1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/mm_types.h> 8 #include <linux/memblock.h> 9 #include <linux/memremap.h> 10 #include <linux/pkeys.h> 11 #include <linux/debugfs.h> 12 #include <linux/proc_fs.h> 13 14 #include <asm/pgalloc.h> 15 #include <asm/tlb.h> 16 #include <asm/trace.h> 17 #include <asm/powernv.h> 18 #include <asm/firmware.h> 19 #include <asm/ultravisor.h> 20 #include <asm/kexec.h> 21 22 #include <mm/mmu_decl.h> 23 #include <trace/events/thp.h> 24 25 #include "internal.h" 26 27 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; 28 EXPORT_SYMBOL_GPL(mmu_psize_defs); 29 30 #ifdef CONFIG_SPARSEMEM_VMEMMAP 31 int mmu_vmemmap_psize = MMU_PAGE_4K; 32 #endif 33 34 unsigned long __pmd_frag_nr; 35 EXPORT_SYMBOL(__pmd_frag_nr); 36 unsigned long __pmd_frag_size_shift; 37 EXPORT_SYMBOL(__pmd_frag_size_shift); 38 39 #ifdef CONFIG_KFENCE 40 extern bool kfence_early_init; 41 static int __init parse_kfence_early_init(char *arg) 42 { 43 int val; 44 45 if (get_option(&arg, &val)) 46 kfence_early_init = !!val; 47 return 0; 48 } 49 early_param("kfence.sample_interval", parse_kfence_early_init); 50 #endif 51 52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 53 /* 54 * This is called when relaxing access to a hugepage. It's also called in the page 55 * fault path when we don't hit any of the major fault cases, ie, a minor 56 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 57 * handled those two for us, we additionally deal with missing execute 58 * permission here on some processors 59 */ 60 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 61 pmd_t *pmdp, pmd_t entry, int dirty) 62 { 63 int changed; 64 #ifdef CONFIG_DEBUG_VM 65 WARN_ON(!pmd_trans_huge(*pmdp)); 66 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 67 #endif 68 changed = !pmd_same(*(pmdp), entry); 69 if (changed) { 70 /* 71 * We can use MMU_PAGE_2M here, because only radix 72 * path look at the psize. 73 */ 74 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 75 pmd_pte(entry), address, MMU_PAGE_2M); 76 } 77 return changed; 78 } 79 80 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 81 pud_t *pudp, pud_t entry, int dirty) 82 { 83 int changed; 84 #ifdef CONFIG_DEBUG_VM 85 assert_spin_locked(pud_lockptr(vma->vm_mm, pudp)); 86 #endif 87 changed = !pud_same(*(pudp), entry); 88 if (changed) { 89 /* 90 * We can use MMU_PAGE_1G here, because only radix 91 * path look at the psize. 92 */ 93 __ptep_set_access_flags(vma, pudp_ptep(pudp), 94 pud_pte(entry), address, MMU_PAGE_1G); 95 } 96 return changed; 97 } 98 99 100 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 101 unsigned long address, pmd_t *pmdp) 102 { 103 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 104 } 105 106 int pudp_test_and_clear_young(struct vm_area_struct *vma, 107 unsigned long address, pud_t *pudp) 108 { 109 return __pudp_test_and_clear_young(vma->vm_mm, address, pudp); 110 } 111 112 /* 113 * set a new huge pmd. We should not be called for updating 114 * an existing pmd entry. That should go via pmd_hugepage_update. 115 */ 116 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 117 pmd_t *pmdp, pmd_t pmd) 118 { 119 #ifdef CONFIG_DEBUG_VM 120 /* 121 * Make sure hardware valid bit is not set. We don't do 122 * tlb flush for this update. 123 */ 124 125 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 126 assert_spin_locked(pmd_lockptr(mm, pmdp)); 127 WARN_ON(!(pmd_leaf(pmd))); 128 #endif 129 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 130 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 131 } 132 133 void set_pud_at(struct mm_struct *mm, unsigned long addr, 134 pud_t *pudp, pud_t pud) 135 { 136 #ifdef CONFIG_DEBUG_VM 137 /* 138 * Make sure hardware valid bit is not set. We don't do 139 * tlb flush for this update. 140 */ 141 142 WARN_ON(pte_hw_valid(pud_pte(*pudp))); 143 assert_spin_locked(pud_lockptr(mm, pudp)); 144 WARN_ON(!(pud_leaf(pud))); 145 #endif 146 trace_hugepage_set_pud(addr, pud_val(pud)); 147 return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud)); 148 } 149 150 static void do_serialize(void *arg) 151 { 152 /* We've taken the IPI, so try to trim the mask while here */ 153 if (radix_enabled()) { 154 struct mm_struct *mm = arg; 155 exit_lazy_flush_tlb(mm, false); 156 } 157 } 158 159 /* 160 * Serialize against __find_linux_pte() which does lock-less 161 * lookup in page tables with local interrupts disabled. For huge pages 162 * it casts pmd_t to pte_t. Since format of pte_t is different from 163 * pmd_t we want to prevent transit from pmd pointing to page table 164 * to pmd pointing to huge page (and back) while interrupts are disabled. 165 * We clear pmd to possibly replace it with page table pointer in 166 * different code paths. So make sure we wait for the parallel 167 * __find_linux_pte() to finish. 