xref: /linux/arch/powerpc/mm/book3s64/pgtable.c (revision 3ca3af7d1f230d1f93ba4cd8cd9d054870f2406f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <linux/debugfs.h>
10 #include <misc/cxl-base.h>
11 
12 #include <asm/pgalloc.h>
13 #include <asm/tlb.h>
14 #include <asm/trace.h>
15 #include <asm/powernv.h>
16 #include <asm/firmware.h>
17 #include <asm/ultravisor.h>
18 #include <asm/kexec.h>
19 
20 #include <mm/mmu_decl.h>
21 #include <trace/events/thp.h>
22 
23 #include "internal.h"
24 
25 unsigned long __pmd_frag_nr;
26 EXPORT_SYMBOL(__pmd_frag_nr);
27 unsigned long __pmd_frag_size_shift;
28 EXPORT_SYMBOL(__pmd_frag_size_shift);
29 
30 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
31 /*
32  * This is called when relaxing access to a hugepage. It's also called in the page
33  * fault path when we don't hit any of the major fault cases, ie, a minor
34  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
35  * handled those two for us, we additionally deal with missing execute
36  * permission here on some processors
37  */
38 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
39 			  pmd_t *pmdp, pmd_t entry, int dirty)
40 {
41 	int changed;
42 #ifdef CONFIG_DEBUG_VM
43 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
44 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
45 #endif
46 	changed = !pmd_same(*(pmdp), entry);
47 	if (changed) {
48 		/*
49 		 * We can use MMU_PAGE_2M here, because only radix
50 		 * path look at the psize.
51 		 */
52 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
53 					pmd_pte(entry), address, MMU_PAGE_2M);
54 	}
55 	return changed;
56 }
57 
58 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
59 			      unsigned long address, pmd_t *pmdp)
60 {
61 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
62 }
63 /*
64  * set a new huge pmd. We should not be called for updating
65  * an existing pmd entry. That should go via pmd_hugepage_update.
66  */
67 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
68 		pmd_t *pmdp, pmd_t pmd)
69 {
70 #ifdef CONFIG_DEBUG_VM
71 	/*
72 	 * Make sure hardware valid bit is not set. We don't do
73 	 * tlb flush for this update.
74 	 */
75 
76 	WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
77 	assert_spin_locked(pmd_lockptr(mm, pmdp));
78 	WARN_ON(!(pmd_large(pmd)));
79 #endif
80 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
81 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
82 }
83 
84 static void do_serialize(void *arg)
85 {
86 	/* We've taken the IPI, so try to trim the mask while here */
87 	if (radix_enabled()) {
88 		struct mm_struct *mm = arg;
89 		exit_lazy_flush_tlb(mm, false);
90 	}
91 }
92 
93 /*
94  * Serialize against find_current_mm_pte which does lock-less
95  * lookup in page tables with local interrupts disabled. For huge pages
96  * it casts pmd_t to pte_t. Since format of pte_t is different from
97  * pmd_t we want to prevent transit from pmd pointing to page table
98  * to pmd pointing to huge page (and back) while interrupts are disabled.
99  * We clear pmd to possibly replace it with page table pointer in
100  * different code paths. So make sure we wait for the parallel
101  * find_current_mm_pte to finish.
102  */
103 void serialize_against_pte_lookup(struct mm_struct *mm)
104 {
105 	smp_mb();
106 	smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
107 }
108 
109 /*
110  * We use this to invalidate a pmdp entry before switching from a
111  * hugepte to regular pmd entry.
112  */
113 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
114 		     pmd_t *pmdp)
115 {
116 	unsigned long old_pmd;
117 
118 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
119 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
120 	return __pmd(old_pmd);
121 }
122 
123 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
124 				   unsigned long addr, pmd_t *pmdp, int full)
125 {
126 	pmd_t pmd;
127 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
128 	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
129 		   !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
130 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
131 	/*
132 	 * if it not a fullmm flush, then we can possibly end up converting
133 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
134 	 * Make sure we flush the tlb in this case.
