xref: /linux/arch/powerpc/mm/book3s64/pgtable.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <linux/memremap.h>
10 #include <linux/pkeys.h>
11 #include <linux/debugfs.h>
12 #include <linux/proc_fs.h>
13 #include <misc/cxl-base.h>
14 
15 #include <asm/pgalloc.h>
16 #include <asm/tlb.h>
17 #include <asm/trace.h>
18 #include <asm/powernv.h>
19 #include <asm/firmware.h>
20 #include <asm/ultravisor.h>
21 #include <asm/kexec.h>
22 
23 #include <mm/mmu_decl.h>
24 #include <trace/events/thp.h>
25 
26 #include "internal.h"
27 
28 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
29 EXPORT_SYMBOL_GPL(mmu_psize_defs);
30 
31 #ifdef CONFIG_SPARSEMEM_VMEMMAP
32 int mmu_vmemmap_psize = MMU_PAGE_4K;
33 #endif
34 
35 unsigned long __pmd_frag_nr;
36 EXPORT_SYMBOL(__pmd_frag_nr);
37 unsigned long __pmd_frag_size_shift;
38 EXPORT_SYMBOL(__pmd_frag_size_shift);
39 
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
41 /*
42  * This is called when relaxing access to a hugepage. It's also called in the page
43  * fault path when we don't hit any of the major fault cases, ie, a minor
44  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
45  * handled those two for us, we additionally deal with missing execute
46  * permission here on some processors
47  */
48 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
49 			  pmd_t *pmdp, pmd_t entry, int dirty)
50 {
51 	int changed;
52 #ifdef CONFIG_DEBUG_VM
53 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
54 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
55 #endif
56 	changed = !pmd_same(*(pmdp), entry);
57 	if (changed) {
58 		/*
59 		 * We can use MMU_PAGE_2M here, because only radix
60 		 * path look at the psize.
61 		 */
62 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
63 					pmd_pte(entry), address, MMU_PAGE_2M);
64 	}
65 	return changed;
66 }
67 
68 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
69 			  pud_t *pudp, pud_t entry, int dirty)
70 {
71 	int changed;
72 #ifdef CONFIG_DEBUG_VM
73 	WARN_ON(!pud_devmap(*pudp));
74 	assert_spin_locked(pud_lockptr(vma->vm_mm, pudp));
75 #endif
76 	changed = !pud_same(*(pudp), entry);
77 	if (changed) {
78 		/*
79 		 * We can use MMU_PAGE_1G here, because only radix
80 		 * path look at the psize.
81 		 */
82 		__ptep_set_access_flags(vma, pudp_ptep(pudp),
83 					pud_pte(entry), address, MMU_PAGE_1G);
84 	}
85 	return changed;
86 }
87 
88 
89 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
90 			      unsigned long address, pmd_t *pmdp)
91 {
92 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
93 }
94 
95 int pudp_test_and_clear_young(struct vm_area_struct *vma,
96 			      unsigned long address, pud_t *pudp)
97 {
98 	return __pudp_test_and_clear_young(vma->vm_mm, address, pudp);
99 }
100 
101 /*
102  * set a new huge pmd. We should not be called for updating
103  * an existing pmd entry. That should go via pmd_hugepage_update.
104  */
105 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
106 		pmd_t *pmdp, pmd_t pmd)
107 {
108 #ifdef CONFIG_DEBUG_VM
109 	/*
110 	 * Make sure hardware valid bit is not set. We don't do
111 	 * tlb flush for this update.
112 	 */
113 
114 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
115 	assert_spin_locked(pmd_lockptr(mm, pmdp));
116 	WARN_ON(!(pmd_leaf(pmd)));
117 #endif
118 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
119 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
120 }
121 
122 void set_pud_at(struct mm_struct *mm, unsigned long addr,
123 		pud_t *pudp, pud_t pud)
124 {
125 #ifdef CONFIG_DEBUG_VM
126 	/*
127 	 * Make sure hardware valid bit is not set. We don't do
128 	 * tlb flush for this update.
129 	 */
130 
131 	WARN_ON(pte_hw_valid(pud_pte(*pudp)));
132 	assert_spin_locked(pud_lockptr(mm, pudp));
133 	WARN_ON(!(pud_leaf(pud)));
134 #endif
135 	trace_hugepage_set_pud(addr, pud_val(pud));
136 	return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud));
137 }
138 
139 static void do_serialize(void *arg)
140 {
141 	/* We've taken the IPI, so try to trim the mask while here */
142 	if (radix_enabled()) {
143 		struct mm_struct *mm = arg;
144 		exit_lazy_flush_tlb(mm, false);
145 	}
146 }
147 
148 /*
149  * Serialize against __find_linux_pte() which does lock-less
150  * lookup in page tables with local interrupts disabled. For huge pages
151  * it casts pmd_t to pte_t. Since format of pte_t is different from
152  * pmd_t we want to prevent transit from pmd pointing to page table
153  * to pmd pointing to huge page (and back) while interrupts are disabled.
