1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/mm_types.h> 8 #include <linux/memblock.h> 9 #include <linux/memremap.h> 10 #include <linux/pkeys.h> 11 #include <linux/debugfs.h> 12 #include <linux/proc_fs.h> 13 #include <misc/cxl-base.h> 14 15 #include <asm/pgalloc.h> 16 #include <asm/tlb.h> 17 #include <asm/trace.h> 18 #include <asm/powernv.h> 19 #include <asm/firmware.h> 20 #include <asm/ultravisor.h> 21 #include <asm/kexec.h> 22 23 #include <mm/mmu_decl.h> 24 #include <trace/events/thp.h> 25 26 #include "internal.h" 27 28 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; 29 EXPORT_SYMBOL_GPL(mmu_psize_defs); 30 31 #ifdef CONFIG_SPARSEMEM_VMEMMAP 32 int mmu_vmemmap_psize = MMU_PAGE_4K; 33 #endif 34 35 unsigned long __pmd_frag_nr; 36 EXPORT_SYMBOL(__pmd_frag_nr); 37 unsigned long __pmd_frag_size_shift; 38 EXPORT_SYMBOL(__pmd_frag_size_shift); 39 40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 41 /* 42 * This is called when relaxing access to a hugepage. It's also called in the page 43 * fault path when we don't hit any of the major fault cases, ie, a minor 44 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have 45 * handled those two for us, we additionally deal with missing execute 46 * permission here on some processors 47 */ 48 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 49 pmd_t *pmdp, pmd_t entry, int dirty) 50 { 51 int changed; 52 #ifdef CONFIG_DEBUG_VM 53 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); 54 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp)); 55 #endif 56 changed = !pmd_same(*(pmdp), entry); 57 if (changed) { 58 /* 59 * We can use MMU_PAGE_2M here, because only radix 60 * path look at the psize. 61 */ 62 __ptep_set_access_flags(vma, pmdp_ptep(pmdp), 63 pmd_pte(entry), address, MMU_PAGE_2M); 64 } 65 return changed; 66 } 67 68 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, 69 pud_t *pudp, pud_t entry, int dirty) 70 { 71 int changed; 72 #ifdef CONFIG_DEBUG_VM 73 WARN_ON(!pud_devmap(*pudp)); 74 assert_spin_locked(pud_lockptr(vma->vm_mm, pudp)); 75 #endif 76 changed = !pud_same(*(pudp), entry); 77 if (changed) { 78 /* 79 * We can use MMU_PAGE_1G here, because only radix 80 * path look at the psize. 81 */ 82 __ptep_set_access_flags(vma, pudp_ptep(pudp), 83 pud_pte(entry), address, MMU_PAGE_1G); 84 } 85 return changed; 86 } 87 88 89 int pmdp_test_and_clear_young(struct vm_area_struct *vma, 90 unsigned long address, pmd_t *pmdp) 91 { 92 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp); 93 } 94 95 int pudp_test_and_clear_young(struct vm_area_struct *vma, 96 unsigned long address, pud_t *pudp) 97 { 98 return __pudp_test_and_clear_young(vma->vm_mm, address, pudp); 99 } 100 101 /* 102 * set a new huge pmd. We should not be called for updating 103 * an existing pmd entry. That should go via pmd_hugepage_update. 104 */ 105 void set_pmd_at(struct mm_struct *mm, unsigned long addr, 106 pmd_t *pmdp, pmd_t pmd) 107 { 108 #ifdef CONFIG_DEBUG_VM 109 /* 110 * Make sure hardware valid bit is not set. We don't do 111 * tlb flush for this update. 112 */ 113 114 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp))); 115 assert_spin_locked(pmd_lockptr(mm, pmdp)); 116 WARN_ON(!(pmd_leaf(pmd))); 117 #endif 118 trace_hugepage_set_pmd(addr, pmd_val(pmd)); 119 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd)); 120 } 121 122 void set_pud_at(struct mm_struct *mm, unsigned long addr, 123 pud_t *pudp, pud_t pud) 124 { 125 #ifdef CONFIG_DEBUG_VM 126 /* 127 * Make sure hardware valid bit is not set. We don't do 128 * tlb flush for this update. 129 */ 130 131 WARN_ON(pte_hw_valid(pud_pte(*pudp))); 132 assert_spin_locked(pud_lockptr(mm, pudp)); 133 WARN_ON(!