1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * MMU context allocation for 64-bit kernels. 4 * 5 * Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org> 6 */ 7 8 #include <linux/sched.h> 9 #include <linux/kernel.h> 10 #include <linux/errno.h> 11 #include <linux/string.h> 12 #include <linux/types.h> 13 #include <linux/mm.h> 14 #include <linux/pkeys.h> 15 #include <linux/spinlock.h> 16 #include <linux/idr.h> 17 #include <linux/export.h> 18 #include <linux/gfp.h> 19 #include <linux/slab.h> 20 #include <linux/cpu.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/pgalloc.h> 24 25 #include "internal.h" 26 27 static DEFINE_IDA(mmu_context_ida); 28 29 static int alloc_context_id(int min_id, int max_id) 30 { 31 return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL); 32 } 33 34 #ifdef CONFIG_PPC_64S_HASH_MMU 35 void hash__reserve_context_id(int id) 36 { 37 int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL); 38 39 WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result); 40 } 41 42 int hash__alloc_context_id(void) 43 { 44 unsigned long max; 45 46 if (mmu_has_feature(MMU_FTR_68_BIT_VA)) 47 max = MAX_USER_CONTEXT; 48 else 49 max = MAX_USER_CONTEXT_65BIT_VA; 50 51 return alloc_context_id(MIN_USER_CONTEXT, max); 52 } 53 EXPORT_SYMBOL_GPL(hash__alloc_context_id); 54 #endif 55 56 #ifdef CONFIG_PPC_64S_HASH_MMU 57 static int realloc_context_ids(mm_context_t *ctx) 58 { 59 int i, id; 60 61 /* 62 * id 0 (aka. ctx->id) is special, we always allocate a new one, even if 63 * there wasn't one allocated previously (which happens in the exec 64 * case where ctx is newly allocated). 65 * 66 * We have to be a bit careful here. We must keep the existing ids in 67 * the array, so that we can test if they're non-zero to decide if we 68 * need to allocate a new one. However in case of error we must free the 69 * ids we've allocated but *not* any of the existing ones (or risk a 70 * UAF). That's why we decrement i at the start of the error handling 71 * loop, to skip the id that we just tested but couldn't reallocate. 72 */ 73 for (i = 0; i < ARRAY_SIZE(ctx->extended_id); i++) { 74 if (i == 0 || ctx->extended_id[i]) { 75 id = hash__alloc_context_id(); 76 if (id < 0) 77 goto error; 78 79 ctx->extended_id[i] = id; 80 } 81 } 82 83 /* The caller expects us to return id */ 84 return ctx->id; 85 86 error: 87 for (i--; i >= 0; i--) { 88 if (ctx->extended_id[i]) 89 ida_free(&mmu_context_ida, ctx->extended_id[i]); 90 } 91 92 return id; 93 } 94 95 static int hash__init_new_context(struct mm_struct *mm) 96 { 97 int index; 98 99 mm->context.hash_context = kmalloc(sizeof(struct hash_mm_context), 100 GFP_KERNEL); 101 if (!mm->context.hash_context) 102 return -ENOMEM; 103 104 /* 105 * The old code would re-promote on fork, we don't do that when using 106 * slices as it could cause problem promoting slices that have been 107 * forced down to 4K. 108 * 109 * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check 110 * explicitly against context.id == 0. This ensures that we properly 111 * initialize context slice details for newly allocated mm's (which will 112 * have id == 0) and don't alter context slice inherited via fork (which 113 * will have id != 0). 114 * 115 * We should not be calling init_new_context() on init_mm. Hence a 116 * check against 0 is OK. 117 */ 118 if (mm->context.id == 0) { 119 memset(mm->context.hash_context, 0, sizeof(struct hash_mm_context)); 120 slice_init_new_context_exec(mm); 121 } else { 122 /* This is fork. Copy hash_context details from current->mm */ 123 memcpy(mm->context.hash_context, current->mm->context.hash_context, sizeof(struct hash_mm_context)); 124 #ifdef CONFIG_PPC_SUBPAGE_PROT 125 /* inherit subpage prot details if we have one. */ 126 if (current->mm->context.hash_context->spt) { 127 mm->context.hash_context->spt = kmalloc(sizeof(struct subpage_prot_table), 128 GFP_KERNEL); 129 if (!mm->context.hash_context->spt) { 130 kfree(mm->context.hash_context); 131 return -ENOMEM; 132 } 133 } 134 #endif 135 } 136 137 index = realloc_context_ids(&mm->context); 138 if (index < 0) { 139 #ifdef CONFIG_PPC_SUBPAGE_PROT 140 kfree(mm->context.hash_context->spt); 141 #endif 142 kfree(mm->context.hash_context); 143 return index; 144 } 145 146 pkey_mm_init(mm); 147 return index; 148 } 149 150 void hash__setup_new_exec(void) 151 { 152 slice_setup_new_exec(); 153 154 slb_setup_new_exec(); 155 } 156 #else 157 static inline int hash__init_new_context(struct mm_struct *mm) 158 { 159 BUILD_BUG(); 160 return 0; 161 } 162 #endif 163 164 static int radix__init_new_context(struct mm_struct *mm) 165 { 166 unsigned long rts_field; 167 int index, max_id; 168 169 max_id = (1 << mmu_pid_bits) - 1; 170 index = alloc_context_id(mmu_base_pid, max_id); 171 if (index < 0) 172 return index; 173 174 /* 175 * set the process table entry, 176 */ 177 rts_field = radix__get_tree_size(); 178 process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE); 179 180 /* 181 * Order the above store with subsequent update of the PID 182 * register (at which point HW can start loading/caching 183 * the entry) and the corresponding load by the MMU from 184 * the L2 cache. 