xref: /linux/arch/powerpc/mm/book3s64/pgtable.c (revision 4e73826089ce899357580bbf6e0afe4e6f9900b7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <linux/memremap.h>
10 #include <linux/pkeys.h>
11 #include <linux/debugfs.h>
12 #include <linux/proc_fs.h>
13 #include <misc/cxl-base.h>
14 
15 #include <asm/pgalloc.h>
16 #include <asm/tlb.h>
17 #include <asm/trace.h>
18 #include <asm/powernv.h>
19 #include <asm/firmware.h>
20 #include <asm/ultravisor.h>
21 #include <asm/kexec.h>
22 
23 #include <mm/mmu_decl.h>
24 #include <trace/events/thp.h>
25 
26 #include "internal.h"
27 
28 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
29 EXPORT_SYMBOL_GPL(mmu_psize_defs);
30 
31 #ifdef CONFIG_SPARSEMEM_VMEMMAP
32 int mmu_vmemmap_psize = MMU_PAGE_4K;
33 #endif
34 
35 unsigned long __pmd_frag_nr;
36 EXPORT_SYMBOL(__pmd_frag_nr);
37 unsigned long __pmd_frag_size_shift;
38 EXPORT_SYMBOL(__pmd_frag_size_shift);
39 
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
41 /*
42  * This is called when relaxing access to a hugepage. It's also called in the page
43  * fault path when we don't hit any of the major fault cases, ie, a minor
44  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
45  * handled those two for us, we additionally deal with missing execute
46  * permission here on some processors
47  */
48 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
49 			  pmd_t *pmdp, pmd_t entry, int dirty)
50 {
51 	int changed;
52 #ifdef CONFIG_DEBUG_VM
53 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
54 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
55 #endif
56 	changed = !pmd_same(*(pmdp), entry);
57 	if (changed) {
58 		/*
59 		 * We can use MMU_PAGE_2M here, because only radix
60 		 * path look at the psize.
61 		 */
62 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
63 					pmd_pte(entry), address, MMU_PAGE_2M);
64 	}
65 	return changed;
66 }
67 
68 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
69 			  pud_t *pudp, pud_t entry, int dirty)
70 {
71 	int changed;
72 #ifdef CONFIG_DEBUG_VM
73 	WARN_ON(!pud_devmap(*pudp));
74 	assert_spin_locked(pud_lockptr(vma->vm_mm, pudp));
75 #endif
76 	changed = !pud_same(*(pudp), entry);
77 	if (changed) {
78 		/*
79 		 * We can use MMU_PAGE_1G here, because only radix
80 		 * path look at the psize.
81 		 */
82 		__ptep_set_access_flags(vma, pudp_ptep(pudp),
83 					pud_pte(entry), address, MMU_PAGE_1G);
84 	}
85 	return changed;
86 }
87 
88 
89 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
90 			      unsigned long address, pmd_t *pmdp)
91 {
92 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
93 }
94 
95 int pudp_test_and_clear_young(struct vm_area_struct *vma,
96 			      unsigned long address, pud_t *pudp)
97 {
98 	return __pudp_test_and_clear_young(vma->vm_mm, address, pudp);
99 }
100 
101 /*
102  * set a new huge pmd. We should not be called for updating
103  * an existing pmd entry. That should go via pmd_hugepage_update.
104  */
105 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
106 		pmd_t *pmdp, pmd_t pmd)
107 {
108 #ifdef CONFIG_DEBUG_VM
109 	/*
110 	 * Make sure hardware valid bit is not set. We don't do
111 	 * tlb flush for this update.
112 	 */
113 
114 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
115 	assert_spin_locked(pmd_lockptr(mm, pmdp));
116 	WARN_ON(!(pmd_large(pmd)));
117 #endif
118 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
119 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
120 }
121 
122 void set_pud_at(struct mm_struct *mm, unsigned long addr,
123 		pud_t *pudp, pud_t pud)
124 {
125 #ifdef CONFIG_DEBUG_VM
126 	/*
127 	 * Make sure hardware valid bit is not set. We don't do
128 	 * tlb flush for this update.
129 	 */
130 
131 	WARN_ON(pte_hw_valid(pud_pte(*pudp)));
132 	assert_spin_locked(pud_lockptr(mm, pudp));
133 	WARN_ON(!(pud_large(pud)));
134 #endif
135 	trace_hugepage_set_pud(addr, pud_val(pud));
136 	return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud));
137 }
138 
139 static void do_serialize(void *arg)
140 {
141 	/* We've taken the IPI, so try to trim the mask while here */
142 	if (radix_enabled()) {
143 		struct mm_struct *mm = arg;
144 		exit_lazy_flush_tlb(mm, false);
145 	}
146 }
147 
148 /*
149  * Serialize against __find_linux_pte() which does lock-less
150  * lookup in page tables with local interrupts disabled. For huge pages
151  * it casts pmd_t to pte_t. Since format of pte_t is different from
152  * pmd_t we want to prevent transit from pmd pointing to page table
153  * to pmd pointing to huge page (and back) while interrupts are disabled.