(pud_leaf(pud))); 134 #endif 135 trace_hugepage_set_pud(addr, pud_val(pud)); 136 return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud)); 137 } 138 139 static void do_serialize(void *arg) 140 { 141 /* We've taken the IPI, so try to trim the mask while here */ 142 if (radix_enabled()) { 143 struct mm_struct *mm = arg; 144 exit_lazy_flush_tlb(mm, false); 145 } 146 } 147 148 /* 149 * Serialize against __find_linux_pte() which does lock-less 150 * lookup in page tables with local interrupts disabled. For huge pages 151 * it casts pmd_t to pte_t. Since format of pte_t is different from 152 * pmd_t we want to prevent transit from pmd pointing to page table 153 * to pmd pointing to huge page (and back) while interrupts are disabled. 154 * We clear pmd to possibly replace it with page table pointer in 155 * different code paths. So make sure we wait for the parallel 156 * __find_linux_pte() to finish. 157 */ 158 void serialize_against_pte_lookup(struct mm_struct *mm) 159 { 160 smp_mb(); 161 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1); 162 } 163 164 /* 165 * We use this to invalidate a pmdp entry before switching from a 166 * hugepte to regular pmd entry. 167 */ 168 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 169 pmd_t *pmdp) 170 { 171 unsigned long old_pmd; 172 173 VM_WARN_ON_ONCE(!pmd_present(*pmdp)); 174 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID); 175 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 176 return __pmd(old_pmd); 177 } 178 179 pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address, 180 pud_t *pudp) 181 { 182 unsigned long old_pud; 183 184 VM_WARN_ON_ONCE(!pud_present(*pudp)); 185 old_pud = pud_hugepage_update(vma->vm_mm, address, pudp, _PAGE_PRESENT, _PAGE_INVALID); 186 flush_pud_tlb_range(vma, address, address + HPAGE_PUD_SIZE); 187 return __pud(old_pud); 188 } 189 190 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 191 unsigned long addr, pmd_t *pmdp, int full) 192 { 193 pmd_t pmd; 194 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 195 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) && 196 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp)); 197 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 198 /* 199 * if it not a fullmm flush, then we can possibly end up converting 200 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 201 * Make sure we flush the tlb in this case. 202 */ 203 if (!full) 204 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); 205 return pmd; 206 } 207 208 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 209 unsigned long addr, pud_t *pudp, int full) 210 { 211 pud_t pud; 212 213 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 214 VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) || 215 !pud_present(*pudp)); 216 pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp); 217 /* 218 * if it not a fullmm flush, then we can possibly end up converting 219 * this PMD pte entry to a regular level 0 PTE by a parallel page fault. 220 * Make sure we flush the tlb in this case. 221 */ 222 if (!full) 223 flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE); 224 return pud; 225 } 226 227 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot) 228 { 229 return __pmd(pmd_val(pmd) | pgprot_val(pgprot)); 230 } 231 232 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot) 233 { 234 return __pud(pud_val(pud) | pgprot_val(pgprot)); 235 } 236 237 /* 238 * At some point we should be able to get rid of 239 * pmd_mkhuge() and mk_huge_pmd() when we update all the 240 * other archs to mark the pmd huge in pfn_pmd() 241 */ 242 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot) 243 { 244 unsigned long pmdv; 245 246 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 247 248 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot)); 249 } 250 251 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot) 252 { 253 unsigned long pudv; 254 255 pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK; 256 257 return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot)); 