1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/mm_types.h> 8 #include <linux/memblock.h> 9 #include <linux/memremap.h> 10 #include <linux/pkeys.h> 11 #include <linux/debugfs.h> 12 #include <linux/proc_fs.h> 13 #include <misc/cxl-base.h> 14 15 #include <asm/pgalloc.h> 16 #include <asm/tlb.h> 17 #include <asm/trace.h> 18 #include <asm/powernv.h> 19 #include <asm/firmware.h> 20 #include <asm/ultravisor.h> 21 #include <asm/kexec.h> 22 23 #include <mm/mmu_decl.h> 24 #include <trace/events/thp.h> 25 26 #include "internal.h" 27 28 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; 29 EXPORT_SYMBOL_GPL(mmu_psize_defs); 30 31 #ifdef CONFIG_SPARSEMEM_VMEMMAP 32 int mmu_vmemmap_psize = MMU_PAGE_4K; 33 #endif 34 35 unsigned long __pmd_frag_nr; 36 EXPORT_SYMBOL(__pmd_frag_nr); 37 unsigned long __pmd_frag_size_shift; 38 EXPORT_SYMBOL(__pmd_frag_size_shift); 39 40 #ifdef CONFIG_KFENCE 41 extern bool kfence_early_init; 42 static int __init parse_kfence_early_init(char *arg) 43 { 44 int val; 45 46 if (get_option(&arg, &val)) 47 kfence_early_init = !!val; 48 return 0; 49 } 50 early_param("kfence.sample_interval", parse_kfence_early_init); 51 #endif 52 53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 54 /* 55 * This is called when relaxing access to a hugepage. It's also called in the page 56 * fault path when we don't hit any of the major fault cases, ie, a minor 57 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 58 * handled those two for us, we additionally deal with missing execute 59 * permission here on some processors 60 */ 61 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 62 pmd_t *pmdp, pmd_t entry, int dirty) 63 { 64 int changed; 65 #ifdef CONFIG_DEBUG_VM 66 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 67 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 68 #endif 69 changed = !pmd_same(*(pmdp), entry); 70 if (changed) { 71 /* 72 * We can use MMU_PAGE_2M here, because only radix 73 * path look at the psize. 74 */ 75 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 76 pmd_pte(entry), address, MMU_PAGE_2M); 77 } 78 return changed; 79 } 80 81 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 82 pud_t *pudp, pud_t entry, int dirty) 83 { 84 int changed; 85 #ifdef CONFIG_DEBUG_VM 86 WARN_ON(!pud_devmap(*pudp)); 87 assert_spin_locked(pud_lockptr(vma->vm_mm, pudp)); 88 #endif 89 changed = !pud_same(*(pudp), entry); 90 if (changed) { 91 /* 92 * We can use MMU_PAGE_1G here, because only radix 93 * path look at the psize. 94 */ 95 __ptep_set_access_flags(vma, pudp_ptep(pudp), 96 pud_pte(entry), address, MMU_PAGE_1G); 97 } 98 return changed; 99 } 100 101 102 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 103 unsigned long address, pmd_t *pmdp) 104 { 105 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 106 } 107 108 int pudp_test_and_clear_young(struct vm_area_struct *vma, 109 unsigned long address, pud_t *pudp) 110 { 111 return __pudp_test_and_clear_young(vma->vm_mm, address, pudp); 112 } 113 114 /* 115 * set a new huge pmd. We should not be called for updating 116 * an existing pmd entry. That should go via pmd_hugepage_update. 117 */ 118 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 119 pmd_t *pmdp, pmd_t pmd) 120 { 121 #ifdef CONFIG_DEBUG_VM 122 /* 123 * Make sure hardware valid bit is not set. We don't do 124 * tlb flush for this update. 125 */ 126 127 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 128 assert_spin_locked(pmd_lockptr(mm, pmdp)); 129 WARN_ON(!(pmd_leaf(pmd))); 130 #endif 131 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 132 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 133 } 134 135 void set_pud_at(struct mm_struct *mm, unsigned long addr, 136 pud_t *pudp, pud_t pud) 137 { 138 #ifdef CONFIG_DEBUG_VM 139 /* 140 * Make sure hardware valid bit is not set. We don't do 141 * tlb flush for this update. 142 */ 143 144 WARN_ON(pte_hw_valid(pud_pte(*pudp))); 145 assert_spin_locked(pud_lockptr(mm, pudp)); 146 WARN_ON(!(pud_leaf(pud))); 147 #endif 148 trace_hugepage_set_pud(addr, pud_val(pud)); 149 return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud)); 150 } 151 152 static void do_serialize(void *arg) 153 { 154 /* We've taken the IPI, so try to trim the mask while here */ 155 if (radix_enabled()) { 156 struct mm_struct *mm = arg; 157 exit_lazy_flush_tlb(mm, false); 158 } 159 } 160 161 /* 162 * Serialize against __find_linux_pte() which does lock-less 163 * lookup in page tables with local interrupts disabled. For huge pages 164 * it casts pmd_t to pte_t. Since format of pte_t is different from 165 * pmd_t we want to prevent transit from pmd pointing to page table 166 * to pmd pointing to huge page (and back) while interrupts are disabled. 167 * We clear pmd to possibly replace it with page table pointer in 168 * different code paths. So make sure we wait for the parallel 169 * __find_linux_pte() to finish. 