 		      pud_t *pudp)
194 {
195 	unsigned long old_pud;
196 
197 	VM_WARN_ON_ONCE(!pud_present(*pudp));
198 	old_pud = pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID);
199 	flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE);
200 	return __pud(old_pud);
201 }
202 
203 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
204 				   unsigned long addr, pmd_t *pmdp, int full)
205 {
206 	pmd_t pmd;
207 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
208 	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
209 		   !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
210 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
211 	/*
212 	 * if it not a fullmm flush, then we can possibly end up converting
213 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
214 	 * Make sure we flush the tlb in this case.
215 	 */
216 	if (!full)
217 		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
218 	return pmd;
219 }
220 
221 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
222 				   unsigned long addr, pud_t *pudp, int full)
223 {
224 	pud_t pud;
225 
226 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
227 	VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) ||
228 		  !pud_present(*pudp));
229 	pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp);
230 	/*
231 	 * if it not a fullmm flush, then we can possibly end up converting
232 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
233 	 * Make sure we flush the tlb in this case.
234 	 */
235 	if (!full)
236 		flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE);
237 	return pud;
238 }
239 
240 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
241 {
242 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
243 }
244 
245 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot)
246 {
247 	return __pud(pud_val(pud) | pgprot_val(pgprot));
248 }
249 
250 /*
251  * At some point we should be able to get rid of
252  * pmd_mkhuge() and mk_huge_pmd() when we update all the
253  * other archs to mark the pmd huge in pfn_pmd()
254  */
255 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
256 {
257 	unsigned long pmdv;
258 
259 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
260 
261 	return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
262 }
263 
264 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot)
265 {
266 	unsigned long pudv;
267 
268 	pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
269 
270 	return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot));
271 }
272 
273 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
274 {
275 	return pfn_pmd(page_to_pfn(page), pgprot);
276 }
277 
278 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
279 {
280 	unsigned long pmdv;
281 
282 	pmdv = pmd_val(pmd);
283 	pmdv &= _HPAGE_CHG_MASK;
284 	return pmd_set_protbits(__pmd(pmdv), newprot);
285 }
286 
287 pud_t pud_modify(pud_t pud, pgprot_t newprot)
288 {
289 	unsigned long pudv;
290 
291 	pudv = pud_val(pud);
292 	pudv &= _HPAGE_CHG_MASK;
293 	return pud_set_protbits(__pud(pudv), newprot);
294 }
295 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
296 
297 /* For use by kexec, called with MMU off */
298 notrace void mmu_cleanup_all(void)
299 {
300 	if (radix_enabled())
301 		radix__mmu_cleanup_all();
302 	else if (mmu_hash_ops.hpte_clear_all)
303 		mmu_hash_ops.hpte_clear_all();
304 
305 	reset_sprs();
306 }
307 
308 #ifdef CONFIG_MEMORY_HOTPLUG
309 int __meminit create_section_mapping(unsigned long start, unsigned long end,
310 				     int nid, pgprot_t prot)
311 {
312 	if (radix_enabled())
313 		return radix__create_section_mapping(start, end, nid, prot);
314 
315 	return hash__create_section_mapping(start, end, nid, prot);
316 }
317 
318 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
319 {
320 	if (radix_enabled())
321 		return radix__remove_section_mapping(start, end);
322 
323 	return hash__remove_section_mapping(start, end);
324 }
325 #endif /* CONFIG_MEMORY_HOTPLUG */
326 
327 void __init mmu_partition_table_init(void)
328 {
329 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
330 	unsigned long ptcr;
331 
332 	/* Initialize the Partition Table with no entries */
333 	partition_tb = memblock_alloc(patb_size, patb_size);
334 	if (!partition_tb)
335 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
336 		      __func__, patb_size, patb_size);
337 
338 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
339 	set_ptcr_when_no_uv(ptcr);
340 	powernv_set_nmmu_ptcr(ptcr);
341 }
342 
343 static void flush_partition(unsigned int lpid, bool radix)
344 {
345 	if (radix) {
346 		radix__flush_all_lpid(lpid);
347 		radix__flush_all_lpid_guest(lpid);
348 	} else {
349 		asm volatile("ptesync" : : : "memory");
350 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
351 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
352 		/* do we need fixup here ?*/
353 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
354 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
355 	}
356 }
357 
358 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
359 				  unsigned long dw1, bool flush)
360 {
361 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
362 
363 	/*
364 	 * When ultravisor is enabled, the partition table is stored in secure
365 	 * memory and can only be accessed doing an ultravisor call. However, we
366 	 * maintain a copy of the partition table in normal memory to allow Nest
367 	 * MMU translations to occur (for normal VMs).