258 } 259 260 pmd_t mk_pmd(struct page *page, pgprot_t pgprot) 261 { 262 return pfn_pmd(page_to_pfn(page), pgprot); 263 } 264 265 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 266 { 267 unsigned long pmdv; 268 269 pmdv = pmd_val(pmd); 270 pmdv &= _HPAGE_CHG_MASK; 271 return pmd_set_protbits(__pmd(pmdv), newprot); 272 } 273 274 pud_t pud_modify(pud_t pud, pgprot_t newprot) 275 { 276 unsigned long pudv; 277 278 pudv = pud_val(pud); 279 pudv &= _HPAGE_CHG_MASK; 280 return pud_set_protbits(__pud(pudv), newprot); 281 } 282 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 283 284 /* For use by kexec, called with MMU off */ 285 notrace void mmu_cleanup_all(void) 286 { 287 if (radix_enabled()) 288 radix__mmu_cleanup_all(); 289 else if (mmu_hash_ops.hpte_clear_all) 290 mmu_hash_ops.hpte_clear_all(); 291 292 reset_sprs(); 293 } 294 295 #ifdef CONFIG_MEMORY_HOTPLUG 296 int __meminit create_section_mapping(unsigned long start, unsigned long end, 297 int nid, pgprot_t prot) 298 { 299 if (radix_enabled()) 300 return radix__create_section_mapping(start, end, nid, prot); 301 302 return hash__create_section_mapping(start, end, nid, prot); 303 } 304 305 int __meminit remove_section_mapping(unsigned long start, unsigned long end) 306 { 307 if (radix_enabled()) 308 return radix__remove_section_mapping(start, end); 309 310 return hash__remove_section_mapping(start, end); 311 } 312 #endif /* CONFIG_MEMORY_HOTPLUG */ 313 314 void __init mmu_partition_table_init(void) 315 { 316 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT; 317 unsigned long ptcr; 318 319 /* Initialize the Partition Table with no entries */ 320 partition_tb = memblock_alloc(patb_size, patb_size); 321 if (!partition_tb) 322 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 323 __func__, patb_size, patb_size); 324 325 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12); 326 set_ptcr_when_no_uv(ptcr); 327 powernv_set_nmmu_ptcr(ptcr); 328 } 329 330 static void flush_partition(unsigned int lpid, bool radix) 331 { 332 if (radix) { 333 radix__flush_all_lpid(lpid); 334 radix__flush_all_lpid_guest(lpid); 335 } else { 336 asm volatile("ptesync" : : : "memory"); 337 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : : 338 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid)); 339 /* do we need fixup here ?*/ 340 asm volatile("eieio; tlbsync; ptesync" : : : "memory"); 341 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0); 342 } 343 } 344 345 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0, 346 unsigned long dw1, bool flush) 347 { 348 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0); 349 350 /* 351 * When ultravisor is enabled, the partition table is stored in secure 352 * memory and can only be accessed doing an ultravisor call. However, we 353 * maintain a copy of the partition table in normal memory to allow Nest 354 * MMU translations to occur (for normal VMs). 355 * 356 * Therefore, here we always update partition_tb, regardless of whether 357 * we are running under an ultravisor or not. 358 */ 359 partition_tb[lpid].patb0 = cpu_to_be64(dw0); 360 partition_tb[lpid].patb1 = cpu_to_be64(dw1); 361 362 /* 363 * If ultravisor is enabled, we do an ultravisor call to register the 364 * partition table entry (PATE), which also do a global flush of TLBs 365 * and partition table caches for the lpid. Otherwise, just do the 366 * flush. The type of flush (hash or radix) depends on what the previous 367 * use of the partition ID was, not the new use. 368 */ 369 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) { 370 uv_register_pate(lpid, dw0, dw1); 371 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n", 372 dw0, dw1); 373 } else if (flush) { 374 /* 375 * Boot does not need to flush, because MMU is off and each 376 * CPU does a tlbiel_all() before switching them on, which 377 * flushes everything. 