170 */ 171 void serialize_against_pte_lookup(struct mm_struct *mm) 172 { 173 smp_mb(); 174 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1); 175 } 176 177 /* 178 * We use this to invalidate a pmdp entry before switching from a 179 * hugepte to regular pmd entry. 180 */ 181 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 182 pmd_t *pmdp) 183 { 184 unsigned long old_pmd; 185 186 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); 187 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); 188 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 189 return __pmd(old_pmd); 190 } 191 192 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address, 193 pud_t *pudp) 194 { 195 unsigned long old_pud; 196 197 VM_WARN_ON_ONCE(!pud_present(*pudp)); 198 old_pud = pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID); 199 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE); 200 return __pud(old_pud); 201 } 202 203 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 204 unsigned long addr, pmd_t *pmdp, int full) 205 { 206 pmd_t pmd; 207 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 208 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && 209 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); 210 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 211 /* 212 * if it not a fullmm flush, then we can possibly end up converting 213 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 214 * Make sure we flush the tlb in this case. 215 */ 216 if (!full) 217 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); 218 return pmd; 219 } 220 221 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 222 unsigned long addr, pud_t *pudp, int full) 223 { 224 pud_t pud; 225 226 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 227 VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) || 228 !pud_present(*pudp)); 229 pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp); 230 /* 231 * if it not a fullmm flush, then we can possibly end up converting 232 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 233 * Make sure we flush the tlb in this case. 234 */ 235 if (!full) 236 flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE); 237 return pud; 238 } 239 240 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 241 { 242 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 243 } 244 245 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot) 246 { 247 return __pud(pud_val(pud) | pgprot_val(pgprot)); 248 } 249 250 /* 251 * At some point we should be able to get rid of 252 * pmd_mkhuge() and mk_huge_pmd() when we update all the 253 * other archs to mark the pmd huge in pfn_pmd() 254 */ 255 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 256 { 257 unsigned long pmdv; 258 259 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 260 261 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot)); 262 } 263 264 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot) 265 { 266 unsigned long pudv; 267 268 pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 269 270 return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot)); 271 } 272 273 pmd_t mk_pmd(struct page *page, pgprot_t pgprot) 274 { 275 return pfn_pmd(page_to_pfn(page), pgprot); 276 } 277 278 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 279 { 280 unsigned long pmdv; 281 282 pmdv = pmd_val(pmd); 283 pmdv &= _HPAGE_CHG_MASK; 284 return pmd_set_protbits(__pmd(pmdv), newprot); 285 } 286 287 pud_t pud_modify(pud_t pud, pgprot_t newprot) 288 { 289 unsigned long pudv; 290 291 pudv = pud_val(pud); 292 pudv &= _HPAGE_CHG_MASK; 293 return pud_set_protbits(__pud(pudv), newprot); 294 } 295 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 296 297 /* For use by kexec, called with MMU off */ 298 notrace void mmu_cleanup_all(void) 299 { 300 if (radix_enabled()) 301 radix__mmu_cleanup_all(); 302 else if (mmu_hash_ops.hpte_clear_all) 303 mmu_hash_ops.hpte_clear_all(); 304 305 reset_sprs(); 306 } 307 308 #ifdef CONFIG_MEMORY_HOTPLUG 309 int __meminit create_section_mapping(unsigned long start, unsigned long end, 310 int nid, pgprot_t prot) 311 { 312 if (radix_enabled()) 313 return radix__create_section_mapping(start, end, nid, prot); 314 315 return hash__create_section_mapping(start, end, nid, prot); 316 } 317 318 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 319 { 320 if (radix_enabled()) 321 return radix__remove_section_mapping(start, end); 322 323 return hash__remove_section_mapping(start, end); 324 } 325 #endif /* CONFIG_MEMORY_HOTPLUG */ 326 327 void __init mmu_partition_table_init(void) 328 { 329 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 330 unsigned long ptcr; 331 332 /* Initialize the Partition Table with no entries */ 333 partition_tb = memblock_alloc(patb_size, patb_size); 334 if (!partition_tb) 335 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 336 __func__, patb_size, patb_size); 337 338 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 339 set_ptcr_when_no_uv(ptcr); 340 powernv_set_nmmu_ptcr(ptcr); 341 } 342 343 static void flush_partition(unsigned int lpid, bool radix) 344 { 345 if (radix) { 346 radix__flush_all_lpid(lpid); 347 radix__flush_all_lpid_guest(lpid); 348 } else { 349 asm volatile("ptesync" : : : "memory"); 350 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 351 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 352 /* do we need fixup here ?