168 */ 169 void serialize_against_pte_lookup(struct mm_struct *mm) 170 { 171 smp_mb(); 172 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1); 173 } 174 175 /* 176 * We use this to invalidate a pmdp entry before switching from a 177 * hugepte to regular pmd entry. 178 */ 179 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 180 pmd_t *pmdp) 181 { 182 unsigned long old_pmd; 183 184 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); 185 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); 186 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 187 return __pmd(old_pmd); 188 } 189 190 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address, 191 pud_t *pudp) 192 { 193 unsigned long old_pud; 194 195 VM_WARN_ON_ONCE(!pud_present(*pudp)); 196 old_pud = pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID); 197 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE); 198 return __pud(old_pud); 199 } 200 201 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 202 unsigned long addr, pmd_t *pmdp, int full) 203 { 204 pmd_t pmd; 205 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 206 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp)) || 207 !pmd_present(*pmdp)); 208 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 209 /* 210 * if it not a fullmm flush, then we can possibly end up converting 211 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 212 * Make sure we flush the tlb in this case. 213 */ 214 if (!full) 215 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); 216 return pmd; 217 } 218 219 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 220 unsigned long addr, pud_t *pudp, int full) 221 { 222 pud_t pud; 223 224 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 225 VM_BUG_ON(!pud_present(*pudp)); 226 pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp); 227 /* 228 * if it not a fullmm flush, then we can possibly end up converting 229 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 230 * Make sure we flush the tlb in this case. 231 */ 232 if (!full) 233 flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE); 234 return pud; 235 } 236 237 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 238 { 239 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 240 } 241 242 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot) 243 { 244 return __pud(pud_val(pud) | pgprot_val(pgprot)); 245 } 246 247 /* 248 * At some point we should be able to get rid of 249 * pmd_mkhuge() and mk_huge_pmd() when we update all the 250 * other archs to mark the pmd huge in pfn_pmd() 251 */ 252 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 253 { 254 unsigned long pmdv; 255 256 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 257 258 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot)); 259 } 260 261 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot) 262 { 263 unsigned long pudv; 264 265 pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 266 267 return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot)); 268 } 269 270 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 271 { 272 unsigned long pmdv; 273 274 pmdv = pmd_val(pmd); 275 pmdv &= _HPAGE_CHG_MASK; 276 return pmd_set_protbits(__pmd(pmdv), newprot); 277 } 278 279 pud_t pud_modify(pud_t pud, pgprot_t newprot) 280 { 281 unsigned long pudv; 282 283 pudv = pud_val(pud); 284 pudv &= _HPAGE_CHG_MASK; 285 return pud_set_protbits(__pud(pudv), newprot); 286 } 287 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 288 289 /* For use by kexec, called with MMU off */ 290 notrace void mmu_cleanup_all(void) 291 { 292 if (radix_enabled()) 293 radix__mmu_cleanup_all(); 294 else if (mmu_hash_ops.hpte_clear_all) 295 mmu_hash_ops.hpte_clear_all(); 296 297 reset_sprs(); 298 } 299 300 #ifdef CONFIG_MEMORY_HOTPLUG 301 int __meminit create_section_mapping(unsigned long start, unsigned long end, 302 int nid, pgprot_t prot) 303 { 304 if (radix_enabled()) 305 return radix__create_section_mapping(start, end, nid, prot); 306 307 return hash__create_section_mapping(start, end, nid, prot); 308 } 309 310 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 311 { 312 if (radix_enabled()) 313 return radix__remove_section_mapping(start, end); 314 315 return hash__remove_section_mapping(start, end); 316 } 317 #endif /* CONFIG_MEMORY_HOTPLUG */ 318 319 void __init mmu_partition_table_init(void) 320 { 321 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 322 unsigned long ptcr; 323 324 /* Initialize the Partition Table with no entries */ 325 partition_tb = memblock_alloc_or_panic(patb_size, patb_size); 326 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 327 set_ptcr_when_no_uv(ptcr); 328 powernv_set_nmmu_ptcr(ptcr); 329 } 330 331 static void flush_partition(unsigned int lpid, bool radix) 332 { 333 if (radix) { 334 radix__flush_all_lpid(lpid); 335 radix__flush_all_lpid_guest(lpid); 336 } else { 337 asm volatile("ptesync" : : : "memory"); 338 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 339 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 340 /* do we need fixup here ?