154  * We clear pmd to possibly replace it with page table pointer in
155  * different code paths. So make sure we wait for the parallel
156  * __find_linux_pte() to finish.
157  */
158 void serialize_against_pte_lookup(struct mm_struct *mm)
159 {
160 	smp_mb();
161 	smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
162 }
163 
164 /*
165  * We use this to invalidate a pmdp entry before switching from a
166  * hugepte to regular pmd entry.
167  */
168 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
169 		     pmd_t *pmdp)
170 {
171 	unsigned long old_pmd;
172 
173 	VM_WARN_ON_ONCE(!pmd_present(*pmdp));
174 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
175 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
176 	return __pmd(old_pmd);
177 }
178 
179 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
180 		      pud_t *pudp)
181 {
182 	unsigned long old_pud;
183 
184 	VM_WARN_ON_ONCE(!pud_present(*pudp));
185 	old_pud = pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID);
186 	flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE);
187 	return __pud(old_pud);
188 }
189 
190 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
191 				   unsigned long addr, pmd_t *pmdp, int full)
192 {
193 	pmd_t pmd;
194 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
195 	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
196 		   !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
197 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
198 	/*
199 	 * if it not a fullmm flush, then we can possibly end up converting
200 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
201 	 * Make sure we flush the tlb in this case.
202 	 */
203 	if (!full)
204 		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
205 	return pmd;
206 }
207 
208 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
209 				   unsigned long addr, pud_t *pudp, int full)
210 {
211 	pud_t pud;
212 
213 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
214 	VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) ||
215 		  !pud_present(*pudp));
216 	pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp);
217 	/*
218 	 * if it not a fullmm flush, then we can possibly end up converting
219 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
220 	 * Make sure we flush the tlb in this case.
221 	 */
222 	if (!full)
223 		flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE);
224 	return pud;
225 }
226 
227 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
228 {
229 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
230 }
231 
232 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot)
233 {
234 	return __pud(pud_val(pud) | pgprot_val(pgprot));
235 }
236 
237 /*
238  * At some point we should be able to get rid of
239  * pmd_mkhuge() and mk_huge_pmd() when we update all the
240  * other archs to mark the pmd huge in pfn_pmd()
241  */
242 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
243 {
244 	unsigned long pmdv;
245 
246 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
247 
248 	return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
249 }
250 
251 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot)
252 {
253 	unsigned long pudv;
254 
255 	pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
256 
257 	return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot));
258 }
259 
260 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
261 {
262 	return pfn_pmd(page_to_pfn(page), pgprot);
263 }
264 
265 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
266 {
267 	unsigned long pmdv;
268 
269 	pmdv = pmd_val(pmd);
270 	pmdv &= _HPAGE_CHG_MASK;
271 	return pmd_set_protbits(__pmd(pmdv), newprot);
272 }
273 
274 pud_t pud_modify(pud_t pud, pgprot_t newprot)
275 {
276 	unsigned long pudv;
277 
278 	pudv = pud_val(pud);
279 	pudv &= _HPAGE_CHG_MASK;
280 	return pud_set_protbits(__pud(pudv), newprot);
281 }
282 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
283 
284 /* For use by kexec, called with MMU off */
285 notrace void mmu_cleanup_all(void)
286 {
287 	if (radix_enabled())
288 		radix__mmu_cleanup_all();
289 	else if (mmu_hash_ops.hpte_clear_all)
290 		mmu_hash_ops.hpte_clear_all();
291 
292 	reset_sprs();
293 }
294 
295 #ifdef CONFIG_MEMORY_HOTPLUG
296 int __meminit create_section_mapping(unsigned long start, unsigned long end,
297 				     int nid, pgprot_t prot)
298 {
299 	if (radix_enabled())
300 		return radix__create_section_mapping(start, end, nid, prot);
301 
302 	return hash__create_section_mapping(start, end, nid, prot);
303 }
304 
305 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
306 {
307 	if (radix_enabled())
308 		return radix__remove_section_mapping(start, end);
309 
310 	return hash__remove_section_mapping(start, end);
311 }
312 #endif /* CONFIG_MEMORY_HOTPLUG */
313 
314 void __init mmu_partition_table_init(void)
315 {
316 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
317 	unsigned long ptcr;
318 
319 	/* Initialize the Partition Table with no entries */
320 	partition_tb = memblock_alloc(patb_size, patb_size);
321 	if (!partition_tb)
322 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
323 		      __func__, patb_size, patb_size);
324 
325 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
326 	set_ptcr_when_no_uv(ptcr);
327 	powernv_set_nmmu_ptcr(ptcr);
328 }
329 
330 static void flush_partition(unsigned int lpid, bool radix)
331 {
332 	if (radix) {
333 		radix__flush_all_lpid(lpid);
334 		radix__flush_all_lpid_guest(lpid);
335 	} else {
336 		asm volatile("ptesync" : : : "memory");
337 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
338 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
339 		/* do we need fixup here ?*/
340 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
341 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
342 	}
343 }
344 
345 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
346 				  unsigned long dw1, bool flush)
347 {
348 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
349 
350 	/*
351 	 * When ultravisor is enabled, the partition table is stored in secure
352 	 * memory and can only be accessed doing an ultravisor call. However, we
353 	 * maintain a copy of the partition table in normal memory to allow Nest
354 	 * MMU translations to occur (for normal VMs).