368 	 *
369 	 * Therefore, here we always update partition_tb, regardless of whether
370 	 * we are running under an ultravisor or not.
371 	 */
372 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
373 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
374 
375 	/*
376 	 * If ultravisor is enabled, we do an ultravisor call to register the
377 	 * partition table entry (PATE), which also do a global flush of TLBs
378 	 * and partition table caches for the lpid. Otherwise, just do the
379 	 * flush. The type of flush (hash or radix) depends on what the previous
380 	 * use of the partition ID was, not the new use.
381 	 */
382 	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
383 		uv_register_pate(lpid, dw0, dw1);
384 		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
385 			dw0, dw1);
386 	} else if (flush) {
387 		/*
388 		 * Boot does not need to flush, because MMU is off and each
389 		 * CPU does a tlbiel_all() before switching them on, which
390 		 * flushes everything.
391 		 */
392 		flush_partition(lpid, (old & PATB_HR));
393 	}
394 }
395 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
396 
397 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
398 {
399 	void *pmd_frag, *ret;
400 
401 	if (PMD_FRAG_NR == 1)
402 		return NULL;
403 
404 	spin_lock(&mm->page_table_lock);
405 	ret = mm->context.pmd_frag;
406 	if (ret) {
407 		pmd_frag = ret + PMD_FRAG_SIZE;
408 		/*
409 		 * If we have taken up all the fragments mark PTE page NULL
410 		 */
411 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
412 			pmd_frag = NULL;
413 		mm->context.pmd_frag = pmd_frag;
414 	}
415 	spin_unlock(&mm->page_table_lock);
416 	return (pmd_t *)ret;
417 }
418 
419 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
420 {
421 	void *ret = NULL;
422 	struct ptdesc *ptdesc;
423 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
424 
425 	if (mm == &init_mm)
426 		gfp &= ~__GFP_ACCOUNT;
427 	ptdesc = pagetable_alloc(gfp, 0);
428 	if (!ptdesc)
429 		return NULL;
430 	if (!pagetable_pmd_ctor(ptdesc)) {
431 		pagetable_free(ptdesc);
432 		return NULL;
433 	}
434 
435 	atomic_set(&ptdesc->pt_frag_refcount, 1);
436 
437 	ret = ptdesc_address(ptdesc);
438 	/*
439 	 * if we support only one fragment just return the
440 	 * allocated page.
441 	 */
442 	if (PMD_FRAG_NR == 1)
443 		return ret;
444 
445 	spin_lock(&mm->page_table_lock);
446 	/*
447 	 * If we find ptdesc_page set, we return
448 	 * the allocated page with single fragment
449 	 * count.
450 	 */
451 	if (likely(!mm->context.pmd_frag)) {
452 		atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR);
453 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
454 	}
455 	spin_unlock(&mm->page_table_lock);
456 
457 	return (pmd_t *)ret;
458 }
459 
460 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
461 {
462 	pmd_t *pmd;
463 
464 	pmd = get_pmd_from_cache(mm);
465 	if (pmd)
466 		return pmd;
467 
468 	return __alloc_for_pmdcache(mm);
469 }
470 
471 void pmd_fragment_free(unsigned long *pmd)
472 {
473 	struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
474 
475 	if (pagetable_is_reserved(ptdesc))
476 		return free_reserved_ptdesc(ptdesc);
477 
478 	BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
479 	if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
480 		pagetable_pmd_dtor(ptdesc);
481 		pagetable_free(ptdesc);
482 	}
483 }
484 
485 static inline void pgtable_free(void *table, int index)
486 {
487 	switch (index) {
488 	case PTE_INDEX:
489 		pte_fragment_free(table, 0);
490 		break;
491 	case PMD_INDEX:
492 		pmd_fragment_free(table);
493 		break;
494 	case PUD_INDEX:
495 		__pud_free(table);
496 		break;
497 		/* We don't free pgd table via RCU callback */
498 	default:
499 		BUG();
500 	}
501 }
502 
503 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
504 {
505 	unsigned long pgf = (unsigned long)table;
506 
507 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
508 	pgf |= index;
509 	tlb_remove_table(tlb, (void *)pgf);
510 }
511 
512 void __tlb_remove_table(void *_table)
513 {
514 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
515 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
516 
517 	return pgtable_free(table, index);
518 }
519 
520 #ifdef CONFIG_PROC_FS
521 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
522 
523 void arch_report_meminfo(struct seq_file *m)
524 {
525 	/*
526 	 * Hash maps the memory with one size mmu_linear_psize.
