1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/mm_types.h> 8 #include <linux/memblock.h> 9 #include <linux/memremap.h> 10 #include <linux/pkeys.h> 11 #include <linux/debugfs.h> 12 #include <linux/proc_fs.h> 13 14 #include <asm/pgalloc.h> 15 #include <asm/tlb.h> 16 #include <asm/trace.h> 17 #include <asm/powernv.h> 18 #include <asm/firmware.h> 19 #include <asm/ultravisor.h> 20 #include <asm/kexec.h> 21 22 #include <mm/mmu_decl.h> 23 #include <trace/events/thp.h> 24 25 #include "internal.h" 26 27 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; 28 EXPORT_SYMBOL_GPL(mmu_psize_defs); 29 30 #ifdef CONFIG_SPARSEMEM_VMEMMAP 31 int mmu_vmemmap_psize = MMU_PAGE_4K; 32 #endif 33 34 unsigned long __pmd_frag_nr; 35 EXPORT_SYMBOL(__pmd_frag_nr); 36 unsigned long __pmd_frag_size_shift; 37 EXPORT_SYMBOL(__pmd_frag_size_shift); 38 39 #ifdef CONFIG_KFENCE 40 extern bool kfence_early_init; 41 static int __init parse_kfence_early_init(char *arg) 42 { 43 int val; 44 45 if (get_option(&arg, &val)) 46 kfence_early_init = !!val; 47 return 0; 48 } 49 early_param("kfence.sample_interval", parse_kfence_early_init); 50 #endif 51 52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 53 /* 54 * This is called when relaxing access to a hugepage. It's also called in the page 55 * fault path when we don't hit any of the major fault cases, ie, a minor 56 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 57 * handled those two for us, we additionally deal with missing execute 58 * permission here on some processors 59 */ 60 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 61 pmd_t *pmdp, pmd_t entry, int dirty) 62 { 63 int changed; 64 #ifdef CONFIG_DEBUG_VM 65 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 66 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 67 #endif 68 changed = !pmd_same(*(pmdp), entry); 69 if (changed) { 70 /* 71 * We can use MMU_PAGE_2M here, because only radix 72 * path look at the psize. 73 */ 74 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 75 pmd_pte(entry), address, MMU_PAGE_2M); 76 } 77 return changed; 78 } 79 80 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 81 pud_t *pudp, pud_t entry, int dirty) 82 { 83 int changed; 84 #ifdef CONFIG_DEBUG_VM 85 WARN_ON(!pud_devmap(*pudp)); 86 assert_spin_locked(pud_lockptr(vma->vm_mm, pudp)); 87 #endif 88 changed = !pud_same(*(pudp), entry); 89 if (changed) { 90 /* 91 * We can use MMU_PAGE_1G here, because only radix 92 * path look at the psize. 93 */ 94 __ptep_set_access_flags(vma, pudp_ptep(pudp), 95 pud_pte(entry), address, MMU_PAGE_1G); 96 } 97 return changed; 98 } 99 100 101 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 102 unsigned long address, pmd_t *pmdp) 103 { 104 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 105 } 106 107 int pudp_test_and_clear_young(struct vm_area_struct *vma, 108 unsigned long address, pud_t *pudp) 109 { 110 return __pudp_test_and_clear_young(vma->vm_mm, address, pudp); 111 } 112 113 /* 114 * set a new huge pmd. We should not be called for updating 115 * an existing pmd entry. That should go via pmd_hugepage_update. 116 */ 117 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 118 pmd_t *pmdp, pmd_t pmd) 119 { 120 #ifdef CONFIG_DEBUG_VM 121 /* 122 * Make sure hardware valid bit is not set. We don't do 123 * tlb flush for this update. 124 */ 125 126 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 127 assert_spin_locked(pmd_lockptr(mm, pmdp)); 128 WARN_ON(!(pmd_leaf(pmd))); 129 #endif 130 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 131 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 132 } 133 134 void set_pud_at(struct mm_struct *mm, unsigned long addr, 135 pud_t *pudp, pud_t pud) 136 { 137 #ifdef CONFIG_DEBUG_VM 138 /* 139 * Make sure hardware valid bit is not set. We don't do 140 * tlb flush for this update. 141 */ 142 143 WARN_ON(pte_hw_valid(pud_pte(*pudp))); 144 assert_spin_locked(pud_lockptr(mm, pudp)); 145 WARN_ON(!(pud_leaf(pud))); 146 #endif 147 trace_hugepage_set_pud(addr, pud_val(pud)); 148 return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud)); 149 } 150 151 static void do_serialize(void *arg) 152 { 153 /* We've taken the IPI, so try to trim the mask while here */ 154 if (radix_enabled()) { 155 struct mm_struct *mm = arg; 156 exit_lazy_flush_tlb(mm, false); 157 } 158 } 159 160 /* 161 * Serialize against __find_linux_pte() which does lock-less 162 * lookup in page tables with local interrupts disabled. For huge pages 163 * it casts pmd_t to pte_t. Since format of pte_t is different from 164 * pmd_t we want to prevent transit from pmd pointing to page table 165 * to pmd pointing to huge page (and back) while interrupts are disabled. 166 * We clear pmd to possibly replace it with page table pointer in 167 * different code paths. So make sure we wait for the parallel 168 * __find_linux_pte() to finish. 