xref: /linux/arch/powerpc/mm/book3s64/mmu_context.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  MMU context allocation for 64-bit kernels.
4  *
5  *  Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/mm.h>
14 #include <linux/pkeys.h>
15 #include <linux/spinlock.h>
16 #include <linux/idr.h>
17 #include <linux/export.h>
18 #include <linux/gfp.h>
19 #include <linux/slab.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/pgalloc.h>
23 
24 static DEFINE_IDA(mmu_context_ida);
25 
26 static int alloc_context_id(int min_id, int max_id)
27 {
28 	return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL);
29 }
30 
31 void hash__reserve_context_id(int id)
32 {
33 	int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL);
34 
35 	WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result);
36 }
37 
38 int hash__alloc_context_id(void)
39 {
40 	unsigned long max;
41 
42 	if (mmu_has_feature(MMU_FTR_68_BIT_VA))
43 		max = MAX_USER_CONTEXT;
44 	else
45 		max = MAX_USER_CONTEXT_65BIT_VA;
46 
47 	return alloc_context_id(MIN_USER_CONTEXT, max);
48 }
49 EXPORT_SYMBOL_GPL(hash__alloc_context_id);
50 
51 void slb_setup_new_exec(void);
52 
53 static int hash__init_new_context(struct mm_struct *mm)
54 {
55 	int index;
56 
57 	index = hash__alloc_context_id();
58 	if (index < 0)
59 		return index;
60 
61 	mm->context.hash_context = kmalloc(sizeof(struct hash_mm_context),
62 					   GFP_KERNEL);
63 	if (!mm->context.hash_context) {
64 		ida_free(&mmu_context_ida, index);
65 		return -ENOMEM;
66 	}
67 
68 	/*
69 	 * The old code would re-promote on fork, we don't do that when using
70 	 * slices as it could cause problem promoting slices that have been
71 	 * forced down to 4K.
72 	 *
73 	 * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
74 	 * explicitly against context.id == 0. This ensures that we properly
75 	 * initialize context slice details for newly allocated mm's (which will
76 	 * have id == 0) and don't alter context slice inherited via fork (which
77 	 * will have id != 0).
78 	 *
79 	 * We should not be calling init_new_context() on init_mm. Hence a
80 	 * check against 0 is OK.
81 	 */
82 	if (mm->context.id == 0) {
83 		memset(mm->context.hash_context, 0, sizeof(struct hash_mm_context));
84 		slice_init_new_context_exec(mm);
85 	} else {
86 		/* This is fork. Copy hash_context details from current->mm */
87 		memcpy(mm->context.hash_context, current->mm->context.hash_context, sizeof(struct hash_mm_context));
88 #ifdef CONFIG_PPC_SUBPAGE_PROT
89 		/* inherit subpage prot detalis if we have one. */
90 		if (current->mm->context.hash_context->spt) {
91 			mm->context.hash_context->spt = kmalloc(sizeof(struct subpage_prot_table),
92 								GFP_KERNEL);
93 			if (!mm->context.hash_context->spt) {
94 				ida_free(&mmu_context_ida, index);
95 				kfree(mm->context.hash_context);
96 				return -ENOMEM;
97 			}
98 		}
99 #endif
100 
101 	}
102 
103 	pkey_mm_init(mm);
104 	return index;
105 }
106 
107 void hash__setup_new_exec(void)
108 {
109 	slice_setup_new_exec();
110 
111 	slb_setup_new_exec();
112 }
113 
114 static int radix__init_new_context(struct mm_struct *mm)
115 {
116 	unsigned long rts_field;
117 	int index, max_id;
118 
119 	max_id = (1 << mmu_pid_bits) - 1;
120 	index = alloc_context_id(mmu_base_pid, max_id);
121 	if (index < 0)
122 		return index;
123 
124 	/*
125 	 * set the process table entry,
126 	 */
127 	rts_field = radix__get_tree_size();
128 	process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
129 
130 	/*
131 	 * Order the above store with subsequent update of the PID
132 	 * register (at which point HW can start loading/caching
133 	 * the entry) and the corresponding load by the MMU from
134 	 * the L2 cache.