*/ 341 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 342 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 343 } 344 } 345 346 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 347 unsigned long dw1, bool flush) 348 { 349 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 350 351 /* 352 * When ultravisor is enabled, the partition table is stored in secure 353 * memory and can only be accessed doing an ultravisor call. However, we 354 * maintain a copy of the partition table in normal memory to allow Nest 355 * MMU translations to occur (for normal VMs). 356 * 357 * Therefore, here we always update partition_tb, regardless of whether 358 * we are running under an ultravisor or not. 359 */ 360 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 361 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 362 363 /* 364 * If ultravisor is enabled, we do an ultravisor call to register the 365 * partition table entry (PATE), which also do a global flush of TLBs 366 * and partition table caches for the lpid. Otherwise, just do the 367 * flush. The type of flush (hash or radix) depends on what the previous 368 * use of the partition ID was, not the new use. 369 */ 370 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { 371 uv_register_pate(lpid, dw0, dw1); 372 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", 373 dw0, dw1); 374 } else if (flush) { 375 /* 376 * Boot does not need to flush, because MMU is off and each 377 * CPU does a tlbiel_all() before switching them on, which 378 * flushes everything. 379 */ 380 flush_partition(lpid, (old & PATB_HR)); 381 } 382 } 383 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 384 385 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 386 { 387 void *pmd_frag, *ret; 388 389 if (PMD_FRAG_NR == 1) 390 return NULL; 391 392 spin_lock(&mm->page_table_lock); 393 ret = mm->context.pmd_frag; 394 if (ret) { 395 pmd_frag = ret + PMD_FRAG_SIZE; 396 /* 397 * If we have taken up all the fragments mark PTE page NULL 398 */ 399 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 400 pmd_frag = NULL; 401 mm->context.pmd_frag = pmd_frag; 402 } 403 spin_unlock(&mm->page_table_lock); 404 return (pmd_t *)ret; 405 } 406 407 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 408 { 409 void *ret = NULL; 410 struct ptdesc *ptdesc; 411 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 412 413 if (mm == &init_mm) 414 gfp &= ~__GFP_ACCOUNT; 415 ptdesc = pagetable_alloc(gfp, 0); 416 if (!ptdesc) 417 return NULL; 418 if (!pagetable_pmd_ctor(mm, ptdesc)) { 419 pagetable_free(ptdesc); 420 return NULL; 421 } 422 423 atomic_set(&ptdesc->pt_frag_refcount, 1); 424 425 ret = ptdesc_address(ptdesc); 426 /* 427 * if we support only one fragment just return the 428 * allocated page. 429 */ 430 if (PMD_FRAG_NR == 1) 431 return ret; 432 433 spin_lock(&mm->page_table_lock); 434 /* 435 * If we find ptdesc_page set, we return 436 * the allocated page with single fragment 437 * count. 438 */ 439 if (likely(!mm->context.pmd_frag)) { 440 atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR); 441 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 442 } 443 spin_unlock(&mm->page_table_lock); 444 445 return (pmd_t *)ret; 446 } 447 448 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 449 { 450 pmd_t *pmd; 451 452 pmd = get_pmd_from_cache(mm); 453 if (pmd) 454 return pmd; 455 456 return __alloc_for_pmdcache(mm); 457 } 458 459 void pmd_fragment_free(unsigned long *pmd) 460 { 461 struct ptdesc *ptdesc = virt_to_ptdesc(pmd); 462 463 if (pagetable_is_reserved(ptdesc)) 464 return free_reserved_ptdesc(ptdesc); 465 466 BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0); 467 if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) { 468 pagetable_dtor(ptdesc); 469 pagetable_free(ptdesc); 470 } 471 } 472 473 static inline void pgtable_free(void *table, int index) 474 { 475 switch (index) { 476 case PTE_INDEX: 477 pte_fragment_free(table, 0); 478 break; 479 case PMD_INDEX: 480 pmd_fragment_free(table); 481 break; 482 case PUD_INDEX: 483 __pud_free(table); 484 break; 485 /* We don't free pgd table via RCU callback */ 486 default: 487 BUG(); 488 } 489 } 490 491 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 492 { 493 unsigned long pgf = (unsigned long)table; 494 495 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 496 pgf |= index; 497 tlb_remove_table(tlb, (void *)pgf); 498 } 499 500 void __tlb_remove_table(void *_table) 501 { 502 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 503 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 504 505 return pgtable_free(table, index); 506 } 507 508 #ifdef CONFIG_PROC_FS 509 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 510 511 void arch_report_meminfo(struct seq_file *m) 512 { 513 /* 514 * Hash maps the memory with one size mmu_linear_psize. 