185 */ 186 asm volatile("ptesync;isync" : : : "memory"); 187 188 #ifdef CONFIG_PPC_64S_HASH_MMU 189 mm->context.hash_context = NULL; 190 #endif 191 192 return index; 193 } 194 195 int init_new_context(struct task_struct *tsk, struct mm_struct *mm) 196 { 197 int index; 198 199 if (radix_enabled()) 200 index = radix__init_new_context(mm); 201 else 202 index = hash__init_new_context(mm); 203 204 if (index < 0) 205 return index; 206 207 mm->context.id = index; 208 209 mm->context.pte_frag = NULL; 210 mm->context.pmd_frag = NULL; 211 #ifdef CONFIG_SPAPR_TCE_IOMMU 212 mm_iommu_init(mm); 213 #endif 214 atomic_set(&mm->context.active_cpus, 0); 215 atomic_set(&mm->context.copros, 0); 216 217 return 0; 218 } 219 220 void __destroy_context(int context_id) 221 { 222 ida_free(&mmu_context_ida, context_id); 223 } 224 EXPORT_SYMBOL_GPL(__destroy_context); 225 226 static void destroy_contexts(mm_context_t *ctx) 227 { 228 if (radix_enabled()) { 229 ida_free(&mmu_context_ida, ctx->id); 230 } else { 231 #ifdef CONFIG_PPC_64S_HASH_MMU 232 int index, context_id; 233 234 for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) { 235 context_id = ctx->extended_id[index]; 236 if (context_id) 237 ida_free(&mmu_context_ida, context_id); 238 } 239 kfree(ctx->hash_context); 240 #else 241 BUILD_BUG(); // radix_enabled() should be constant true 242 #endif 243 } 244 } 245 246 static void pmd_frag_destroy(void *pmd_frag) 247 { 248 int count; 249 struct page *page; 250 251 page = virt_to_page(pmd_frag); 252 /* drop all the pending references */ 253 count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT; 254 /* We allow PTE_FRAG_NR fragments from a PTE page */ 255 if (atomic_sub_and_test(PMD_FRAG_NR - count, &page->pt_frag_refcount)) { 256 pgtable_pmd_page_dtor(page); 257 __free_page(page); 258 } 259 } 260 261 static void destroy_pagetable_cache(struct mm_struct *mm) 262 { 263 void *frag; 264 265 frag = mm->context.pte_frag; 266 if (frag) 267 pte_frag_destroy(frag); 268 269 frag = mm->context.pmd_frag; 270 if (frag) 271 pmd_frag_destroy(frag); 272 return; 273 } 274 275 void destroy_context(struct mm_struct *mm) 276 { 277 #ifdef CONFIG_SPAPR_TCE_IOMMU 278 WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list)); 279 #endif 280 /* 281 * For tasks which were successfully initialized we end up calling 282 * arch_exit_mmap() which clears the process table entry. And 283 * arch_exit_mmap() is called before the required fullmm TLB flush 284 * which does a RIC=2 flush. Hence for an initialized task, we do clear 285 * any cached process table entries. 286 * 287 * The condition below handles the error case during task init. We have 288 * set the process table entry early and if we fail a task 289 * initialization, we need to ensure the process table entry is zeroed. 290 * We need not worry about process table entry caches because the task 291 * never ran with the PID value. 292 */ 293 if (radix_enabled()) 294 process_tb[mm->context.id].prtb0 = 0; 295 else 296 subpage_prot_free(mm); 297 destroy_contexts(&mm->context); 298 mm->context.id = MMU_NO_CONTEXT; 299 } 300 301 void arch_exit_mmap(struct mm_struct *mm) 302 { 303 destroy_pagetable_cache(mm); 304 305 if (radix_enabled()) { 306 /* 307 * Radix doesn't have a valid bit in the process table 308 * entries. However we know that at least P9 implementation 309 * will avoid caching an entry with an invalid RTS field, 310 * and 0 is invalid. So this will do. 311 * 312 * This runs before the "fullmm" tlb flush in exit_mmap, 313 * which does a RIC=2 tlbie to clear the process table 314 * entry. See the "fullmm" comments in tlb-radix.c. 315 * 316 * No barrier required here after the store because 317 * this process will do the invalidate, which starts with 318 * ptesync. 319 */ 320 process_tb[mm->context.id].prtb0 = 0; 321 } 322 } 323 324 #ifdef CONFIG_PPC_RADIX_MMU 325 void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next) 326 { 327 mtspr(SPRN_PID, next->context.id); 328 isync(); 329 } 330 #endif 331 332 /** 333 * cleanup_cpu_mmu_context - Clean up MMU details for this CPU (newly offlined) 334 * 335 * This clears the CPU from mm_cpumask for all processes, and then flushes the 336 * local TLB to ensure TLB coherency in case the CPU is onlined again. 337 * 338 * KVM guest translations are not necessarily flushed here. If KVM started 339 * using mm_cpumask or the Linux APIs which do, this would have to be resolved. 340 */ 341 #ifdef CONFIG_HOTPLUG_CPU 342 void cleanup_cpu_mmu_context(void) 343 { 344 int cpu = smp_processor_id(); 345 346 clear_tasks_mm_cpumask(cpu); 347 tlbiel_all(); 348 } 349 #endif 350