169 */ 170 void serialize_against_pte_lookup(struct mm_struct *mm) 171 { 172 smp_mb(); 173 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1); 174 } 175 176 /* 177 * We use this to invalidate a pmdp entry before switching from a 178 * hugepte to regular pmd entry. 179 */ 180 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 181 pmd_t *pmdp) 182 { 183 unsigned long old_pmd; 184 185 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); 186 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); 187 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 188 return __pmd(old_pmd); 189 } 190 191 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address, 192 pud_t *pudp) 193 { 194 unsigned long old_pud; 195 196 VM_WARN_ON_ONCE(!pud_present(*pudp)); 197 old_pud = pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID); 198 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE); 199 return __pud(old_pud); 200 } 201 202 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 203 unsigned long addr, pmd_t *pmdp, int full) 204 { 205 pmd_t pmd; 206 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 207 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && 208 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); 209 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 210 /* 211 * if it not a fullmm flush, then we can possibly end up converting 212 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 213 * Make sure we flush the tlb in this case. 214 */ 215 if (!full) 216 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); 217 return pmd; 218 } 219 220 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 221 unsigned long addr, pud_t *pudp, int full) 222 { 223 pud_t pud; 224 225 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 226 VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) || 227 !pud_present(*pudp)); 228 pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp); 229 /* 230 * if it not a fullmm flush, then we can possibly end up converting 231 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 232 * Make sure we flush the tlb in this case. 233 */ 234 if (!full) 235 flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE); 236 return pud; 237 } 238 239 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 240 { 241 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 242 } 243 244 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot) 245 { 246 return __pud(pud_val(pud) | pgprot_val(pgprot)); 247 } 248 249 /* 250 * At some point we should be able to get rid of 251 * pmd_mkhuge() and mk_huge_pmd() when we update all the 252 * other archs to mark the pmd huge in pfn_pmd() 253 */ 254 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 255 { 256 unsigned long pmdv; 257 258 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 259 260 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot)); 261 } 262 263 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot) 264 { 265 unsigned long pudv; 266 267 pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 268 269 return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot)); 270 } 271 272 pmd_t mk_pmd(struct page *page, pgprot_t pgprot) 273 { 274 return pfn_pmd(page_to_pfn(page), pgprot); 275 } 276 277 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 278 { 279 unsigned long pmdv; 280 281 pmdv = pmd_val(pmd); 282 pmdv &= _HPAGE_CHG_MASK; 283 return pmd_set_protbits(__pmd(pmdv), newprot); 284 } 285 286 pud_t pud_modify(pud_t pud, pgprot_t newprot) 287 { 288 unsigned long pudv; 289 290 pudv = pud_val(pud); 291 pudv &= _HPAGE_CHG_MASK; 292 return pud_set_protbits(__pud(pudv), newprot); 293 } 294 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 295 296 /* For use by kexec, called with MMU off */ 297 notrace void mmu_cleanup_all(void) 298 { 299 if (radix_enabled()) 300 radix__mmu_cleanup_all(); 301 else if (mmu_hash_ops.hpte_clear_all) 302 mmu_hash_ops.hpte_clear_all(); 303 304 reset_sprs(); 305 } 306 307 #ifdef CONFIG_MEMORY_HOTPLUG 308 int __meminit create_section_mapping(unsigned long start, unsigned long end, 309 int nid, pgprot_t prot) 310 { 311 if (radix_enabled()) 312 return radix__create_section_mapping(start, end, nid, prot); 313 314 return hash__create_section_mapping(start, end, nid, prot); 315 } 316 317 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 318 { 319 if (radix_enabled()) 320 return radix__remove_section_mapping(start, end); 321 322 return hash__remove_section_mapping(start, end); 323 } 324 #endif /* CONFIG_MEMORY_HOTPLUG */ 325 326 void __init mmu_partition_table_init(void) 327 { 328 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 329 unsigned long ptcr; 330 331 /* Initialize the Partition Table with no entries */ 332 partition_tb = memblock_alloc_or_panic(patb_size, patb_size); 333 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 334 set_ptcr_when_no_uv(ptcr); 335 powernv_set_nmmu_ptcr(ptcr); 336 } 337 338 static void flush_partition(unsigned int lpid, bool radix) 339 { 340 if (radix) { 341 radix__flush_all_lpid(lpid); 342 radix__flush_all_lpid_guest(lpid); 343 } else { 344 asm volatile("ptesync" : : : "memory"); 345 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 346 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 347 /* do we need fixup here ?