135 	 */
136 	if (!full)
137 		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
138 	return pmd;
139 }
140 
141 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
142 {
143 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
144 }
145 
146 /*
147  * At some point we should be able to get rid of
148  * pmd_mkhuge() and mk_huge_pmd() when we update all the
149  * other archs to mark the pmd huge in pfn_pmd()
150  */
151 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
152 {
153 	unsigned long pmdv;
154 
155 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
156 
157 	return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
158 }
159 
160 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
161 {
162 	return pfn_pmd(page_to_pfn(page), pgprot);
163 }
164 
165 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
166 {
167 	unsigned long pmdv;
168 
169 	pmdv = pmd_val(pmd);
170 	pmdv &= _HPAGE_CHG_MASK;
171 	return pmd_set_protbits(__pmd(pmdv), newprot);
172 }
173 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
174 
175 /* For use by kexec, called with MMU off */
176 notrace void mmu_cleanup_all(void)
177 {
178 	if (radix_enabled())
179 		radix__mmu_cleanup_all();
180 	else if (mmu_hash_ops.hpte_clear_all)
181 		mmu_hash_ops.hpte_clear_all();
182 
183 	reset_sprs();
184 }
185 
186 #ifdef CONFIG_MEMORY_HOTPLUG
187 int __meminit create_section_mapping(unsigned long start, unsigned long end,
188 				     int nid, pgprot_t prot)
189 {
190 	if (radix_enabled())
191 		return radix__create_section_mapping(start, end, nid, prot);
192 
193 	return hash__create_section_mapping(start, end, nid, prot);
194 }
195 
196 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
197 {
198 	if (radix_enabled())
199 		return radix__remove_section_mapping(start, end);
200 
201 	return hash__remove_section_mapping(start, end);
202 }
203 #endif /* CONFIG_MEMORY_HOTPLUG */
204 
205 void __init mmu_partition_table_init(void)
206 {
207 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
208 	unsigned long ptcr;
209 
210 	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
211 	/* Initialize the Partition Table with no entries */
212 	partition_tb = memblock_alloc(patb_size, patb_size);
213 	if (!partition_tb)
214 		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
215 		      __func__, patb_size, patb_size);
216 
217 	/*
218 	 * update partition table control register,
219 	 * 64 K size.
220 	 */
221 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
222 	set_ptcr_when_no_uv(ptcr);
223 	powernv_set_nmmu_ptcr(ptcr);
224 }
225 
226 static void flush_partition(unsigned int lpid, bool radix)
227 {
228 	if (radix) {
229 		radix__flush_all_lpid(lpid);
230 		radix__flush_all_lpid_guest(lpid);
231 	} else {
232 		asm volatile("ptesync" : : : "memory");
233 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
234 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
235 		/* do we need fixup here ?*/
236 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
237 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
238 	}
239 }
240 
241 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
242 				  unsigned long dw1, bool flush)
243 {
244 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
245 
246 	/*
247 	 * When ultravisor is enabled, the partition table is stored in secure
248 	 * memory and can only be accessed doing an ultravisor call. However, we
249 	 * maintain a copy of the partition table in normal memory to allow Nest
250 	 * MMU translations to occur (for normal VMs).
251 	 *
252 	 * Therefore, here we always update partition_tb, regardless of whether
253 	 * we are running under an ultravisor or not.
254 	 */
255 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
256 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
257 
258 	/*
259 	 * If ultravisor is enabled, we do an ultravisor call to register the
260 	 * partition table entry (PATE), which also do a global flush of TLBs
261 	 * and partition table caches for the lpid. Otherwise, just do the
262 	 * flush. The type of flush (hash or radix) depends on what the previous
263 	 * use of the partition ID was, not the new use.
264 	 */
265 	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
266 		uv_register_pate(lpid, dw0, dw1);
267 		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
268 			dw0, dw1);
269 	} else if (flush) {
270 		/*
271 		 * Boot does not need to flush, because MMU is off and each
272 		 * CPU does a tlbiel_all() before switching them on, which
273 		 * flushes everything.
274 		 */
275 		flush_partition(lpid, (old & PATB_HR));
276 	}
277 }
278 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
279 
280 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
281 {
282 	void *pmd_frag, *ret;
283 
284 	if (PMD_FRAG_NR == 1)
285 		return NULL;
286 
287 	spin_lock(&mm->page_table_lock);
288 	ret = mm->context.pmd_frag;
289 	if (ret) {
290 		pmd_frag = ret + PMD_FRAG_SIZE;
291 		/*
292 		 * If we have taken up all the fragments mark PTE page NULL
293 		 */
294 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
295 			pmd_frag = NULL;
296 		mm->context.pmd_frag = pmd_frag;
297 	}
298 	spin_unlock(&mm->page_table_lock);
299 	return (pmd_t *)ret;
300 }
301 
302 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
303 {
304 	void *ret = NULL;
305 	struct page *page;
306 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
307 
308 	if (mm == &init_mm)
309 		gfp &= ~__GFP_ACCOUNT;
310 	page = alloc_page(gfp);
311 	if (!page)
312 		return NULL;
313 	if (!pgtable_pmd_page_ctor(page)) {
314 		__free_pages(page, 0);
315 		return NULL;
316 	}
317 
318 	atomic_set(&page->pt_frag_refcount, 1);
319 
320 	ret = page_address(page);
321 	/*
322 	 * if we support only one fragment just return the
323 	 * allocated page.
324 	 */
325 	if (PMD_FRAG_NR == 1)
326 		return ret;
327 
328 	spin_lock(&mm->page_table_lock);
329 	/*
330 	 * If we find pgtable_page set, we return
331 	 * the allocated page with single fragement
332 	 * count.