154  * We clear pmd to possibly replace it with page table pointer in
155  * different code paths. So make sure we wait for the parallel
156  * __find_linux_pte() to finish.
157  */
158 void serialize_against_pte_lookup(struct mm_struct *mm)
159 {
160 	smp_mb();
161 	smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
162 }
163 
164 /*
165  * We use this to invalidate a pmdp entry before switching from a
166  * hugepte to regular pmd entry.
167  */
168 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
169 		     pmd_t *pmdp)
170 {
171 	unsigned long old_pmd;
172 
173 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
174 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
175 	return __pmd(old_pmd);
176 }
177 
178 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
179 				   unsigned long addr, pmd_t *pmdp, int full)
180 {
181 	pmd_t pmd;
182 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
183 	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
184 		   !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
185 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
186 	/*
187 	 * if it not a fullmm flush, then we can possibly end up converting
188 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
189 	 * Make sure we flush the tlb in this case.
190 	 */
191 	if (!full)
192 		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
193 	return pmd;
194 }
195 
196 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
197 				   unsigned long addr, pud_t *pudp, int full)
198 {
199 	pud_t pud;
200 
201 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
202 	VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) ||
203 		  !pud_present(*pudp));
204 	pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp);
205 	/*
206 	 * if it not a fullmm flush, then we can possibly end up converting
207 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
208 	 * Make sure we flush the tlb in this case.
209 	 */
210 	if (!full)
211 		flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE);
212 	return pud;
213 }
214 
215 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
216 {
217 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
218 }
219 
220 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot)
221 {
222 	return __pud(pud_val(pud) | pgprot_val(pgprot));
223 }
224 
225 /*
226  * At some point we should be able to get rid of
227  * pmd_mkhuge() and mk_huge_pmd() when we update all the
228  * other archs to mark the pmd huge in pfn_pmd()
229  */
230 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
231 {
232 	unsigned long pmdv;
233 
234 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
235 
236 	return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
237 }
238 
239 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot)
240 {
241 	unsigned long pudv;
242 
243 	pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
244 
245 	return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot));
246 }
247 
248 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
249 {
250 	return pfn_pmd(page_to_pfn(page), pgprot);
251 }
252 
253 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
254 {
255 	unsigned long pmdv;
256 
257 	pmdv = pmd_val(pmd);
258 	pmdv &= _HPAGE_CHG_MASK;
259 	return pmd_set_protbits(__pmd(pmdv), newprot);
260 }
261 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
262 
263 /* For use by kexec, called with MMU off */
264 notrace void mmu_cleanup_all(void)
265 {
266 	if (radix_enabled())
267 		radix__mmu_cleanup_all();
268 	else if (mmu_hash_ops.hpte_clear_all)
269 		mmu_hash_ops.hpte_clear_all();
270 
271 	reset_sprs();
272 }
273 
274 #ifdef CONFIG_MEMORY_HOTPLUG
275 int __meminit create_section_mapping(unsigned long start, unsigned long end,
276 				     int nid, pgprot_t prot)
277 {
278 	if (radix_enabled())
279 		return radix__create_section_mapping(start, end, nid, prot);
280 
281 	return hash__create_section_mapping(start, end, nid, prot);
282 }
283 
284 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
285 {
286 	if (radix_enabled())
287 		return radix__remove_section_mapping(start, end);
288 
289 	return hash__remove_section_mapping(start, end);
290 }
291 #endif /* CONFIG_MEMORY_HOTPLUG */
292 
293 void __init mmu_partition_table_init(void)
294 {
295 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
296 	unsigned long ptcr;
297 
298 	/* Initialize the Partition Table with no entries */
299 	partition_tb = memblock_alloc(patb_size, patb_size);
300 	if (!partition_tb)
301 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
302 		      __func__, patb_size, patb_size);
303 
304 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
305 	set_ptcr_when_no_uv(ptcr);
306 	powernv_set_nmmu_ptcr(ptcr);
307 }
308 
309 static void flush_partition(unsigned int lpid, bool radix)
310 {
311 	if (radix) {
312 		radix__flush_all_lpid(lpid);
313 		radix__flush_all_lpid_guest(lpid);
314 	} else {
315 		asm volatile("ptesync" : : : "memory");
316 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
317 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
318 		/* do we need fixup here ?*/
319 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
320 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
321 	}
322 }
323 
324 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
325 				  unsigned long dw1, bool flush)
326 {
327 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
328 
329 	/*
330 	 * When ultravisor is enabled, the partition table is stored in secure
331 	 * memory and can only be accessed doing an ultravisor call. However, we
332 	 * maintain a copy of the partition table in normal memory to allow Nest
333 	 * MMU translations to occur (for normal VMs).