*/ 348 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 349 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 350 } 351 } 352 353 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 354 unsigned long dw1, bool flush) 355 { 356 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 357 358 /* 359 * When ultravisor is enabled, the partition table is stored in secure 360 * memory and can only be accessed doing an ultravisor call. However, we 361 * maintain a copy of the partition table in normal memory to allow Nest 362 * MMU translations to occur (for normal VMs). 363 * 364 * Therefore, here we always update partition_tb, regardless of whether 365 * we are running under an ultravisor or not. 366 */ 367 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 368 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 369 370 /* 371 * If ultravisor is enabled, we do an ultravisor call to register the 372 * partition table entry (PATE), which also do a global flush of TLBs 373 * and partition table caches for the lpid. Otherwise, just do the 374 * flush. The type of flush (hash or radix) depends on what the previous 375 * use of the partition ID was, not the new use. 376 */ 377 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { 378 uv_register_pate(lpid, dw0, dw1); 379 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", 380 dw0, dw1); 381 } else if (flush) { 382 /* 383 * Boot does not need to flush, because MMU is off and each 384 * CPU does a tlbiel_all() before switching them on, which 385 * flushes everything. 386 */ 387 flush_partition(lpid, (old & PATB_HR)); 388 } 389 } 390 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 391 392 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 393 { 394 void *pmd_frag, *ret; 395 396 if (PMD_FRAG_NR == 1) 397 return NULL; 398 399 spin_lock(&mm->page_table_lock); 400 ret = mm->context.pmd_frag; 401 if (ret) { 402 pmd_frag = ret + PMD_FRAG_SIZE; 403 /* 404 * If we have taken up all the fragments mark PTE page NULL 405 */ 406 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 407 pmd_frag = NULL; 408 mm->context.pmd_frag = pmd_frag; 409 } 410 spin_unlock(&mm->page_table_lock); 411 return (pmd_t *)ret; 412 } 413 414 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 415 { 416 void *ret = NULL; 417 struct ptdesc *ptdesc; 418 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 419 420 if (mm == &init_mm) 421 gfp &= ~__GFP_ACCOUNT; 422 ptdesc = pagetable_alloc(gfp, 0); 423 if (!ptdesc) 424 return NULL; 425 if (!pagetable_pmd_ctor(ptdesc)) { 426 pagetable_free(ptdesc); 427 return NULL; 428 } 429 430 atomic_set(&ptdesc->pt_frag_refcount, 1); 431 432 ret = ptdesc_address(ptdesc); 433 /* 434 * if we support only one fragment just return the 435 * allocated page. 436 */ 437 if (PMD_FRAG_NR == 1) 438 return ret; 439 440 spin_lock(&mm->page_table_lock); 441 /* 442 * If we find ptdesc_page set, we return 443 * the allocated page with single fragment 444 * count. 445 */ 446 if (likely(!mm->context.pmd_frag)) { 447 atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR); 448 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 449 } 450 spin_unlock(&mm->page_table_lock); 451 452 return (pmd_t *)ret; 453 } 454 455 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 456 { 457 pmd_t *pmd; 458 459 pmd = get_pmd_from_cache(mm); 460 if (pmd) 461 return pmd; 462 463 return __alloc_for_pmdcache(mm); 464 } 465 466 void pmd_fragment_free(unsigned long *pmd) 467 { 468 struct ptdesc *ptdesc = virt_to_ptdesc(pmd); 469 470 if (pagetable_is_reserved(ptdesc)) 471 return free_reserved_ptdesc(ptdesc); 472 473 BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0); 474 if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) { 475 pagetable_dtor(ptdesc); 476 pagetable_free(ptdesc); 477 } 478 } 479 480 static inline void pgtable_free(void *table, int index) 481 { 482 switch (index) { 483 case PTE_INDEX: 484 pte_fragment_free(table, 0); 485 break; 486 case PMD_INDEX: 487 pmd_fragment_free(table); 488 break; 489 case PUD_INDEX: 490 __pud_free(table); 491 break; 492 /* We don't free pgd table via RCU callback */ 493 default: 494 BUG(); 495 } 496 } 497 498 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 499 { 500 unsigned long pgf = (unsigned long)table; 501 502 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 503 pgf |= index; 504 tlb_remove_table(tlb, (void *)pgf); 505 } 506 507 void __tlb_remove_table(void *_table) 508 { 509 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 510 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 511 512 return pgtable_free(table, index); 513 } 514 515 #ifdef CONFIG_PROC_FS 516 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 517 518 void arch_report_meminfo(struct seq_file *m) 519 { 520 /* 521 * Hash maps the memory with one size mmu_linear_psize. 