378 */ 379 flush_partition(lpid, (old & PATB_HR)); 380 } 381 } 382 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry); 383 384 static pmd_t *get_pmd_from_cache(struct mm_struct *mm) 385 { 386 void *pmd_frag, *ret; 387 388 if (PMD_FRAG_NR == 1) 389 return NULL; 390 391 spin_lock(&mm->page_table_lock); 392 ret = mm->context.pmd_frag; 393 if (ret) { 394 pmd_frag = ret + PMD_FRAG_SIZE; 395 /* 396 * If we have taken up all the fragments mark PTE page NULL 397 */ 398 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0) 399 pmd_frag = NULL; 400 mm->context.pmd_frag = pmd_frag; 401 } 402 spin_unlock(&mm->page_table_lock); 403 return (pmd_t *)ret; 404 } 405 406 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm) 407 { 408 void *ret = NULL; 409 struct ptdesc *ptdesc; 410 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO; 411 412 if (mm == &init_mm) 413 gfp &= ~__GFP_ACCOUNT; 414 ptdesc = pagetable_alloc(gfp, 0); 415 if (!ptdesc) 416 return NULL; 417 if (!pagetable_pmd_ctor(ptdesc)) { 418 pagetable_free(ptdesc); 419 return NULL; 420 } 421 422 atomic_set(&ptdesc->pt_frag_refcount, 1); 423 424 ret = ptdesc_address(ptdesc); 425 /* 426 * if we support only one fragment just return the 427 * allocated page. 428 */ 429 if (PMD_FRAG_NR == 1) 430 return ret; 431 432 spin_lock(&mm->page_table_lock); 433 /* 434 * If we find ptdesc_page set, we return 435 * the allocated page with single fragment 436 * count. 437 */ 438 if (likely(!mm->context.pmd_frag)) { 439 atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR); 440 mm->context.pmd_frag = ret + PMD_FRAG_SIZE; 441 } 442 spin_unlock(&mm->page_table_lock); 443 444 return (pmd_t *)ret; 445 } 446 447 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr) 448 { 449 pmd_t *pmd; 450 451 pmd = get_pmd_from_cache(mm); 452 if (pmd) 453 return pmd; 454 455 return __alloc_for_pmdcache(mm); 456 } 457 458 void pmd_fragment_free(unsigned long *pmd) 459 { 460 struct ptdesc *ptdesc = virt_to_ptdesc(pmd); 461 462 if (pagetable_is_reserved(ptdesc)) 463 return free_reserved_ptdesc(ptdesc); 464 465 BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0); 466 if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) { 467 pagetable_pmd_dtor(ptdesc); 468 pagetable_free(ptdesc); 469 } 470 } 471 472 static inline void pgtable_free(void *table, int index) 473 { 474 switch (index) { 475 case PTE_INDEX: 476 pte_fragment_free(table, 0); 477 break; 478 case PMD_INDEX: 479 pmd_fragment_free(table); 480 break; 481 case PUD_INDEX: 482 __pud_free(table); 483 break; 484 /* We don't free pgd table via RCU callback */ 485 default: 486 BUG(); 487 } 488 } 489 490 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index) 491 { 492 unsigned long pgf = (unsigned long)table; 493 494 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE); 495 pgf |= index; 496 tlb_remove_table(tlb, (void *)pgf); 497 } 498 499 void __tlb_remove_table(void *_table) 500 { 501 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE); 502 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE; 503 504 return pgtable_free(table, index); 505 } 506 507 #ifdef CONFIG_PROC_FS 508 atomic_long_t direct_pages_count[MMU_PAGE_COUNT]; 509 510 void arch_report_meminfo(struct seq_file *m) 511 { 512 /* 513 * Hash maps the memory with one size mmu_linear_psize. 514 * So don't bother to print these on hash 515 */ 516 if (!radix_enabled()) 517 return; 518 seq_printf(m, "DirectMap4k: %8lu kB\n", 519 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2); 520 seq_printf(m, "DirectMap64k: %8lu kB\n", 521 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6); 522 seq_printf(m, "DirectMap2M: %8lu kB\n", 523 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11); 524 seq_printf(m, "DirectMap1G: %8lu kB\n", 525 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20); 526 } 527 #endif /* CONFIG_PROC_FS */ 528 529 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, 530 pte_t *ptep) 531 { 532 unsigned long pte_val; 533 534 /* 535 * Clear the _PAGE_PRESENT so that no hardware parallel update is 536 * possible. Also keep the pte_present true so that we don't take 537 * wrong fault. 