334 	 *
335 	 * Therefore, here we always update partition_tb, regardless of whether
336 	 * we are running under an ultravisor or not.
337 	 */
338 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
339 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
340 
341 	/*
342 	 * If ultravisor is enabled, we do an ultravisor call to register the
343 	 * partition table entry (PATE), which also do a global flush of TLBs
344 	 * and partition table caches for the lpid. Otherwise, just do the
345 	 * flush. The type of flush (hash or radix) depends on what the previous
346 	 * use of the partition ID was, not the new use.
347 	 */
348 	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
349 		uv_register_pate(lpid, dw0, dw1);
350 		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
351 			dw0, dw1);
352 	} else if (flush) {
353 		/*
354 		 * Boot does not need to flush, because MMU is off and each
355 		 * CPU does a tlbiel_all() before switching them on, which
356 		 * flushes everything.
357 		 */
358 		flush_partition(lpid, (old & PATB_HR));
359 	}
360 }
361 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
362 
363 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
364 {
365 	void *pmd_frag, *ret;
366 
367 	if (PMD_FRAG_NR == 1)
368 		return NULL;
369 
370 	spin_lock(&mm->page_table_lock);
371 	ret = mm->context.pmd_frag;
372 	if (ret) {
373 		pmd_frag = ret + PMD_FRAG_SIZE;
374 		/*
375 		 * If we have taken up all the fragments mark PTE page NULL
376 		 */
377 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
378 			pmd_frag = NULL;
379 		mm->context.pmd_frag = pmd_frag;
380 	}
381 	spin_unlock(&mm->page_table_lock);
382 	return (pmd_t *)ret;
383 }
384 
385 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
386 {
387 	void *ret = NULL;
388 	struct ptdesc *ptdesc;
389 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
390 
391 	if (mm == &init_mm)
392 		gfp &= ~__GFP_ACCOUNT;
393 	ptdesc = pagetable_alloc(gfp, 0);
394 	if (!ptdesc)
395 		return NULL;
396 	if (!pagetable_pmd_ctor(ptdesc)) {
397 		pagetable_free(ptdesc);
398 		return NULL;
399 	}
400 
401 	atomic_set(&ptdesc->pt_frag_refcount, 1);
402 
403 	ret = ptdesc_address(ptdesc);
404 	/*
405 	 * if we support only one fragment just return the
406 	 * allocated page.
407 	 */
408 	if (PMD_FRAG_NR == 1)
409 		return ret;
410 
411 	spin_lock(&mm->page_table_lock);
412 	/*
413 	 * If we find ptdesc_page set, we return
414 	 * the allocated page with single fragment
415 	 * count.
416 	 */
417 	if (likely(!mm->context.pmd_frag)) {
418 		atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR);
419 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
420 	}
421 	spin_unlock(&mm->page_table_lock);
422 
423 	return (pmd_t *)ret;
424 }
425 
426 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
427 {
428 	pmd_t *pmd;
429 
430 	pmd = get_pmd_from_cache(mm);
431 	if (pmd)
432 		return pmd;
433 
434 	return __alloc_for_pmdcache(mm);
435 }
436 
437 void pmd_fragment_free(unsigned long *pmd)
438 {
439 	struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
440 
441 	if (pagetable_is_reserved(ptdesc))
442 		return free_reserved_ptdesc(ptdesc);
443 
444 	BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
445 	if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
446 		pagetable_pmd_dtor(ptdesc);
447 		pagetable_free(ptdesc);
448 	}
449 }
450 
451 static inline void pgtable_free(void *table, int index)
452 {
453 	switch (index) {
454 	case PTE_INDEX:
455 		pte_fragment_free(table, 0);
456 		break;
457 	case PMD_INDEX:
458 		pmd_fragment_free(table);
459 		break;
460 	case PUD_INDEX:
461 		__pud_free(table);
462 		break;
463 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
464 		/* 16M hugepd directory at pud level */
465 	case HTLB_16M_INDEX:
466 		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
467 		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
468 		break;
469 		/* 16G hugepd directory at the pgd level */
470 	case HTLB_16G_INDEX:
471 		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
472 		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
473 		break;
474 #endif
475 		/* We don't free pgd table via RCU callback */
476 	default:
477 		BUG();
478 	}
479 }
480 
481 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
482 {
483 	unsigned long pgf = (unsigned long)table;
484 
485 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
486 	pgf |= index;
487 	tlb_remove_table(tlb, (void *)pgf);
488 }
489 
490 void __tlb_remove_table(void *_table)
491 {
492 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
493 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
494 
495 	return pgtable_free(table, index);
496 }
497 
498 #ifdef CONFIG_PROC_FS
499 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
500 
501 void arch_report_meminfo(struct seq_file *m)
502 {
503 	/*
504 	 * Hash maps the memory with one size mmu_linear_psize.