*/ 353 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 354 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 355 } 356 } 357 358 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 359 unsigned long dw1, bool flush) 360 { 361 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 362 363 /* 364 * When ultravisor is enabled, the partition table is stored in secure 365 * memory and can only be accessed doing an ultravisor call. However, we 366 * maintain a copy of the partition table in normal memory to allow Nest 367 * MMU translations to occur (for normal VMs). 368 * 369 * Therefore, here we always update partition_tb, regardless of whether 370 * we are running under an ultravisor or not. 371 */ 372 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 373 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 374 375 /* 376 * If ultravisor is enabled, we do an ultravisor call to register the 377 * partition table entry (PATE), which also do a global flush of TLBs 378 * and partition table caches for the lpid. Otherwise, just do the 379 * flush. The type of flush (hash or radix) depends on what the previous 380 * use of the partition ID was, not the new use. 381 */ 382 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { 383 uv_register_pate(lpid, dw0, dw1); 384 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", 385 dw0, dw1); 386 } else if (flush) { 387 /* 388 * Boot does not need to flush, because MMU is off and each 389 * CPU does a tlbiel_all() before switching them on, which 390 * flushes everything. 391 */ 392 flush_partition(lpid, (old & PATB_HR)); 393 } 394 } 395 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 396 397 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 398 { 399 void *pmd_frag, *ret; 400 401 if (PMD_FRAG_NR == 1) 402 return NULL; 403 404 spin_lock(&mm->page_table_lock); 405 ret = mm->context.pmd_frag; 406 if (ret) { 407 pmd_frag = ret + PMD_FRAG_SIZE; 408 /* 409 * If we have taken up all the fragments mark PTE page NULL 410 */ 411 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 412 pmd_frag = NULL; 413 mm->context.pmd_frag = pmd_frag; 414 } 415 spin_unlock(&mm->page_table_lock); 416 return (pmd_t *)ret; 417 } 418 419 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 420 { 421 void *ret = NULL; 422 struct ptdesc *ptdesc; 423 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 424 425 if (mm == &init_mm) 426 gfp &= ~__GFP_ACCOUNT; 427 ptdesc = pagetable_alloc(gfp, 0); 428 if (!ptdesc) 429 return NULL; 430 if (!pagetable_pmd_ctor(ptdesc)) { 431 pagetable_free(ptdesc); 432 return NULL; 433 } 434 435 atomic_set(&ptdesc->pt_frag_refcount, 1); 436 437 ret = ptdesc_address(ptdesc); 438 /* 439 * if we support only one fragment just return the 440 * allocated page. 441 */ 442 if (PMD_FRAG_NR == 1) 443 return ret; 444 445 spin_lock(&mm->page_table_lock); 446 /* 447 * If we find ptdesc_page set, we return 448 * the allocated page with single fragment 449 * count. 450 */ 451 if (likely(!mm->context.pmd_frag)) { 452 atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR); 453 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 454 } 455 spin_unlock(&mm->page_table_lock); 456 457 return (pmd_t *)ret; 458 } 459 460 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 461 { 462 pmd_t *pmd; 463 464 pmd = get_pmd_from_cache(mm); 465 if (pmd) 466 return pmd; 467 468 return __alloc_for_pmdcache(mm); 469 } 470 471 void pmd_fragment_free(unsigned long *pmd) 472 { 473 struct ptdesc *ptdesc = virt_to_ptdesc(pmd); 474 475 if (pagetable_is_reserved(ptdesc)) 476 return free_reserved_ptdesc(ptdesc); 477 478 BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0); 479 if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) { 480 pagetable_pmd_dtor(ptdesc); 481 pagetable_free(ptdesc); 482 } 483 } 484 485 static inline void pgtable_free(void *table, int index) 486 { 487 switch (index) { 488 case PTE_INDEX: 489 pte_fragment_free(table, 0); 490 break; 491 case PMD_INDEX: 492 pmd_fragment_free(table); 493 break; 494 case PUD_INDEX: 495 __pud_free(table); 496 break; 497 /* We don't free pgd table via RCU callback */ 498 default: 499 BUG(); 500 } 501 } 502 503 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 504 { 505 unsigned long pgf = (unsigned long)table; 506 507 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 508 pgf |= index; 509 tlb_remove_table(tlb, (void *)pgf); 510 } 511 512 void __tlb_remove_table(void *_table) 513 { 514 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 515 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 516 517 return pgtable_free(table, index); 518 } 519 520 #ifdef CONFIG_PROC_FS 521 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 522 523 void arch_report_meminfo(struct seq_file *m) 524 { 525 /* 526 * Hash maps the memory with one size mmu_linear_psize. 