522 * So don't bother to print these on hash 523 */ 524 if (!radix_enabled()) 525 return; 526 seq_printf(m, "DirectMap4k: %8lu kB\n", 527 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 528 seq_printf(m, "DirectMap64k: %8lu kB\n", 529 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 530 seq_printf(m, "DirectMap2M: %8lu kB\n", 531 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 532 seq_printf(m, "DirectMap1G: %8lu kB\n", 533 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 534 } 535 #endif /* CONFIG_PROC_FS */ 536 537 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 538 pte_t *ptep) 539 { 540 unsigned long pte_val; 541 542 /* 543 * Clear the _PAGE_PRESENT so that no hardware parallel update is 544 * possible. Also keep the pte_present true so that we don't take 545 * wrong fault. 546 */ 547 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 548 549 return __pte(pte_val); 550 551 } 552 553 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 554 pte_t *ptep, pte_t old_pte, pte_t pte) 555 { 556 if (radix_enabled()) 557 return radix__ptep_modify_prot_commit(vma, addr, 558 ptep, old_pte, pte); 559 set_pte_at(vma->vm_mm, addr, ptep, pte); 560 } 561 562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 563 /* 564 * For hash translation mode, we use the deposited table to store hash slot 565 * information and they are stored at PTRS_PER_PMD offset from related pmd 566 * location. Hence a pmd move requires deposit and withdraw. 567 * 568 * For radix translation with split pmd ptl, we store the deposited table in the 569 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 570 * move. 571 * 572 * With hash we use deposited table always irrespective of anon or not. 573 * With radix we use deposited table only for anonymous mapping. 574 */ 575 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 576 struct spinlock *old_pmd_ptl, 577 struct vm_area_struct *vma) 578 { 579 if (radix_enabled()) 580 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 581 582 return true; 583 } 584 #endif 585 586 /* 587 * Does the CPU support tlbie? 588 */ 589 bool tlbie_capable __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE); 590 EXPORT_SYMBOL(tlbie_capable); 591 592 /* 593 * Should tlbie be used for management of CPU TLBs, for kernel and process 594 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM 595 * guest address spaces. 596 */ 597 bool tlbie_enabled __read_mostly = IS_ENABLED(CONFIG_PPC_RADIX_BROADCAST_TLBIE); 598 599 static int __init setup_disable_tlbie(char *str) 600 { 601 if (!radix_enabled()) { 602 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); 603 return 1; 604 } 605 606 tlbie_capable = false; 607 tlbie_enabled = false; 608 609 return 1; 610 } 611 __setup("disable_tlbie", setup_disable_tlbie); 612 613 static int __init pgtable_debugfs_setup(void) 614 { 615 if (!tlbie_capable) 616 return 0; 617 618 /* 619 * There is no locking vs tlb flushing when changing this value. 620 * The tlb flushers will see one value or another, and use either 621 * tlbie or tlbiel with IPIs. In both cases the TLBs will be 622 * invalidated as expected. 623 */ 624 debugfs_create_bool("tlbie_enabled", 0600, 625 arch_debugfs_dir, 626 &tlbie_enabled); 627 628 return 0; 629 } 630 arch_initcall(pgtable_debugfs_setup); 631 632 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN) 633 /* 634 * Override the generic version in mm/memremap.c. 635 * 636 * With hash translation, the direct-map range is mapped with just one 637 * page size selected by htab_init_page_sizes(). Consult 638 * mmu_psize_defs[] to determine the minimum page size alignment. 639 */ 640 unsigned long memremap_compat_align(void) 641 { 642 if (!radix_enabled()) { 643 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift; 644 return max(SUBSECTION_SIZE, 1UL << shift); 645 } 646 647 return SUBSECTION_SIZE; 648 } 649 EXPORT_SYMBOL_GPL(memremap_compat_align); 650 #endif 651 652 pgprot_t vm_get_page_prot(unsigned long vm_flags) 653 { 654 unsigned long prot; 655 656 /* Radix supports execute-only, but protection_map maps X -> RX */ 657 if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)) 658 vm_flags |= VM_READ; 659 660 prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]); 661 662 if (vm_flags & VM_SAO) 663 prot |= _PAGE_SAO; 664 665 #ifdef CONFIG_PPC_MEM_KEYS 666 prot |= vmflag_to_pte_pkey_bits(vm_flags); 667 #endif 668 669 return __pgprot(prot); 670 } 671 EXPORT_SYMBOL(vm_get_page_prot); 672