515 * So don't bother to print these on hash 516 */ 517 if (!radix_enabled()) 518 return; 519 seq_printf(m, "DirectMap4k: %8lu kB\n", 520 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 521 seq_printf(m, "DirectMap64k: %8lu kB\n", 522 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 523 seq_printf(m, "DirectMap2M: %8lu kB\n", 524 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 525 seq_printf(m, "DirectMap1G: %8lu kB\n", 526 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 527 } 528 #endif /* CONFIG_PROC_FS */ 529 530 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 531 pte_t *ptep) 532 { 533 unsigned long pte_val; 534 535 /* 536 * Clear the _PAGE_PRESENT so that no hardware parallel update is 537 * possible. Also keep the pte_present true so that we don't take 538 * wrong fault. 539 */ 540 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 541 542 return __pte(pte_val); 543 544 } 545 546 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 547 pte_t *ptep, pte_t old_pte, pte_t pte) 548 { 549 if (radix_enabled()) 550 return radix__ptep_modify_prot_commit(vma, addr, 551 ptep, old_pte, pte); 552 set_pte_at(vma->vm_mm, addr, ptep, pte); 553 } 554 555 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 556 /* 557 * For hash translation mode, we use the deposited table to store hash slot 558 * information and they are stored at PTRS_PER_PMD offset from related pmd 559 * location. Hence a pmd move requires deposit and withdraw. 560 * 561 * For radix translation with split pmd ptl, we store the deposited table in the 562 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 563 * move. 564 * 565 * With hash we use deposited table always irrespective of anon or not. 566 * With radix we use deposited table only for anonymous mapping. 567 */ 568 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 569 struct spinlock *old_pmd_ptl, 570 struct vm_area_struct *vma) 571 { 572 if (radix_enabled()) 573 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 574 575 return true; 576 } 577 #endif 578 579 /* 580 * Does the CPU support tlbie? 581 */ 582 bool tlbie_capable __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE); 583 EXPORT_SYMBOL(tlbie_capable); 584 585 /* 586 * Should tlbie be used for management of CPU TLBs, for kernel and process 587 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM 588 * guest address spaces. 589 */ 590 bool tlbie_enabled __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE); 591 592 static int __init setup_disable_tlbie(char *str) 593 { 594 if (!radix_enabled()) { 595 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); 596 return 1; 597 } 598 599 tlbie_capable = false; 600 tlbie_enabled = false; 601 602 return 1; 603 } 604 __setup("disable_tlbie", setup_disable_tlbie); 605 606 static int __init pgtable_debugfs_setup(void) 607 { 608 if (!tlbie_capable) 609 return 0; 610 611 /* 612 * There is no locking vs tlb flushing when changing this value. 613 * The tlb flushers will see one value or another, and use either 614 * tlbie or tlbiel with IPIs. In both cases the TLBs will be 615 * invalidated as expected. 616 */ 617 debugfs_create_bool("tlbie_enabled", 0600, 618 arch_debugfs_dir, 619 &tlbie_enabled); 620 621 return 0; 622 } 623 arch_initcall(pgtable_debugfs_setup); 624 625 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN) 626 /* 627 * Override the generic version in mm/memremap.c. 628 * 629 * With hash translation, the direct-map range is mapped with just one 630 * page size selected by htab_init_page_sizes(). Consult 631 * mmu_psize_defs[] to determine the minimum page size alignment. 632 */ 633 unsigned long memremap_compat_align(void) 634 { 635 if (!radix_enabled()) { 636 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift; 637 return max(SUBSECTION_SIZE, 1UL << shift); 638 } 639 640 return SUBSECTION_SIZE; 641 } 642 EXPORT_SYMBOL_GPL(memremap_compat_align); 643 #endif 644 645 pgprot_t vm_get_page_prot(vm_flags_t vm_flags) 646 { 647 unsigned long prot; 648 649 /* Radix supports execute-only, but protection_map maps X -> RX */ 650 if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)) 651 vm_flags |= VM_READ; 652 653 prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]); 654 655 if (vm_flags & VM_SAO) 656 prot |= _PAGE_SAO; 657 658 #ifdef CONFIG_PPC_MEM_KEYS 659 prot |= vmflag_to_pte_pkey_bits(vm_flags); 660 #endif 661 662 return __pgprot(prot); 663 } 664 EXPORT_SYMBOL(vm_get_page_prot); 665