538 */ 539 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0); 540 541 return __pte(pte_val); 542 543 } 544 545 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 546 pte_t *ptep, pte_t old_pte, pte_t pte) 547 { 548 if (radix_enabled()) 549 return radix__ptep_modify_prot_commit(vma, addr, 550 ptep, old_pte, pte); 551 set_pte_at(vma->vm_mm, addr, ptep, pte); 552 } 553 554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 555 /* 556 * For hash translation mode, we use the deposited table to store hash slot 557 * information and they are stored at PTRS_PER_PMD offset from related pmd 558 * location. Hence a pmd move requires deposit and withdraw. 559 * 560 * For radix translation with split pmd ptl, we store the deposited table in the 561 * pmd page. Hence if we have different pmd page we need to withdraw during pmd 562 * move. 563 * 564 * With hash we use deposited table always irrespective of anon or not. 565 * With radix we use deposited table only for anonymous mapping. 566 */ 567 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 568 struct spinlock *old_pmd_ptl, 569 struct vm_area_struct *vma) 570 { 571 if (radix_enabled()) 572 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 573 574 return true; 575 } 576 #endif 577 578 /* 579 * Does the CPU support tlbie? 580 */ 581 bool tlbie_capable __read_mostly = true; 582 EXPORT_SYMBOL(tlbie_capable); 583 584 /* 585 * Should tlbie be used for management of CPU TLBs, for kernel and process 586 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM 587 * guest address spaces. 588 */ 589 bool tlbie_enabled __read_mostly = true; 590 591 static int __init setup_disable_tlbie(char *str) 592 { 593 if (!radix_enabled()) { 594 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n"); 595 return 1; 596 } 597 598 tlbie_capable = false; 599 tlbie_enabled = false; 600 601 return 1; 602 } 603 __setup("disable_tlbie", setup_disable_tlbie); 604 605 static int __init pgtable_debugfs_setup(void) 606 { 607 if (!tlbie_capable) 608 return 0; 609 610 /* 611 * There is no locking vs tlb flushing when changing this value. 612 * The tlb flushers will see one value or another, and use either 613 * tlbie or tlbiel with IPIs. In both cases the TLBs will be 614 * invalidated as expected. 615 */ 616 debugfs_create_bool("tlbie_enabled", 0600, 617 arch_debugfs_dir, 618 &tlbie_enabled); 619 620 return 0; 621 } 622 arch_initcall(pgtable_debugfs_setup); 623 624 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN) 625 /* 626 * Override the generic version in mm/memremap.c. 627 * 628 * With hash translation, the direct-map range is mapped with just one 629 * page size selected by htab_init_page_sizes(). Consult 630 * mmu_psize_defs[] to determine the minimum page size alignment. 631 */ 632 unsigned long memremap_compat_align(void) 633 { 634 if (!radix_enabled()) { 635 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift; 636 return max(SUBSECTION_SIZE, 1UL << shift); 637 } 638 639 return SUBSECTION_SIZE; 640 } 641 EXPORT_SYMBOL_GPL(memremap_compat_align); 642 #endif 643 644 pgprot_t vm_get_page_prot(unsigned long vm_flags) 645 { 646 unsigned long prot; 647 648 /* Radix supports execute-only, but protection_map maps X -> RX */ 649 if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)) 650 vm_flags |= VM_READ; 651 652 prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]); 653 654 if (vm_flags & VM_SAO) 655 prot |= _PAGE_SAO; 656 657 #ifdef CONFIG_PPC_MEM_KEYS 658 prot |= vmflag_to_pte_pkey_bits(vm_flags); 659 #endif 660 661 return __pgprot(prot); 662 } 663 EXPORT_SYMBOL(vm_get_page_prot); 664