355 	 *
356 	 * Therefore, here we always update partition_tb, regardless of whether
357 	 * we are running under an ultravisor or not.
358 	 */
359 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
360 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
361 
362 	/*
363 	 * If ultravisor is enabled, we do an ultravisor call to register the
364 	 * partition table entry (PATE), which also do a global flush of TLBs
365 	 * and partition table caches for the lpid. Otherwise, just do the
366 	 * flush. The type of flush (hash or radix) depends on what the previous
367 	 * use of the partition ID was, not the new use.
368 	 */
369 	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
370 		uv_register_pate(lpid, dw0, dw1);
371 		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
372 			dw0, dw1);
373 	} else if (flush) {
374 		/*
375 		 * Boot does not need to flush, because MMU is off and each
376 		 * CPU does a tlbiel_all() before switching them on, which
377 		 * flushes everything.
378 		 */
379 		flush_partition(lpid, (old & PATB_HR));
380 	}
381 }
382 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
383 
384 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
385 {
386 	void *pmd_frag, *ret;
387 
388 	if (PMD_FRAG_NR == 1)
389 		return NULL;
390 
391 	spin_lock(&mm->page_table_lock);
392 	ret = mm->context.pmd_frag;
393 	if (ret) {
394 		pmd_frag = ret + PMD_FRAG_SIZE;
395 		/*
396 		 * If we have taken up all the fragments mark PTE page NULL
397 		 */
398 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
399 			pmd_frag = NULL;
400 		mm->context.pmd_frag = pmd_frag;
401 	}
402 	spin_unlock(&mm->page_table_lock);
403 	return (pmd_t *)ret;
404 }
405 
406 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
407 {
408 	void *ret = NULL;
409 	struct ptdesc *ptdesc;
410 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
411 
412 	if (mm == &init_mm)
413 		gfp &= ~__GFP_ACCOUNT;
414 	ptdesc = pagetable_alloc(gfp, 0);
415 	if (!ptdesc)
416 		return NULL;
417 	if (!pagetable_pmd_ctor(ptdesc)) {
418 		pagetable_free(ptdesc);
419 		return NULL;
420 	}
421 
422 	atomic_set(&ptdesc->pt_frag_refcount, 1);
423 
424 	ret = ptdesc_address(ptdesc);
425 	/*
426 	 * if we support only one fragment just return the
427 	 * allocated page.
428 	 */
429 	if (PMD_FRAG_NR == 1)
430 		return ret;
431 
432 	spin_lock(&mm->page_table_lock);
433 	/*
434 	 * If we find ptdesc_page set, we return
435 	 * the allocated page with single fragment
436 	 * count.
437 	 */
438 	if (likely(!mm->context.pmd_frag)) {
439 		atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR);
440 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
441 	}
442 	spin_unlock(&mm->page_table_lock);
443 
444 	return (pmd_t *)ret;
445 }
446 
447 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
448 {
449 	pmd_t *pmd;
450 
451 	pmd = get_pmd_from_cache(mm);
452 	if (pmd)
453 		return pmd;
454 
455 	return __alloc_for_pmdcache(mm);
456 }
457 
458 void pmd_fragment_free(unsigned long *pmd)
459 {
460 	struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
461 
462 	if (pagetable_is_reserved(ptdesc))
463 		return free_reserved_ptdesc(ptdesc);
464 
465 	BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
466 	if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
467 		pagetable_pmd_dtor(ptdesc);
468 		pagetable_free(ptdesc);
469 	}
470 }
471 
472 static inline void pgtable_free(void *table, int index)
473 {
474 	switch (index) {
475 	case PTE_INDEX:
476 		pte_fragment_free(table, 0);
477 		break;
478 	case PMD_INDEX:
479 		pmd_fragment_free(table);
480 		break;
481 	case PUD_INDEX:
482 		__pud_free(table);
483 		break;
484 		/* We don't free pgd table via RCU callback */
485 	default:
486 		BUG();
487 	}
488 }
489 
490 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
491 {
492 	unsigned long pgf = (unsigned long)table;
493 
494 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
495 	pgf |= index;
496 	tlb_remove_table(tlb, (void *)pgf);
497 }
498 
499 void __tlb_remove_table(void *_table)
500 {
501 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
502 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
503 
504 	return pgtable_free(table, index);
505 }
506 
507 #ifdef CONFIG_PROC_FS
508 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
509 
510 void arch_report_meminfo(struct seq_file *m)
511 {
512 	/*
513 	 * Hash maps the memory with one size mmu_linear_psize.