527 * So don't bother to print these on hash 528 */ 529 if (!radix_enabled()) 530 return; 531 seq_printf(m, "DirectMap4k: %8lu kB\n", 532 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 533 seq_printf(m, "DirectMap64k: %8lu kB\n", 534 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 535 seq_printf(m, "DirectMap2M: %8lu kB\n", 536 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 537 seq_printf(m, "DirectMap1G: %8lu kB\n", 538 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 539 } 540 #endif /* CONFIG_PROC_FS */ 541 542 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 543 pte_t *ptep) 544 { 545 unsigned long pte_val; 546 547 /* 548 * Clear the _PAGE_PRESENT so that no hardware parallel update is 549 * possible. Also keep the pte_present true so that we don't take 550 * wrong fault. 551 */ 552 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 553 554 return __pte(pte_val); 555 556 } 557 558 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 559 pte_t *ptep, pte_t old_pte, pte_t pte) 560 { 561 if (radix_enabled()) 562 return radix__ptep_modify_prot_commit(vma, addr, 563 ptep, old_pte, pte); 564 set_pte_at(vma->vm_mm, addr, ptep, pte); 565 } 566 567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 568 /* 569 * For hash translation mode, we use the deposited table to store hash slot 570 * information and they are stored at PTRS_PER_PMD offset from related pmd 571 * location. Hence a pmd move requires deposit and withdraw. 572 * 573 * For radix translation with split pmd ptl, we store the deposited table in the 574 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 575 * move. 576 * 577 * With hash we use deposited table always irrespective of anon or not. 578 * With radix we use deposited table only for anonymous mapping. 579 */ 580 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 581 struct spinlock *old_pmd_ptl, 582 struct vm_area_struct *vma) 583 { 584 if (radix_enabled()) 585 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 586 587 return true; 588 } 589 #endif 590 591 /* 592 * Does the CPU support tlbie? 593 */ 594 bool tlbie_capable __read_mostly = true; 595 EXPORT_SYMBOL(tlbie_capable); 596 597 /* 598 * Should tlbie be used for management of CPU TLBs, for kernel and process 599 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM 600 * guest address spaces. 601 */ 602 bool tlbie_enabled __read_mostly = true; 603 604 static int __init setup_disable_tlbie(char *str) 605 { 606 if (!radix_enabled()) { 607 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); 608 return 1; 609 } 610 611 tlbie_capable = false; 612 tlbie_enabled = false; 613 614 return 1; 615 } 616 __setup("disable_tlbie", setup_disable_tlbie); 617 618 static int __init pgtable_debugfs_setup(void) 619 { 620 if (!tlbie_capable) 621 return 0; 622 623 /* 624 * There is no locking vs tlb flushing when changing this value. 625 * The tlb flushers will see one value or another, and use either 626 * tlbie or tlbiel with IPIs. In both cases the TLBs will be 627 * invalidated as expected. 628 */ 629 debugfs_create_bool("tlbie_enabled", 0600, 630 arch_debugfs_dir, 631 &tlbie_enabled); 632 633 return 0; 634 } 635 arch_initcall(pgtable_debugfs_setup); 636 637 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN) 638 /* 639 * Override the generic version in mm/memremap.c. 640 * 641 * With hash translation, the direct-map range is mapped with just one 642 * page size selected by htab_init_page_sizes(). Consult 643 * mmu_psize_defs[] to determine the minimum page size alignment. 644 */ 645 unsigned long memremap_compat_align(void) 646 { 647 if (!radix_enabled()) { 648 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift; 649 return max(SUBSECTION_SIZE, 1UL << shift); 650 } 651 652 return SUBSECTION_SIZE; 653 } 654 EXPORT_SYMBOL_GPL(memremap_compat_align); 655 #endif 656 657 pgprot_t vm_get_page_prot(unsigned long vm_flags) 658 { 659 unsigned long prot; 660 661 /* Radix supports execute-only, but protection_map maps X -> RX */ 662 if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)) 663 vm_flags |= VM_READ; 664 665 prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]); 666 667 if (vm_flags & VM_SAO) 668 prot |= _PAGE_SAO; 669 670 #ifdef CONFIG_PPC_MEM_KEYS 671 prot |= vmflag_to_pte_pkey_bits(vm_flags); 672 #endif 673 674 return __pgprot(prot); 675 } 676 EXPORT_SYMBOL(vm_get_page_prot); 677