333 	 */
334 	if (likely(!mm->context.pmd_frag)) {
335 		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
336 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
337 	}
338 	spin_unlock(&mm->page_table_lock);
339 
340 	return (pmd_t *)ret;
341 }
342 
343 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
344 {
345 	pmd_t *pmd;
346 
347 	pmd = get_pmd_from_cache(mm);
348 	if (pmd)
349 		return pmd;
350 
351 	return __alloc_for_pmdcache(mm);
352 }
353 
354 void pmd_fragment_free(unsigned long *pmd)
355 {
356 	struct page *page = virt_to_page(pmd);
357 
358 	if (PageReserved(page))
359 		return free_reserved_page(page);
360 
361 	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
362 	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
363 		pgtable_pmd_page_dtor(page);
364 		__free_page(page);
365 	}
366 }
367 
368 static inline void pgtable_free(void *table, int index)
369 {
370 	switch (index) {
371 	case PTE_INDEX:
372 		pte_fragment_free(table, 0);
373 		break;
374 	case PMD_INDEX:
375 		pmd_fragment_free(table);
376 		break;
377 	case PUD_INDEX:
378 		__pud_free(table);
379 		break;
380 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
381 		/* 16M hugepd directory at pud level */
382 	case HTLB_16M_INDEX:
383 		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
384 		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
385 		break;
386 		/* 16G hugepd directory at the pgd level */
387 	case HTLB_16G_INDEX:
388 		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
389 		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
390 		break;
391 #endif
392 		/* We don't free pgd table via RCU callback */
393 	default:
394 		BUG();
395 	}
396 }
397 
398 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
399 {
400 	unsigned long pgf = (unsigned long)table;
401 
402 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
403 	pgf |= index;
404 	tlb_remove_table(tlb, (void *)pgf);
405 }
406 
407 void __tlb_remove_table(void *_table)
408 {
409 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
410 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
411 
412 	return pgtable_free(table, index);
413 }
414 
415 #ifdef CONFIG_PROC_FS
416 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
417 
418 void arch_report_meminfo(struct seq_file *m)
419 {
420 	/*
421 	 * Hash maps the memory with one size mmu_linear_psize.
422 	 * So don't bother to print these on hash
423 	 */
424 	if (!radix_enabled())
425 		return;
426 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
427 		   atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
428 	seq_printf(m, "DirectMap64k:    %8lu kB\n",
429 		   atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
430 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
431 		   atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
432 	seq_printf(m, "DirectMap1G:    %8lu kB\n",
433 		   atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
434 }
435 #endif /* CONFIG_PROC_FS */
436 
437 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
438 			     pte_t *ptep)
439 {
440 	unsigned long pte_val;
441 
442 	/*
443 	 * Clear the _PAGE_PRESENT so that no hardware parallel update is
444 	 * possible. Also keep the pte_present true so that we don't take
445 	 * wrong fault.
446 	 */
447 	pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
448 
449 	return __pte(pte_val);
450 
451 }
452 
453 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
454 			     pte_t *ptep, pte_t old_pte, pte_t pte)
455 {
456 	if (radix_enabled())
457 		return radix__ptep_modify_prot_commit(vma, addr,
458 						      ptep, old_pte, pte);
459 	set_pte_at(vma->vm_mm, addr, ptep, pte);
460 }
461 
462 /*
463  * For hash translation mode, we use the deposited table to store hash slot
464  * information and they are stored at PTRS_PER_PMD offset from related pmd
465  * location. Hence a pmd move requires deposit and withdraw.
466  *
467  * For radix translation with split pmd ptl, we store the deposited table in the
468  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
469  * move.
470  *
471  * With hash we use deposited table always irrespective of anon or not.
472  * With radix we use deposited table only for anonymous mapping.
473  */
474 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
475 			   struct spinlock *old_pmd_ptl,
476 			   struct vm_area_struct *vma)
477 {
478 	if (radix_enabled())
479 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
480 
481 	return true;
482 }
483 
484 /*
485  * Does the CPU support tlbie?
486  */
487 bool tlbie_capable __read_mostly = true;
488 EXPORT_SYMBOL(tlbie_capable);
489 
490 /*
491  * Should tlbie be used for management of CPU TLBs, for kernel and process
492  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
493  * guest address spaces.
494  */
495 bool tlbie_enabled __read_mostly = true;
496 
497 static int __init setup_disable_tlbie(char *str)
498 {
499 	if (!radix_enabled()) {
500 		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
501 		return 1;
502 	}
503 
504 	tlbie_capable = false;
505 	tlbie_enabled = false;
506 
507         return 1;
508 }
509 __setup("disable_tlbie", setup_disable_tlbie);
510 
511 static int __init pgtable_debugfs_setup(void)
512 {
513 	if (!tlbie_capable)
514 		return 0;
515 
516 	/*
517 	 * There is no locking vs tlb flushing when changing this value.
518 	 * The tlb flushers will see one value or another, and use either
519 	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
520 	 * invalidated as expected.
521 	 */
522 	debugfs_create_bool("tlbie_enabled", 0600,
523 			arch_debugfs_dir,
524 			&tlbie_enabled);
525 
526 	return 0;
527 }
528 arch_initcall(pgtable_debugfs_setup);
529