514 	 * So don't bother to print these on hash
515 	 */
516 	if (!radix_enabled())
517 		return;
518 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
519 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
520 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
521 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
522 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
523 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
524 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
525 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
526 }
527 #endif /* CONFIG_PROC_FS */
528 
529 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
530 			     pte_t *ptep)
531 {
532 	unsigned long pte_val;
533 
534 	/*
535 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
536 	 * possible. Also keep the pte_present true so that we don't take
537 	 * wrong fault.
538 	 */
539 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
540 
541 	return __pte(pte_val);
542 
543 }
544 
545 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
546 			     pte_t *ptep, pte_t old_pte, pte_t pte)
547 {
548 	if (radix_enabled())
549 		return radix__ptep_modify_prot_commit(vma, addr,
550 						      ptep, old_pte, pte);
551 	set_pte_at(vma->vm_mm, addr, ptep, pte);
552 }
553 
554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
555 /*
556  * For hash translation mode, we use the deposited table to store hash slot
557  * information and they are stored at PTRS_PER_PMD offset from related pmd
558  * location. Hence a pmd move requires deposit and withdraw.
559  *
560  * For radix translation with split pmd ptl, we store the deposited table in the
561  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
562  * move.
563  *
564  * With hash we use deposited table always irrespective of anon or not.
565  * With radix we use deposited table only for anonymous mapping.
566  */
567 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
568 			   struct spinlock *old_pmd_ptl,
569 			   struct vm_area_struct *vma)
570 {
571 	if (radix_enabled())
572 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
573 
574 	return true;
575 }
576 #endif
577 
578 /*
579  * Does the CPU support tlbie?
580  */
581 bool tlbie_capable __read_mostly = true;
582 EXPORT_SYMBOL(tlbie_capable);
583 
584 /*
585  * Should tlbie be used for management of CPU TLBs, for kernel and process
586  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
587  * guest address spaces.
588  */
589 bool tlbie_enabled __read_mostly = true;
590 
591 static int __init setup_disable_tlbie(char *str)
592 {
593 	if (!radix_enabled()) {
594 		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
595 		return 1;
596 	}
597 
598 	tlbie_capable = false;
599 	tlbie_enabled = false;
600 
601         return 1;
602 }
603 __setup("disable_tlbie", setup_disable_tlbie);
604 
605 static int __init pgtable_debugfs_setup(void)
606 {
607 	if (!tlbie_capable)
608 		return 0;
609 
610 	/*
611 	 * There is no locking vs tlb flushing when changing this value.
612 	 * The tlb flushers will see one value or another, and use either
613 	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
614 	 * invalidated as expected.
615 	 */
616 	debugfs_create_bool("tlbie_enabled", 0600,
617 			arch_debugfs_dir,
618 			&tlbie_enabled);
619 
620 	return 0;
621 }
622 arch_initcall(pgtable_debugfs_setup);
623 
624 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
625 /*
626  * Override the generic version in mm/memremap.c.
627  *
628  * With hash translation, the direct-map range is mapped with just one
629  * page size selected by htab_init_page_sizes(). Consult
630  * mmu_psize_defs[] to determine the minimum page size alignment.
631 */
632 unsigned long memremap_compat_align(void)
633 {
634 	if (!radix_enabled()) {
635 		unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
636 		return max(SUBSECTION_SIZE, 1UL << shift);
637 	}
638 
639 	return SUBSECTION_SIZE;
640 }
641 EXPORT_SYMBOL_GPL(memremap_compat_align);
642 #endif
643 
644 pgprot_t vm_get_page_prot(unsigned long vm_flags)
645 {
646 	unsigned long prot;
647 
648 	/* Radix supports execute-only, but protection_map maps X -> RX */
649 	if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC))
650 		vm_flags |= VM_READ;
651 
652 	prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]);
653 
654 	if (vm_flags & VM_SAO)
655 		prot |= _PAGE_SAO;
656 
657 #ifdef CONFIG_PPC_MEM_KEYS
658 	prot |= vmflag_to_pte_pkey_bits(vm_flags);
659 #endif
660 
661 	return __pgprot(prot);
662 }
663 EXPORT_SYMBOL(vm_get_page_prot);
664