135 	 */
136 	asm volatile("ptesync;isync" : : : "memory");
137 
138 	mm->context.npu_context = NULL;
139 	mm->context.hash_context = NULL;
140 
141 	return index;
142 }
143 
144 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
145 {
146 	int index;
147 
148 	if (radix_enabled())
149 		index = radix__init_new_context(mm);
150 	else
151 		index = hash__init_new_context(mm);
152 
153 	if (index < 0)
154 		return index;
155 
156 	mm->context.id = index;
157 
158 	mm->context.pte_frag = NULL;
159 	mm->context.pmd_frag = NULL;
160 #ifdef CONFIG_SPAPR_TCE_IOMMU
161 	mm_iommu_init(mm);
162 #endif
163 	atomic_set(&mm->context.active_cpus, 0);
164 	atomic_set(&mm->context.copros, 0);
165 
166 	return 0;
167 }
168 
169 void __destroy_context(int context_id)
170 {
171 	ida_free(&mmu_context_ida, context_id);
172 }
173 EXPORT_SYMBOL_GPL(__destroy_context);
174 
175 static void destroy_contexts(mm_context_t *ctx)
176 {
177 	int index, context_id;
178 
179 	for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) {
180 		context_id = ctx->extended_id[index];
181 		if (context_id)
182 			ida_free(&mmu_context_ida, context_id);
183 	}
184 	kfree(ctx->hash_context);
185 }
186 
187 static void pmd_frag_destroy(void *pmd_frag)
188 {
189 	int count;
190 	struct page *page;
191 
192 	page = virt_to_page(pmd_frag);
193 	/* drop all the pending references */
194 	count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT;
195 	/* We allow PTE_FRAG_NR fragments from a PTE page */
196 	if (atomic_sub_and_test(PMD_FRAG_NR - count, &page->pt_frag_refcount)) {
197 		pgtable_pmd_page_dtor(page);
198 		__free_page(page);
199 	}
200 }
201 
202 static void destroy_pagetable_cache(struct mm_struct *mm)
203 {
204 	void *frag;
205 
206 	frag = mm->context.pte_frag;
207 	if (frag)
208 		pte_frag_destroy(frag);
209 
210 	frag = mm->context.pmd_frag;
211 	if (frag)
212 		pmd_frag_destroy(frag);
213 	return;
214 }
215 
216 void destroy_context(struct mm_struct *mm)
217 {
218 #ifdef CONFIG_SPAPR_TCE_IOMMU
219 	WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list));
220 #endif
221 	if (radix_enabled())
222 		WARN_ON(process_tb[mm->context.id].prtb0 != 0);
223 	else
224 		subpage_prot_free(mm);
225 	destroy_contexts(&mm->context);
226 	mm->context.id = MMU_NO_CONTEXT;
227 }
228 
229 void arch_exit_mmap(struct mm_struct *mm)
230 {
231 	destroy_pagetable_cache(mm);
232 
233 	if (radix_enabled()) {
234 		/*
235 		 * Radix doesn't have a valid bit in the process table
236 		 * entries. However we know that at least P9 implementation
237 		 * will avoid caching an entry with an invalid RTS field,
238 		 * and 0 is invalid. So this will do.
239 		 *
240 		 * This runs before the "fullmm" tlb flush in exit_mmap,
241 		 * which does a RIC=2 tlbie to clear the process table
242 		 * entry. See the "fullmm" comments in tlb-radix.c.
243 		 *
244 		 * No barrier required here after the store because
245 		 * this process will do the invalidate, which starts with
246 		 * ptesync.
247 		 */
248 		process_tb[mm->context.id].prtb0 = 0;
249 	}
250 }
251 
252 #ifdef CONFIG_PPC_RADIX_MMU
253 void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
254 {
255 	mtspr(SPRN_PID, next->context.id);
256 	isync();
257 }
258 #endif
259