505 	 * So don't bother to print these on hash
506 	 */
507 	if (!radix_enabled())
508 		return;
509 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
510 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
511 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
512 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
513 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
514 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
515 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
516 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
517 }
518 #endif /* CONFIG_PROC_FS */
519 
520 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
521 			     pte_t *ptep)
522 {
523 	unsigned long pte_val;
524 
525 	/*
526 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
527 	 * possible. Also keep the pte_present true so that we don't take
528 	 * wrong fault.
529 	 */
530 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
531 
532 	return __pte(pte_val);
533 
534 }
535 
536 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
537 			     pte_t *ptep, pte_t old_pte, pte_t pte)
538 {
539 	if (radix_enabled())
540 		return radix__ptep_modify_prot_commit(vma, addr,
541 						      ptep, old_pte, pte);
542 	set_pte_at(vma->vm_mm, addr, ptep, pte);
543 }
544 
545 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
546 /*
547  * For hash translation mode, we use the deposited table to store hash slot
548  * information and they are stored at PTRS_PER_PMD offset from related pmd
549  * location. Hence a pmd move requires deposit and withdraw.
550  *
551  * For radix translation with split pmd ptl, we store the deposited table in the
552  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
553  * move.
554  *
555  * With hash we use deposited table always irrespective of anon or not.
556  * With radix we use deposited table only for anonymous mapping.
557  */
558 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
559 			   struct spinlock *old_pmd_ptl,
560 			   struct vm_area_struct *vma)
561 {
562 	if (radix_enabled())
563 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
564 
565 	return true;
566 }
567 #endif
568 
569 /*
570  * Does the CPU support tlbie?
571  */
572 bool tlbie_capable __read_mostly = true;
573 EXPORT_SYMBOL(tlbie_capable);
574 
575 /*
576  * Should tlbie be used for management of CPU TLBs, for kernel and process
577  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
578  * guest address spaces.
579  */
580 bool tlbie_enabled __read_mostly = true;
581 
582 static int __init setup_disable_tlbie(char *str)
583 {
584 	if (!radix_enabled()) {
585 		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
586 		return 1;
587 	}
588 
589 	tlbie_capable = false;
590 	tlbie_enabled = false;
591 
592         return 1;
593 }
594 __setup("disable_tlbie", setup_disable_tlbie);
595 
596 static int __init pgtable_debugfs_setup(void)
597 {
598 	if (!tlbie_capable)
599 		return 0;
600 
601 	/*
602 	 * There is no locking vs tlb flushing when changing this value.
603 	 * The tlb flushers will see one value or another, and use either
604 	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
605 	 * invalidated as expected.
606 	 */
607 	debugfs_create_bool("tlbie_enabled", 0600,
608 			arch_debugfs_dir,
609 			&tlbie_enabled);
610 
611 	return 0;
612 }
613 arch_initcall(pgtable_debugfs_setup);
614 
615 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
616 /*
617  * Override the generic version in mm/memremap.c.
618  *
619  * With hash translation, the direct-map range is mapped with just one
620  * page size selected by htab_init_page_sizes(). Consult
621  * mmu_psize_defs[] to determine the minimum page size alignment.
622 */
623 unsigned long memremap_compat_align(void)
624 {
625 	if (!radix_enabled()) {
626 		unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
627 		return max(SUBSECTION_SIZE, 1UL << shift);
628 	}
629 
630 	return SUBSECTION_SIZE;
631 }
632 EXPORT_SYMBOL_GPL(memremap_compat_align);
633 #endif
634 
635 pgprot_t vm_get_page_prot(unsigned long vm_flags)
636 {
637 	unsigned long prot;
638 
639 	/* Radix supports execute-only, but protection_map maps X -> RX */
640 	if (!radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC))
641 		vm_flags |= VM_READ;
642 
643 	prot = pgprot_val(protection_map[vm_flags & (VM_ACCESS_FLAGS | VM_SHARED)]);
644 
645 	if (vm_flags & VM_SAO)
646 		prot |= _PAGE_SAO;
647 
648 #ifdef CONFIG_PPC_MEM_KEYS
649 	prot |= vmflag_to_pte_pkey_bits(vm_flags);
650 #endif
651 
652 	return __pgprot(prot);
653 }
654 EXPORT_SYMBOL(vm_get_page_prot);
655