527 	 * So don't bother to print these on hash
528 	 */
529 	if (!radix_enabled())
530 		return;
531 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
532 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
533 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
534 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
535 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
536 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
537 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
538 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
539 }
540 #endif /* CONFIG_PROC_FS */
541 
542 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
543 			     pte_t *ptep)
544 {
545 	unsigned long pte_val;
546 
547 	/*
548 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
549 	 * possible. Also keep the pte_present true so that we don't take
550 	 * wrong fault.
551 	 */
552 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
553 
554 	return __pte(pte_val);
555 
556 }
557 
558 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
559 			     pte_t *ptep, pte_t old_pte, pte_t pte)
560 {
561 	if (radix_enabled())
562 		return radix__ptep_modify_prot_commit(vma, addr,
563 						      ptep, old_pte, pte);
564 	set_pte_at(vma->vm_mm, addr, ptep, pte);
565 }
566 
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
568 /*
569  * For hash translation mode, we use the deposited table to store hash slot
570  * information and they are stored at PTRS_PER_PMD offset from related pmd
571  * location. Hence a pmd move requires deposit and withdraw.
572  *
573  * For radix translation with split pmd ptl, we store the deposited table in the
574  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
575  * move.
576  *
577  * With hash we use deposited table always irrespective of anon or not.
578  * With radix we use deposited table only for anonymous mapping.
579  */
580 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
581 			   struct spinlock *old_pmd_ptl,
582 			   struct vm_area_struct *vma)
583 {
584 	if (radix_enabled())
585 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
586 
587 	return true;
588 }
589 #endif
590 
591 /*
592  * Does the CPU support tlbie?
593  */
594 bool tlbie_capable __read_mostly = true;
595 EXPORT_SYMBOL(tlbie_capable);
596 
597 /*
598  * Should tlbie be used for management of CPU TLBs, for kernel and process
599  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
600  * guest address spaces.
601  */
602 bool tlbie_enabled __read_mostly = true;
603 
604 static int __init setup_disable_tlbie(char *str)
605 {
606 	if (!radix_enabled()) {
607 		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
608 		return 1;
609 	}
610 
611 	tlbie_capable = false;
612 	tlbie_enabled = false;
613 
614         return 1;
615 }
616 __setup("disable_tlbie", setup_disable_tlbie);
617 
618 static int __init pgtable_debugfs_setup(void)
619 {
620 	if (!tlbie_capable)
621 		return 0;
622 
623 	/*
624 	 * There is no locking vs tlb flushing when changing this value.
625 	 * The tlb flushers will see one value or another, and use either
626 	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
627 	 * invalidated as expected.
628 	 */
629 	debugfs_create_bool("tlbie_enabled", 0600,
630 			arch_debugfs_dir,
631 			&tlbie_enabled);
632 
633 	return 0;
634 }
635 arch_initcall(pgtable_debugfs_setup);
636 
637 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
638 /*
639  * Override the generic version in mm/memremap.c.
640  *
641  * With hash translation, the direct-map range is mapped with just one
642  * page size selected by htab_init_page_sizes(). Consult
643  * mmu_psize_defs[] to determine the minimum page size alignment.
644 */
645 unsigned long memremap_compat_align(void)
646 {
647 	if (!radix_enabled()) {
648 		unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
649 		return max(SUBSECTION_SIZE, 1UL << shift);
650 	}
651 
652 	return SUBSECTION_SIZE;
653 }
654 EXPORT_SYMBOL_GPL(memremap_compat_align);
655 #endif
656 
657 pgprot_t vm_get_page_prot(unsigned long vm_flags)
658 {
659 	unsigned long prot;
660 
661 	/* Radix supports execute-only, but protection_map maps X -> RX */
662 	if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC))
663 		vm_flags |= VM_READ;
664 
665 	prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]);
666 
667 	if (vm_flags & VM_SAO)
668 		prot |= _PAGE_SAO;
669 
670 #ifdef CONFIG_PPC_MEM_KEYS
671 	prot |= vmflag_to_pte_pkey_bits(vm_flags);
672 #endif
673 
674 	return __pgprot(prot);
675 }
676 EXPORT_SYMBOL(vm_get_page_prot);
677